Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2308896, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057136

RESUMEN

The low photoluminescence (PL) efficiency and unstable features of small blue-emitting CsPbX3 nanocrystals (NCs) greatly limit their applications in optoelectronics field. Herein, the synergistic and post-treatment kinetics are studied to create highly bright and anomalous stable violet (peak position of ≈408 nm) and blue (peak position of ∼ 466 nm) emitting perovskite NCs. Ligand and ion exchange mechanism are systematic studied by the evolution of absorption, PL, and fluorescence lifetime to evaluate ligand bonding, defect engineering, and non-radiative recombination. Didodecyl dimethyl mmonium chloride (DDAC) and CuX2 post-synergistic treatment created DDAC-CsPbCl3 -CuCl2 and DDAC-CsPbCl3 -CuBr2 NCs that remained the phase composition, morphology, and size of CsPbCl3 NCs. The PL efficiencies are drastically increased to 42 and 85% for violet- and blue-emitting NCs, respectively. The stability test indicated that the NCs enable against various harsh conditions (e.g., ultraviolet light irradiation and heat-treatment). The NCs retained their initial PL efficiency after 2 months under ambient conditions and UV light irradiation. These NCs also exhibited high stability after heat-treatment at 120 °C. The emitting NCs embedded in flexible films still revealed bright PL and high stability, suggesting current results provide a new avenue for the application in the field of optoelectronics.

2.
Nanotechnology ; 33(33)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35561656

RESUMEN

CsPbCl3perovskite is an attractive semiconductor material with characteristics such as a wide bandgap, high chemical stability, and excellent optoelectronic properties, which broaden its application prospects for ultraviolet (UV) and violet photodetectors (PDs). However, large-area CsPbCl3films with high coverage, large grains, and controllable thickness are still difficult to prepare by using the solution method due to the extremely low solubility of their precursors in conventional solvents. Herein, a water-assisted confined re-growth method is developed, and a CsPbCl3microcrystalline film with an area of 3 cm × 3 cm is grown, the thickness of which is controllable within a range of several microns. The as-prepared thin film exhibits a flat and smooth surface, large grains, and enhanced photoluminescence. Furthermore, the fabricated violet PDs based on the prepared CsPbCl3film show a high responsivity of 2.17 A W-1, external quantum efficiency of 664%, on/off ratio of 2.58 × 103, and good stability. This study provides a prospective solution for the growth of large-area, large-grain, and surface-smooth CsPbCl3films for high-performance UV and violet PDs.

3.
Angew Chem Int Ed Engl ; 60(17): 9693-9698, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33543555

RESUMEN

Herein, we report the design of novel ultraviolet luminescent CsPbCl3 nanocrystals (NCs) with the emission peak at 381 nm through doping of cadmium ions. Subsequently, a surface passivation strategy with CdCl2 is adopted to improve their photoluminescence quantum yield (PLQY) with the maximum value of 60.5 %, which is 67 times higher than that of the pristine counterparts. The PLQY of the surface passivated NCs remains over 50 % after one week while the pristine NCs show negligible emission. By virtue of density functional theory calculations, we reveal that the higher PLQY and better stability after surface passivation may result from the significant elimination of surface chloride vacancy (VCl ) defects. These findings provide fundamental insights into the optical manipulation of metal ion-doped CsPbCl3 NCs.

4.
Small ; 15(39): e1902618, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31408255

RESUMEN

Perovskite photodetectors (PDs) with tunable detection wavelength have attracted extensive attention due to the potential application in the field of imaging, machine vision, and artificial intelligence. Most of the perovskite PDs focus on I- or Br-based materials due to their easy preparation techniques. However, their main photodetection capacity is situated in the visible region because of their narrower bandgap. Cl-based wide bandgap perovskites, such as CsPbCl3 , are scarcely reported because of the bad film quality of the spin-coated Cl-based perovskite, due to the poor solubility of the precursor. Therefore, ultraviolet detection using high-quality full inorganic perovskite films, especially with high thermal stability of materials and devices, is still a big challenge. In this work, high-quality single crystal CsPbCl3 microplatelets (MPs) synthesized by a simple space-confined growth method at low temperature for near-ultraviolet (NUV) PDs are reported. The single CsPbCl3 MP PDs demonstrate a decent response to NUV light with a high on/off ratio of 5.6 × 103 and a responsivity of 0.45 A W-1 at 5 V. In addition, the dark current is as low as pA level, leading to detectivity up to 1011 Jones. Moreover, PDs possess good stability and repeatability.

5.
Angew Chem Int Ed Engl ; 56(30): 8746-8750, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28557185

RESUMEN

Doping in perovskite nanocrystals adopts different mechanistic approach in comparison to widely established doping in chalcogenide quantum dots. The fast formation of perovskites makes the dopant insertions more competitive and challenging. Introducing alkylamine hydrochloride (RNH3 Cl) as a promoting reagent, precise controlled doping of MnII in CsPbCl3 perovskite nanocrystals is reported. Simply, by changing the amount of RNH3 Cl, the Mn incorporation and subsequent tuning in the excitonic as well as Mn d-d emission intensities are tailored. Investigations suggested that RNH3 Cl acted as the chlorinating source, controlled the size, and also helps in increasing the number of particles. This provided more opportunity for Mn ions to take part in reaction and occupied the appropriate lattice positions. Carrying out several reactions with varying reaction parameters, the doping conditions are optimized and the role of the promoting reagent for both doped and undoped systems are compared.

6.
Materials (Basel) ; 16(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37629836

RESUMEN

To investigate the effect of Mn and other metal dopants on the photoelectronic performance of CsPbCl3 perovskites, we conducted a series of theoretical analyses. Our findings showed that after Mn mono-doping, the CsPbCl3 lattice contracted and the bonding strength increased, resulting in a more compact structure of the metal octahedral cage. The relaxation of the metal octahedral cage, along with the Jahn-Teller effect, results in a decrease in lattice strain between the octahedra and a reduction in the energy of the entire lattice due to the deformation of the metal octahedron. These three factors work together to reduce intrinsic defects and enhance the stability and electronic properties of CsPbCl3 perovskites. The solubility of the Mn dopant is significantly increased when co-doped with Ni, Fe, and Co dopants, as it compensates for the lattice strain induced by Mn. Doping CsPbCl3 perovskites reduces the band gap due to the decreased contributions of 3d orbitals from the dopants. Our analyses have revealed that strengthening the CsPbCl3 lattice and reducing intrinsic defects can result in improved stability and PL properties. Moreover, increasing Mn solubility and decreasing the bandgap can enhance the PLQY of orange luminescence in CsPbCl3 perovskites. These findings offer valuable insights for the development of effective strategies to enhance the photoelectronic properties of these materials.

7.
Front Chem ; 10: 849801, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300383

RESUMEN

Ligands on the surface of perovskite nanocrystals are important to stabilize the nanocrystal structure. However, the research of ligands on Mn2+ ion-doped CsPbCl3 nanocrystals (Mn: CsPbCl3 NCs), a promising candidate family for the lightning community, is relatively rare. Here, we demonstrate a new ligand modification strategy for preparing high-quality Mn: CsPbCl3 NCs by a simple hot-injection method. Thiophene derivative, for the first time, is applied as ligands for perovskite nanocrystals. The new ligands of thiophene derivatives passivate defects on the surface of NCs and enhance optical properties, originating from the sulfur in thiophene additives binding to the uncoordinated lead ions. The photoluminescence quantum yield of the modified Mn: CsPbCl3 NCs is 93% in comparison with 46% of the pristine counterparts, whose value is the highest to date for ligand-modified Mn: CsPbCl3 NCs. Meanwhile, the thermal, storage, and purification stability are also significantly improved. The performance of related LEDs is also investigated.

8.
IEEE Trans Radiat Plasma Med Sci ; 6(7): 804-810, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37008042

RESUMEN

Semiconductor-based radiation detectors can typically achieve better energy and spatial resolution when compared to scintillator-based detectors. However, if used for positron emission tomography (PET), semiconductor-based detectors normally cannot achieve excellent coincidence time resolution (CTR), due to the relatively slow charge carrier collection time limited by the carrier drift velocity. If we can collect prompt photons emitted from certain semiconductor materials, there are possibilities that the CTR can be greatly improved, and time-of-flight (ToF) capability can be achieved. In this paper, we studied the prompt photon emission (mainly Cherenkov luminescence) property and fast timing capability of cesium lead chloride (CsPbCl3) and cesium lead bromide (CsPbBr3), which are two new perovskite semiconductor materials. We also compared their performance with thallium bromide (TlBr), another semiconductor material that has already been studied for timing using its Cherenkov emissions. We performed coincidence measurements using silicon photomultipliers (SiPMs), and the full-width-at-half-maximum (FWHM) CTR acquired between a semiconductor sample crystal and a reference lutetium-yttrium oxyorthosilicate (LYSO) crystal (both with dimensions of 3 × 3 × 3 mm3) is 248 ± 8 ps for CsPbCl3, 440 ± 31 ps for CsPbBr3, and 343 ± 16 ps for TlBr. Deconvolving the contribution to CTR from the reference LYSO crystal (around 100 ps) and then multiplying by the square root of 2, the estimated CTR between two of the same semiconductor crystals was calculated as 324 ± 10 ps for CsPbCl3, 606 ± 43 ps for CsPbBr3 and 464 ± 22 ps for TlBr. This ToF capable CTR performance combined with an easily scalable crystal growth process, low cost and toxicity, as well as good energy resolution lead us to the conclusion that new perovskite materials such as CsPbCl3 and CsPbBr3 could be excellent candidates as PET detector materials.

9.
ACS Appl Mater Interfaces ; 13(38): 45744-45757, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34545739

RESUMEN

All-inorganic CsPbCl3 perovskite in ultraviolet (UV) detection is drawing increasing interest owing to its UV-matchable optical band gap, ultrahigh UV stability, and superior inherent optoelectronic properties. Almost all of the reported CsPbCl3 photodetectors employ CsPbCl3 nano- or microstructures as sensitive components, while CsPbCl3 polycrystalline film-based self-powered photodetectors are rarely studied on account of the terrible precursor solubility. Herein, a novel sequential vapor-deposition technique is demonstrated to fabricate CsPbCl3 polycrystalline film for the first time. High-quality CsPbCl3 films with excellent optical, electronic, and morphological features are obtained. A self-powered photodetector based on the CsPbCl3 film is constructed without any charge transport layer, showing a high UV detection performance. A thin p-type PbS buffer layer is further introduced to passivate the surface defects of the CsPbCl3 layer and decrease the interfacial energy barrier by forming a type-II heterojunction, contributing to a faster hole extraction rate and a suppressed dark current level. The best-performing device achieves an ultrafast response time of 1.92 µs, an ultrahigh on/off ratio of 2.22 × 105, and a responsivity of 0.22 A/W upon 375 nm UV illumination at 0 V bias. This comprehensive performance is the best among all of the CsPbCl3 photodetectors reported to date. The as-prepared photodetectors also present an eminent UV irradiation and long-term durability in ambient air. Furthermore, a large-area and uniform 625-pixel UV image sensor is fabricated and attains a prominent imaging capability. Our work opens a new avenue for the scalable production of CsPbCl3-based optoelectronics.

10.
Nanomaterials (Basel) ; 11(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572135

RESUMEN

Caesium lead halide perovskites were recently demonstrated to be a relevant class of semiconductors for photonics and optoelectronics. Unlike CsPbBr3 and CsPbI3, the realization of high-quality thin films of CsPbCl3, particularly interesting for highly efficient white LEDs when coupled to converting phosphors, is still a very demanding task. In this work we report the first successful deposition of nanocrystalline CsPbCl3 thin films (70-150 nm) by radio frequency magnetron sputtering on large-area substrates. We present a detailed investigation of the optical properties by high resolution photoluminescence (PL) spectroscopy, resolved in time and space in the range 10-300 K, providing quantitative information concerning carriers and excitons recombination dynamics. The PL is characterized by a limited inhomogeneous broadening (~15 meV at 10 K) and its origin is discussed from detailed analysis with investigations at the micro-scale. The samples, obtained without any post-growth treatment, show a homogeneous PL emission in spectrum and intensity on large sample areas (several cm2). Temperature dependent and time-resolved PL spectra elucidate the role of carrier trapping in determining the PL quenching up to room temperature. Our results open the route for the realization of large-area inorganic halide perovskite films for photonic and optoelectronic devices.

11.
ACS Appl Mater Interfaces ; 13(29): 34561-34571, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34278785

RESUMEN

Exploring highly efficient near-infrared (NIR) emitting materials is desirable for the advancement of next-generation smart NIR light sources. Different from most reported Cr3+-doped emitters with far-red emissions, Yb3+-activated phosphors are expected to yield pure NIR (∼1000 nm) light. Herein, a new hot-injection route using all metal-oleate salts to fabricate Yb3+-doped CsPbCl3 perovskite nanocrystals (PeNCs) is reported for the first time, which produce PeNC-sensitized Yb3+ NIR emission with photoluminescence quantum yields (PLQYs) higher than 100%. With the help of temperature-dependent PL spectra, femtosecond transient absorption spectra, and time-resolved PL spectra, it is evidenced that the in situ produced intrinsic shallow trap states in a CsPbCl3 host play a key role in facilitating the picosecond nonradiative cooperative energy transfer from PeNCs to two Yb3+ dopants simultaneously. Using the optimized Yb3+:CsPbCl3 quantum cutters, a phosphor-converted NIR light-emitting diode (pc-NIR-LED) is fabricated, exhibiting an external quantum efficiency of 2%@28 mA, a high NIR output irradiance of 112 mW/cm2@400 mA, and excellent long-term stability. Finally, the designed pc-NIR-LED is demonstrated to have great potential as an invisible night-vision light source.

12.
ACS Appl Mater Interfaces ; 12(27): 30711-30719, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32515183

RESUMEN

CsPbCl3:Mn2+ is a practical solution for obtaining red-orange light inorganic perovskite nanocrystals since CsPbI3 is unstable. Increasing the concentration of Mn2+ is an effective way to enhance the orange-red emission of CsPbCl3:Mn2+. However, the relationship between emission intensity of the Mn2+ dopant and the concentration of Mn2+ is very chaotic in different studies. As a transition metal ion, the electronic states of Mn2+ are very sensitive to the crystal field environment. Here, the crystal field of the CsPbCl3:Mn2+ nanocrystals was adjusted by co-doping other cations, and the concentration of Mn2+ remained unchanged. Additionally, the crystal field strength of different samples was calculated. Compared with the CsPbCl3:Mn2+ nanocrystals, the red-orange peak in the fluorescence spectrum of CsPbCl3:Mn2+, Er3+ nanocrystals was redshifted from 580 to 600 nm and enhanced by 100 times successfully. The same experiment was carried out on CsPbCl3:Mn2+ nanoplatelets at the same time to confirm the changed crystal field around Mn2+. The effect of co-doping cations on the luminescence properties of Mn2+ is similar to that in nanocubes, and the mechanism was analyzed in detail.

13.
J Colloid Interface Sci ; 554: 619-626, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31336354

RESUMEN

Fully-inorganic halide perovskites (HPs) have realized respectable progress in multiple optoelectronic applications. However, Cl-based fully-inorganic HPs that are ideal for ultraviolet (UV) photodetection applications in high demand still remain rarely explored mainly due to the poor solution processability compared with other counterparts. Here we propose a facile solution method to fabricate CsPbCl3 with not only high crystallinity but also a two dimensional (2D) morphology for efficient UV photodetection. 2D Ruddlesden-Popper perovskites (RPPs) are firstly prepared as the intermediate phase, which habitually grow into microplates owing to an intrinsic 2D structure. Then Cs+ was introduced in the form of highly soluble cesium acetate to exchange with the organic cations in the RPPs to produce 2D CsPbCl3 with preserved morphology and micron scale size. By this chemical route, the poor solubility issue can be addressed. All the procedures are conducted at room temperature in open air. The perfect band gap, high crystallinity and 2D morphology promise superior UV light sensing capability, one of the best overall performances featuring high responsivity, fast response speed, low driving voltages and good stability is obtained. This work is believed to fill in the "Cl-gap" for this promising class of material.

14.
Adv Sci (Weinh) ; 5(7): 1800474, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30027063

RESUMEN

Charge recombination in grain boundaries is a significant loss mechanism for perovskite (PVK) solar cells. Here, a new strategy is demonstrated to effectively passivate trap states at the grain boundaries. By introducing a thin layer of CsPbCl3 coating before the PVK deposition, a passivating layer of PbI2 is formed at the grain boundaries. It is found that at elevated temperature, Cl- ions in the CsPbCl3 may migrate into the PVK via grain boundaries, reacting with MA+ to form volatile MACl and leaving a surface layer of PbI2 at the grain boundary. Further study confirms that there is indeed a small amount of PbI2 distributed throughout the grain boundaries, resulting in increased photoluminescence intensity, increased carrier lifetime, and decreased trap state density. It is also found that the process passivates only grain surfaces, with no observable effect on the morphology of the PVK thin film. Upon optimization, the obtained PVK-film-based solar cell delivers a high efficiency of 20.09% with reduced hysteresis and excellent stability.

15.
ACS Appl Mater Interfaces ; 10(46): 39872-39878, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30353721

RESUMEN

Currently, it is of great challenge to achieve cation exchange in CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (NCs) on account of rigid Pb2+ octahedral coordination protected by six halogen anions (PbX64-). Herein, we demonstrate that dynamic halogen exchange can effectively open up PbX64- octahedrons and enable fast Mn-to-Pb cation exchange at room temperature in a few seconds. Importantly, Cl concentration rather than Mn one is demonstrated to be a dominant factor for cation exchange, where different Mn2+/Cl- salts can be adopted as Mn/Cl sources and Cl-to-Cl or Cl-to-Br anion exchange is the necessary prerequisite. Such a facile synthesizing method can lead to the feasibility of tuning emissive colors for the Mn-doped CsPb(Cl/Br)3 NCs by controlling both cation and anion exchanges and open a new way to replace Pb2+ in CsPbX3 NCs by other nontoxic metal elements.

16.
ACS Appl Mater Interfaces ; 10(35): 29574-29582, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30088920

RESUMEN

All-inorganic halide perovskite nanowires (NWs) exhibit improved thermal and hydrolysis stability and could thus play a vital role in nanoscale optoelectronics. Among them, blue-light-based devices are extremely limited because of the lack of a facile method to obtain high-purity CsPbCl3 NWs. Herein, we report a direct and facile method for the synthesis of CsPbCl3 NWs assisted by inorganic ions that served both as a morphology controlling agent for the anisotropic growth of nanomaterials and a surface passivation species modulating the surface of nanomaterials. This new approach allows us to obtain high-purity and size-uniform NWs as long as 500 nm in length and 20 nm in diameter with high reproducibility. X-ray photoelectron spectroscopy and ultrafast spectroscopic measurements confirmed that a reduced band gap caused by the surface species of NWs relative to nanocubes (NCs) was achieved at the photon energy of 160 eV because of the hybrid surface passivation contributed by adsorbed inorganic ions. The resulting NWs demonstrate significantly enhanced photoelectrochemical performances, 3.5-fold increase in the photocurrent generation, and notably improved stability compared to their NC counterparts. Our results suggest that the newly designed NWs could be a promising material for the development of nanoscale optoelectronic devices.

17.
ACS Appl Mater Interfaces ; 10(27): 23335-23343, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29905063

RESUMEN

The design of photoluminescence-quenching probes for molecular oxygen (O2) is always a large space to explore. Luminescent semiconductor nanocrystals (NCs) have been proposed as emerging oxygen-responsive probes, but the inherent O2 sensing of phosphorescent semiconductor NCs has not been reported so far. Here, we demonstrate the O2 sensing capability of MnII-doped CsPbCl3 nanocrystals (Mn:CsPbCl3 NCs) and reveal the role of O2 on the optical de-excitation process of such perovskite nanocrystals (PNCs). By adjusting the amount and distribution of MnII dopants, as well as the host-dopant energy transfer process in PNCs, we highlight that O2 can reversibly quench the MnII emission due to the temporary disturbance to the ligand field of near-surface MnII dopants in PNCs. In phosphorescence mode, the photoluminescence intensity of the Mn:CsPbCl3 NCs is quenched by 53% on increasing O2 concentration from 0 to 100%. The Stern-Volmer plot shows a good linear in the 0-12% O2 concentration range. High sensing reversibility and rapid signal response are also achieved. In our perception, the mechanism study makes our PNCs candidates for the optical probes of O2, and it is enlightening to explore more possibilities of the inherent O2 sensing based on the semiconductor-doped NCs (not restricted to MnII-doped PNCs) with phosphorescence emission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA