Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 884
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell Physiol ; 65(5): 729-736, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38288629

RESUMEN

Genome-editing tools such as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system have become essential tools for increasing the efficiency and accuracy of plant breeding. Using such genome-editing tools on maize, one of the most important cereal crops of the world, will greatly benefit the agriculture and the mankind. Conventional genome-editing methods typically used for maize involve insertion of a Cas9-guide RNA expression cassette and a selectable marker in the genome DNA; however, using such methods, it is essential to eliminate the inserted DNA cassettes to avoid legislative concerns on gene-modified organisms. Another major hurdle for establishing an efficient and broadly applicable DNA-free genome-editing system for maize is presented by recalcitrant genotypes/cultivars, since cell/tissue culture and its subsequent regeneration into plantlets are crucial for producing transgenic and/or genome-edited maize. In this study, to establish a DNA-free genome-editing system for recalcitrant maize genotypes/cultivars, Cas9-gRNA ribonucleoproteins were directly delivered into zygotes isolated from the pollinated flowers of the maize-B73 cultivar. The zygotes successfully developed and were regenerated into genome-edited plantlets by co-culture with phytosulfokine, a peptide phytohormone. The method developed herein made it possible to obtain DNA- and selectable-marker-free genome-edited recalcitrant maize genotypes/cultivars with high efficiency. This method can advance the molecular breeding of maize and other important cereals, regardless of their recalcitrant characteristics.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , Zea mays , Zea mays/genética , Edición Génica/métodos , Plantas Modificadas Genéticamente , Cigoto/metabolismo , Fitomejoramiento/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , ADN de Plantas/genética
2.
BMC Plant Biol ; 24(1): 670, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004723

RESUMEN

The most effective strategy for managing wheat bacterial blight caused by Pseudomonas syringae pv. syringae is believed to be the use of resistant cultivars. Researching the correlation between molecular markers and stress resistance can expedite the plant breeding process. The current study aims to evaluate the response of 27 bread wheat cultivars to bacterial blight disease in order to identify resistant and susceptible cultivars and to pinpoint ISSR molecular markers associated with bacterial blight resistance genes. ISSR markers are recommended for assessing a plant's disease resistance. This experiment is focused on identifying ISSR molecular markers linked to bacterial blight resistance. After applying the bacterial solution to the leaves, we performed sampling to determine the infection percentage in the leaves at different intervals (7, 14, and 18 days after spraying). In most cultivars, the average leaf infection percentage decreased 18 days after spraying on young leaves. However, in some cultivars such as Niknegad, Darab2, and Zarin, leaf infection increased in older leaves and reached up to 100% necrosis. In our study, 12 ISSR primers generated a total of 170 bands, with 156 being polymorphic. The primers F10 and F5 showed the highest polymorphism, while the F7 primer exhibited the lowest polymorphism. Cluster analysis grouped these cultivars into four categories. The resistant group included Qods, Omid, and Atrak cultivars, while the semi-resistant and susceptible groups comprised the rest of the cultivars. Through binary logistic analysis, we identified three Super oxide dismutase-related genes that contribute to plant resistance to bacterial blight. These genes were linked to the F3, F5, and F12 primers in regions I (1500 bp), T (1000 bp), and G (850 bp), respectively. We also identified seven susceptibility-associated genes. Atrak, Omid, and Qods cultivars exhibited resistance against bacterial blight, and three genes associated with this resistance were linked to the F3, F5, and F12 primers. These markers can be used for screening or transferring tolerance to other wheat cultivars in breeding programs.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Pseudomonas syringae , Triticum , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Pseudomonas syringae/fisiología , Marcadores Genéticos , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Modelos Logísticos
3.
BMC Plant Biol ; 24(1): 337, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664617

RESUMEN

BACKGROUND: Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS: The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS: This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.


Asunto(s)
Endófitos , Genotipo , Olea , Enfermedades de las Plantas , Xylella , Olea/microbiología , Xylella/fisiología , Xylella/genética , Endófitos/fisiología , Endófitos/genética , Enfermedades de las Plantas/microbiología , Microbiota , Bacterias/genética , Bacterias/clasificación , Hongos/fisiología , Hongos/genética
4.
BMC Plant Biol ; 24(1): 740, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095701

RESUMEN

BACKGROUND: The Agricultural Research Centre of Mabegondo (Xunta de Galicia, A Coruña, Spain) conserves one of the most important collections of phytogenetic resources of ecotypes and natural populations of grassland species from northwestern Spain, among them populations of ryegrass (Lolium spp.), one of the most cultivated forage grasses in the world. The objective of the present study was to evaluate the diversity among commercial cultivars and natural ryegrass populations with phenotypic traits and molecular markers. RESULTS: Eleven polymorphic microsatellites loci were used to analyze 58 ecotypes and 10 cultivars (680 DNA samples in total) differentiating 673 genotypes. Two main groups were detected by the Structure analysis, one related to Lolium perenne and a second to Lolium multiflorum. The first group showed two subgroups and the second three. The cluster of L. multiflorum showed two subgroups not related with the third cluster including commercial varieties, one from the Canary Islands (with Lolium rigidum included) and a second one from northwestern Spain, which presented specific agromorphological characteristics, such as lower FES (number of days from 1 January, when three heads per plant were flowering per plot), CRE (growth in flowering, in g of dry matter), and AIN (number of inflorescences per plant). CONCLUSIONS: This is the first time that a large amount of data on ryegrass from the Iberian Peninsula has been analyzed, obtaining a clear genetic differentiation of the autochthonous varieties from the commercial varieties analyzed. In addition, the genetic structure found in the ecotypes was related to the phenotypic variation analyzed. Being of interest in the conservation of biodiversity and in obtaining better adapted varieties of ryegrasses, due to their specific phenotypic traits, such as a lower FES, CRE and AIN.


Asunto(s)
Ecotipo , Variación Genética , Lolium , Repeticiones de Microsatélite , Fenotipo , Lolium/genética , España , Genotipo
5.
BMC Plant Biol ; 24(1): 695, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044125

RESUMEN

The bacterial blight of wheat is an important global disease causing a significant decline in crop yield. Nanotechnology offers a potential solution for managing plant diseases. Therefore, this research aimed to investigate the effectiveness of silver nanoparticles (AgNPs) in controlling bacterial blight in 27 locally grown wheat cultivars. The study examined the impact of AgNPs at three distinct time points: 1, 3, and 5 days after the onset of the disease. Biochemical assay revealed that one day after applying the disease stress, the Inia cultivar had the highest amount of soluble protein (55.60 µg.g-1FW) content in the treatment without AgNPs. The Azadi cultivar, without AgNPs treatment, had the lowest amount of soluble protein content (15.71 µg.g-1FW). The Tabasi cultivar had the highest activity of the superoxide dismutase (SOD) (61.62 mM.g-1FW) with the combination treatment of AgNPs. On the other hand, the Karchia cultivar had the lowest SOD activity (0.6 mM.g-1FW) in the treatment of disease without AgNPs. Furthermore, three days after the application of stress, the Mahdavi cultivar had the highest amount of soluble protein content (54.16 µg.g-1FW) in the treatment of disease without AgNPs. The Niknejad cultivar had the highest activity of the SOD (74.15 mM.g-1FW) with the combined treatment of the disease without AgNPs. The Kavir cultivar had the lowest SOD activity (1.95 mM.g-1FW) and the lowest peroxidase (POX) activity (0.241 mM g-1FW min-1) in the treatment of the disease with AgNPs. Five days after exposure to stress, the Mahooti cultivar had the highest SOD activity (88.12 mM.g-1FW) with the combined treatment of the disease with AgNPs, and the Karchia cultivar had the lowest SOD activity (2.39 mM.g-1FW) in the treatment of the disease with AgNPs. Further, the results indicated that exposure to AgNPs could improve the antioxidant properties of wheat seeds in blight-infected and disease-free conditions in some cultivars.


Asunto(s)
Nanopartículas del Metal , Enfermedades de las Plantas , Plata , Triticum , Triticum/microbiología , Triticum/efectos de los fármacos , Plata/farmacología , Enfermedades de las Plantas/microbiología , Superóxido Dismutasa/metabolismo , Proteínas de Plantas/metabolismo
6.
Photosynth Res ; 159(1): 1-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923970

RESUMEN

A complete study of 14 olive cultivars of great economic importance was carried out. These cultivars are Arbequina, Arbosana, Chemlali, Cornicabra, Cornezuelo de Jaén, Empeltre, Frantoio, Hojiblanca, Koroneiki, Manzanilla de Sevilla, Martina, Picual, Sikitita1 and Sikitita 2. All of them are certified by the World Olive Germplasm Bank of Córdoba (Spain). They are predominant cultivars in the olive groves of different locations throughout the Mediterranean basin, and they were subjected to total water deficit for a minimum of 14 days and a maximum of 42 days in the present study. Data such as chlorophyll content, soil moisture and specific leaf area were gathered. Photosynthetic parameters measured at the respective saturation irradiance of each cultivar were also analysed: assimilation rate, transpiration, stomatal conductance, photosynthetic efficiency, photochemical and non-photochemical quenching, photonic flux density, electron transference ratio, efficient use of water and amount of proline and malondialdehyde as indicators of oxidative stress. In addition to the control, two different experimental conditions were analysed: moderate drought, after 14 days of lack of irrigation, and severe drought, after 28-42 days of total absence of irrigation, depending on the tolerance of each cultivar. Based on the results, the cultivars were characterised and divided into four groups according to their drought tolerance: tolerant, moderately tolerant, moderately sensitive and sensitive to drought. This work represents the first contribution of drought tolerance of a considerable number of olive cultivars, with all of them being subjected to the same criteria and experimental conditions for their classification.


Asunto(s)
Olea , Olea/fisiología , Resistencia a la Sequía , Fotosíntesis , Clorofila , Agua , Hojas de la Planta/fisiología , Sequías
7.
Metabolomics ; 20(3): 62, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796627

RESUMEN

INTRODUCTION: The chemical classification of Cannabis is typically confined to the cannabinoid content, whilst Cannabis encompasses diverse chemical classes that vary in abundance among all its varieties. Hence, neglecting other chemical classes within Cannabis strains results in a restricted and biased comprehension of elements that may contribute to chemical intricacy and the resultant medicinal qualities of the plant. OBJECTIVES: Thus, herein, we report a computational metabolomics study to elucidate the Cannabis metabolic map beyond the cannabinoids. METHODS: Mass spectrometry-based computational tools were used to mine and evaluate the methanolic leaf and flower extracts of two Cannabis cultivars: Amnesia haze (AMNH) and Royal dutch cheese (RDC). RESULTS: The results revealed the presence of different chemical compound classes including cannabinoids, but extending it to flavonoids and phospholipids at varying distributions across the cultivar plant tissues, where the phenylpropnoid superclass was more abundant in the leaves than in the flowers. Therefore, the two cultivars were differentiated based on the overall chemical content of their plant tissues where AMNH was observed to be more dominant in the flavonoid content while RDC was more dominant in the lipid-like molecules. Additionally, in silico molecular docking studies in combination with biological assay studies indicated the potentially differing anti-cancer properties of the two cultivars resulting from the elucidated chemical profiles. CONCLUSION: These findings highlight distinctive chemical profiles beyond cannabinoids in Cannabis strains. This novel mapping of the metabolomic landscape of Cannabis provides actionable insights into plant biochemistry and justifies selecting certain varieties for medicinal use.


Asunto(s)
Cannabis , Metabolómica , Hojas de la Planta , Cannabis/química , Cannabis/metabolismo , Metabolómica/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Flores/metabolismo , Flores/química , Extractos Vegetales/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Cannabinoides/metabolismo , Cannabinoides/análisis , Simulación del Acoplamiento Molecular , Flavonoides/metabolismo , Flavonoides/análisis , Espectrometría de Masas/métodos
8.
Microb Ecol ; 87(1): 103, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088119

RESUMEN

Plants thrive in diverse environments, where root-microbe interactions play a pivotal role. Date palm (Phoenix dactylifera L.), with its genetic diversity and resilience, is an ideal model for studying microbial adaptation to different genotypes and stresses. This study aimed to analyze the bacterial and fungal communities associated with traditional date palm cultivars and the widely cultivated "Deglet Nour" were explored using metabarcoding approaches. The microbial diversity analysis identified a rich community with 13,189 bacterial and 6442 fungal Amplicon Sequence Variants (ASVs). Actinobacteriota, Proteobacteria, and Bacteroidota dominated bacterial communities, while Ascomycota dominated fungal communities. Analysis of the microbial community revealed the emergence of two distinct clusters correlating with specific date palm cultivars, but fungal communities showed higher sensitivity to date palm genotype variations compared to bacterial communities. The commercial cultivar "Deglet Nour" exhibited a unique microbial composition enriched in pathogenic fungal taxa, which was correlated with its genetic distance. Overall, our study contributes to understanding the complex interactions between date palm genotypes and soil microbiota, highlighting the genotype role in microbial community structure, particularly among fungi. These findings suggest correlations between date palm genotype, stress tolerance, and microbial assembly, with implications for plant health and resilience. Further research is needed to elucidate genotype-specific microbial interactions and their role in enhancing plant resilience to environmental stresses.


Asunto(s)
Bacterias , Hongos , Microbiota , Phoeniceae , Microbiología del Suelo , Phoeniceae/microbiología , Phoeniceae/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/fisiología , Genotipo , Raíces de Plantas/microbiología , Suelo/química
9.
Biosci Biotechnol Biochem ; 88(3): 283-293, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38115610

RESUMEN

Cytochrome P450s represent one of the largest protein families across all domains of life. In plants, biotic stress can regulate the expression of some P450 genes. However, the CYPome (cytochrome P450 complement) in Solanum tuberosum and its response to Phytophthora infestans infection remains unrevealed. In this study, 488 P450 genes were identified from potato genome, which can be divided into 41 families and 57 subfamilies. Responding to the infection of P. infestans, 375 potato P450 genes were expressed in late blight resistant or susceptible cultivars. A total of 14 P450 genes were identified as resistant related candidates, and 81 P450 genes were identified as late blight responsive candidates. Several phytohormone biosynthesis, brassinosteroid biosynthesis, and phenylpropanoid biosynthesis involved P450 genes were differentially expressed during the potato-pathogen interactions. This study firstly reported the CYPome in S. tuberosum, and characterized the expression patterns of these P450 genes during the infection of P. infestans.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Phytophthora infestans/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Genoma , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Enfermedades de las Plantas/genética
10.
Bull Entomol Res ; 114(1): 134-148, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38178797

RESUMEN

Aulacophora lewisii Baly (Coleoptera: Chrysomelidae) is an important pest of Luffa acutangula (L.) Roxb. (Cucurbitaceae) in India. Larvae of A. lewisii feed on the roots, while adults consume leaves of L. acutangula. In the current study, effects of three L. acutangula cultivars (Abhiskar, Debsundari, and Jaipur Long) on the life table parameters by age-stage, two-sex approach, and key digestive enzymatic activities (amylolytic, proteolytic, and lipolytic) of the larvae and adults of A. lewisii were determined. Further, nutrients (total carbohydrates, proteins, lipids, amino acids, and nitrogen content) and antinutrients (total phenols, flavonols, and tannins) present in the roots and leaves of three cultivars were estimated. The development time (egg to adult emergence) was fastest and slowest on Jaipur Long (31.80 days) and Abhiskar (40.91 days), respectively. Fecundity was highest and lowest on Jaipur Long (279.91 eggs) and Abhiskar (137.18 eggs), respectively. The intrinsic rate of increase (r) was lowest on Abhiskar (0.0511 day-1) and highest on Jaipur Long (0.0872 day-1). The net reproductive rate (R0) was lowest on Abhiskar (23.32 offspring female-1). The mean generation time (T) was shortest on Jaipur Long (52.59 days) and longest on Abhiskar (61.58 days). The amylolytic, proteolytic, and lipolytic activities of larvae and adults of A. lewisii were highest and lowest on Jaipur Long and Abhiskar, respectively. The lower level of nutrients and higher level of antinutrients influenced higher larval development time and lower fecundity of A. lewisii on Abhiskar than other cultivars. Our results suggest that Abhiskar cultivar could be promoted for cultivation.


Asunto(s)
Escarabajos , Cucurbitaceae , Luffa , Femenino , Animales , Escarabajos/fisiología , Tablas de Vida , Larva , Fenómenos Fisiológicos del Sistema Digestivo
11.
Sensors (Basel) ; 24(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38894376

RESUMEN

The potential of a voltametric E-tongue coupled with a custom data pre-processing stage to improve the performance of machine learning techniques for rapid discrimination of tomato purées between cultivars of different economic value has been investigated. To this aim, a sensor array with screen-printed carbon electrodes modified with gold nanoparticles (GNP), copper nanoparticles (CNP) and bulk gold subsequently modified with poly(3,4-ethylenedioxythiophene) (PEDOT), was developed to acquire data to be transformed by a custom pre-processing pipeline and then processed by a set of commonly used classifiers. The GNP and CNP-modified electrodes, selected based on their sensitivity to soluble monosaccharides, demonstrated good ability in discriminating samples of different cultivars. Among the different data analysis methods tested, Linear Discriminant Analysis (LDA) proved to be particularly suitable, obtaining an average F1 score of 99.26%. The pre-processing stage was beneficial in reducing the number of input features, decreasing the computational cost, i.e., the number of computing operations to be performed, of the entire method and aiding future cost-efficient hardware implementation. These findings proved that coupling the multi-sensing platform featuring properly modified sensors with the custom pre-processing method developed and LDA provided an optimal tradeoff between analytical problem solving and reliable chemical information, as well as accuracy and computational complexity. These results can be preliminary to the design of hardware solutions that could be embedded into low-cost portable devices.


Asunto(s)
Oro , Aprendizaje Automático , Solanum lycopersicum , Solanum lycopersicum/clasificación , Solanum lycopersicum/química , Oro/química , Análisis Discriminante , Nariz Electrónica , Nanopartículas del Metal/química , Electrodos , Polímeros/química , Cobre/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química
12.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892428

RESUMEN

WRKYs are a multigenic family of transcription factors that are plant-specific and involved in the regulation of plant development and various stress response processes. However, the evolution of WRKY genes is not fully understood. This family has also been incompletely studied in grapevine, and WRKY genes have been named with different numbers in different studies, leading to great confusion. In this work, 62 Vitis vinifera WRKY genes were identified based on six genomes of different cultivars. All WRKY genes were numbered according to their chromosomal location, and a complete revision of the numbering was performed. Amino acid variability between different cultivars was assessed for the first time and was greater than 5% for some WRKYs. According to the gene structure, all WRKYs could be divided into two groups: more exons/long length and fewer exons/short length. For the first time, some chimeric WRKY genes were found in grapevine, which may play a specific role in the regulation of different processes: VvWRKY17 (an N-terminal signal peptide region followed by a non-cytoplasmic domain) and VvWRKY61 (Frigida-like domain). Five phylogenetic clades A-E were revealed and correlated with the WRKY groups (I, II, III). The evolution of WRKY was studied, and we proposed a WRKY evolution model where there were two dynamic phases of complexity and simplification in the evolution of WRKY.


Asunto(s)
Evolución Molecular , Genoma de Planta , Filogenia , Proteínas de Plantas , Factores de Transcripción , Vitis , Vitis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Secuencia de Aminoácidos
13.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612404

RESUMEN

At present, the mechanism of varietal differences in cadmium (Cd) accumulation in rice is not well understood. Two rice cultivars, ZZY (high translocation-high grain Cd) and SJ18 (low translocation-low grain Cd), were used to analyze transcriptome differences in the spike-neck tissue in field trials. The results showed that, compared with ZZY, 22,367 differentially expressed genes (DEGs) were identified in SJ18, including 2941 upregulated and 19,426 downregulated genes. GO analysis enriched 59 downregulated terms, concerning 24 terms enriched for more than 1000 DEGs, including cellular and metabolic processes, biological regulation, localization, catalytic activity, transporter activity, signaling, etc. KEGG enrichment identified 21 significant downregulated pathways, regarding the ribosome, metabolic pathways, biosynthesis of secondary metabolism, signaling transduction, cell membrane and cytoskeleton synthesis, genetic information transfer, amino acid synthesis, etc. Weighted gene co-expression network analysis (WGCNA) revealed that these DEGs could be clustered into five modules. Among them, the yellow module was significantly related to SJ18 with hub genes related to OsHMA and OsActin, whereas the brown module was significantly related to ZZY with hub genes related to mitogen-activated protein kinase (MAPK), CBS, and glutaredoxin. This suggests that different mechanisms are involved in the process of spike-neck-grain Cd translocation among varieties. This study provides new insights into the mechanisms underlying differences in Cd transport among rice varieties.


Asunto(s)
Oryza , Oryza/genética , Transcriptoma , Cadmio/toxicidad , Perfilación de la Expresión Génica , Metabolismo Secundario , Grano Comestible
14.
Molecules ; 29(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675515

RESUMEN

The lipoxygenase pathway has a significant influence on the composition of the volatile components of virgin olive oil (VOO). In this work, the influence of the maturity index (MI) on the activity of the lipoxygenase enzyme (LOX) in the fruits of the autochthonous Dalmatian olive cultivars Oblica, Levantinka and Lastovka was studied. The analysis of the primary oxidation products of linoleic acid in the studied cultivars showed that LOX synthesises a mixture of 9- and 13-hydroperoxides of octadecenoic acid in a ratio of about 1:2, which makes it a non-traditional plant LOX. By processing the fruits of MI~3, we obtained VOOs with the highest concentration of desirable C6 volatile compounds among the cultivars studied. We confirmed a positive correlation between MI, the enzyme activity LOX and the concentration of hexyl acetate and hexanol in cultivars Oblica and Lastovka, while no positive correlation with hexanol was observed in the cultivar Levantinka. A significant negative correlation was found between total phenolic compounds in VOO and LOX enzyme activity, followed by an increase in the MI of fruits. This article contributes to the selection of the optimal harvest time for the production of VOOs with the desired aromatic properties and to the knowledge of the varietal characteristics of VOOs.


Asunto(s)
Lipooxigenasa , Olea , Aceite de Oliva , Compuestos Orgánicos Volátiles , Aceite de Oliva/química , Aceite de Oliva/metabolismo , Lipooxigenasa/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Olea/metabolismo , Olea/química , Frutas/química , Frutas/metabolismo , Fenoles/metabolismo , Fenoles/análisis , Fenoles/química , Ácido Linoleico/metabolismo
15.
J Nematol ; 56(1): 20240003, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38495934

RESUMEN

Root-knot nematode host status of hemp cultivars of different uses (fiber, dual, CBD/CBG) and from different regions (Europe, China, US) were evaluated in five different greenhouse trials. None of the tested cultivars showed resistance to any of the tested root-knot nematode species, and all tested hemp cultivars were good hosts for root-knot nematodes, especially to mixed populations of M. javanica and M. incognita. Root gall symptoms on hemp were less severe than on cucumber (and tomato), but reproduction rates were similar. Lower infection and reproduction rates were noted for M. hapla and M. enterolobii, which were probably due to the colder temperatures at the time of the trial, as the same effect was noted for the cucumber control plants. While no negative impact on hemp shoot growth was seen in trials where nematodes were added to pasteurized soil, a significant and visible negative effect on hemp growth was noted when two CBG hemp cultivars were planted in heavily naturally root-knot infested soil. This result indicates that hemp is not only a good host to root-knot nematodes, but also that root-knot can be a limiting factor for hemp production in Florida and other places with high abundance and pressure of root-knot nematodes.

16.
Zhongguo Zhong Yao Za Zhi ; 49(3): 681-690, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38621872

RESUMEN

This study aims to reveal the quality formation of different cultivars of Peucedanum praeruptorum based on the metabolic differences and provide a theoretical basis for the development and utilization of this medicinal herb. The non-target metabonomics analysis based on ultra-high performance liquid chromatography tandem mass spectrometry(UHPLC-MS/MS) was conducted for six cultivars(YS, H, LZ, LY, LX, and Z) of P. praeruptorum of the same origin and at the same development stage. The principal component analysis, orthogonal partial least squares discriminant analysis, and univariate statistical analysis were carried out to screen the differential metabolites of different cultivars. The potential biomarkers associated with quality formation were predicted based on the mass-to-charge ratio, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, information of relevant literature, and correlation analysis. The results showed that metabolites differed significantly among the six cultivars, and 571 and 465 differential metabolites were obtained in the positive and negative ion modes, respectively. From the differential metabolites, 22 potential biomarkers related to quality formation were predicted, which involved 9 metabolic pathways, including phenylalanine, tyrosine and tryptophan biosynthesis, biosynthesis of phenylpropanoids, and biosynthesis of plant hormones. Compared with the YS cultivar, other cultivars showed decreased concentrations of psoralen, imperatorin, and luvangetin and increased concentrations of 7-hydroxycoumarine, esculetin, columbianetin, and jasmonic acid, which were involved in the biosynthesis of phenylpropanoids. The concentrations of 2-succinylbenzoate, heraclenol, and L-tyrosine involved in other metabolic pathways decreased, especially in the Z and H cultivars. Therefore, regulating the biosynthesis of phenylpropanoids is one of the key mechanisms for improving the cultivar quality of P. praeruptorum. The Z and H cultivars have better quality and metabolic processes than other cultivars and thus can be used for the screening and breeding of high-quality germplasm.


Asunto(s)
Fitomejoramiento , Espectrometría de Masas en Tándem , Metabolómica/métodos , Cromatografía Líquida de Alta Presión/métodos , Biomarcadores/metabolismo
17.
BMC Genomics ; 24(1): 772, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093186

RESUMEN

BACKGROUND: Date palm (Phoenix dactylifera L.) is the most widespread crop in arid and semi-arid regions and has great traditional and socioeconomic importance, with its fruit well-known for its high nutritional and health value. However, the genetic variation of date palm cultivars is often neglected. The advent of high-throughput sequencing has made possible the resequencing of whole organelle (mitochondria and chloroplast) genomes to explore the genetic diversity and phylogenetic relationships of cultivated plants with unprecedented detail. RESULTS: Whole organelle genomes of 171 Tunisian accessions (135 females and 36 males) were sequenced. Targeted bioinformatics pipelines were used to identify date palm haplotypes and genome variants, aiming to provide variant annotation and investigate patterns of evolutionary relationship. Our results revealed the existence of unique haplotypes, identified by 45 chloroplastic and 156 mitochondrial SNPs. Estimation of the effect of these SNPs on genes functions was predicted in silico. CONCLUSIONS: The results of this study have important implications, in the light of ongoing environmental changes, for the conservation and sustainable use of the genetic resources of date palm cultivars in Tunisia, where monoculture threatens biodiversity leading to genetic erosion. These data will be useful for breeding and genetic improvement programs of the date palm through selective cross-breeding.


Asunto(s)
Genoma del Cloroplasto , Phoeniceae , Phoeniceae/genética , Filogenia , Fitomejoramiento , Cloroplastos/genética , Mitocondrias/genética
18.
Curr Issues Mol Biol ; 45(3): 1810-1819, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36975486

RESUMEN

Banana plantation has been introduced recently to a temperate zone in the southeastern parts of Saudi Arabia (Fifa, Dhamadh, and Beesh, located in Jazan province). The introduced banana cultivars were of a clear origin without a recorded genetic background. In the current study, the genetic variability and structure of five common banana cultivars (i.e., Red, America, Indian, French, and Baladi) were analyzed using the fluorescently labeled AFLP technique. Nine different primer pairs combinations yielded 1468 loci with 88.96% polymorphism. Among all locations, high expected heterozygosity under the Hardy-Weinberg assumption was found (0.249 ± 0.003), where Dhamadh was the highest, followed by Fifa and Beesh, respectively. Based on the PCoA and Structure analysis, the samples were not clustered by location but in pairs in accordance with the cultivar's names. However, the Red banana cultivar was found to be a hybrid between the American and Indian cultivars. Based on ΦST, 162 molecular markers (i.e., loci under selection) were detected among cultivars. Identifying those loci using NGS techniques can reveal the genetic bases and molecular mechanisms involved in the domestication and selection indicators among banana cultivars.

19.
BMC Plant Biol ; 23(1): 452, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37749509

RESUMEN

BACKGROUND: Olive is one of the most cultivated species in the Mediterranean Basin and beyond. Despite being extensively studied for its commercial relevance, the origin of cultivated olive and the history of its domestication remain open questions. Here, we present a genealogical and kinship relationships analysis by mean of chloroplast and nuclear markers of different genera, subgenus, species, subspecies, ecotypes, cultivated, ancient and wild types, which constitutes one of the most inclusive research to date on the diversity within Olea europaea species. A complete survey of the variability across the nuclear and plastid genomes of different genotypes was studied through single nucleotide polymorphisms, indels (insertions and deletions), and length variation. RESULTS: Fifty-six different chlorotypes were identified among the Oleaceae family including Olea europaea, other species and genera. The chloroplast genome evolution, within Olea europaea subspecies, probably started from subsp. cuspidata, which likely represents the ancestor of all the other subspecies and therefore of wild types and cultivars. Our study allows us to hypothesize that, inside the subspecies europaea containing cultivars and the wild types, the ancestral selection from var. sylvestris occurred both in the eastern side of the Mediterranean and in the central-western part of Basin. Moreover, it was elucidated the origin of several cultivars, which depends on the introduction of eastern cultivars, belonging to the lineage E1, followed by crossing and replacement of the autochthonous olive germplasm of central-western Mediterranean Basin. In fact, our study highlighted that two main 'founders' gave the origin to more than 60% of analyzed olive cultivars. Other secondary founders, which strongly contributed to give origin to the actual olive cultivar diversity, were already detected. CONCLUSIONS: The application of comparative genomics not only paves the way for a better understanding of the phylogenetic relationships within the Olea europaea species but also provides original insights into other elusive evolutionary processes, such as chloroplast inheritance and parentage inside olive cultivars, opening new scenarios for further research such as the association studies and breeding programs.


Asunto(s)
Olea , Oleaceae , Olea/genética , Filogenia , Fitomejoramiento , Cloroplastos/genética
20.
BMC Plant Biol ; 23(1): 288, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37254042

RESUMEN

BACKGROUND: Plants in the genus Artemisia are rich in active ingredients and specialized metabolites. Many of these compounds, especially flavonoids, have potential medicinal and nutritional applications, and are of growing interest to scientists due to their wide range of pharmacological and biological activities. Artemisia cultivars are commonly used as raw materials for medicine, food, and moxibustion in China. However, most of the metabolites produced by Artemisia species have not been identified, and few studies have addressed differences in active compounds between species and cultivars. RESULTS: We here investigated two Artemisia cultivars, 'Nanyangshiyong' (NYSY) and 'Nanyangyaoyong' (NYYY), which are commonly used in foods and moxibustion, respectively. NYSY and NYYY were confirmed to be Artemisia argyi cultivars. Total flavonoids contents and antioxidant activities were higher in NYYY than in NYSY. A total of 882 metabolites were identified in the samples; most of the potentially medicinally active compounds, especially flavonoids (e.g., flavone, flavonol, isoflavone, and anthocyanin), were up-regulated in NYYY compared to NYSY. Furthermore, most of the genes related to flavonoids biosynthesis were up-regulated in NYYY. Correlation analysis was used to identify putative members of transcription factor families that may regulate genes encoding key flavonoids biosynthesis enzymes. CONCLUSIONS: We found that the antioxidant activities and flavonoids contents significantly varied between two Artemisia cultivars of the same species. We also uncovered metabolomic and transcriptomic evidence of the molecular phenomena underlying those differences in flavonoids contents between the two Artemisia cultivars. This study provides a wealth of data for future utilization and improvements of Artemisia cultivars, and highlights a need to study the specific metabolite profiles of plants that are used in foods and medicines.


Asunto(s)
Artemisia , Artemisia/genética , Artemisia/metabolismo , Flavonoides/metabolismo , Transcriptoma , Antioxidantes/metabolismo , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA