Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Glia ; 71(2): 317-333, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36165697

RESUMEN

Nerve/glial antigen 2 (NG2) is a protein marker of NG2 glia and mural cells, and NG2 promoter activity is utilized to target these cells. However, the NG2 promoter cannot target NG2 glia and mural cells separately. This has been an obstacle for NG2 glia-specific manipulation. Here, we developed transgenic mice in which either cell type can be targeted using the NG2 promoter. We selected a tetracycline-controllable gene induction system for cell type-specific transgene expression, and generated NG2-tetracycline transactivator (tTA) transgenic lines. We crossed tTA lines with the tetO-ChR2 (channelrhodopsin-2)-EYFP line to characterize tTA-dependent transgene induction. We isolated two unique NG2-tTA mouse lines: one that induced ChR2-EYFP only in mural cells, likely due to the chromosomal position effect of NG2-tTA insertion, and the other that induced it in both cell types. We then applied a Cre-mediated set-subtraction strategy to the latter case and eliminated ChR2-EYFP from mural cells, resulting in NG2 glia-specific transgene induction. We further demonstrated that tTA-dependent ChR2 expression could manipulate cell function. Optogenetic mural cell activation decreased cerebral blood flow, as previously reported, indicating that tTA-mediated ChR2 expression was sufficient to impact cellular function. ChR2-mediated depolarization was observed in NG2 glia in acute hippocampal slices. In addition, ChR2-mediated depolarization of NG2 glia inhibited their proliferation but promoted their differentiation in juvenile mice. Since the tTA-tetO combination is expandable, the mural cell-specific NG2-tTA line and the NG2 glia-specific NG2-tTA line will permit us to conduct observational and manipulation studies to examine in vivo function of these cells separately.


Asunto(s)
Neuroglía , Optogenética , Animales , Ratones , Neuroglía/metabolismo , Ratones Transgénicos , Antígenos/genética , Antígenos/metabolismo , Tetraciclinas/metabolismo
2.
Cell Mol Life Sci ; 79(8): 419, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35829923

RESUMEN

The myelin sheath is an essential, multilayered membrane structure that insulates axons, enabling the rapid transmission of nerve impulses. The tetraspan myelin proteolipid protein (PLP) is the most abundant protein of compact myelin in the central nervous system (CNS). The integral membrane protein PLP adheres myelin membranes together and enhances the compaction of myelin, having a fundamental role in myelin stability and axonal support. PLP is linked to severe CNS neuropathies, including inherited Pelizaeus-Merzbacher disease and spastic paraplegia type 2, as well as multiple sclerosis. Nevertheless, the structure, lipid interaction properties, and membrane organization mechanisms of PLP have remained unidentified. We expressed, purified, and structurally characterized human PLP and its shorter isoform DM20. Synchrotron radiation circular dichroism spectroscopy and small-angle X-ray and neutron scattering revealed a dimeric, α-helical conformation for both PLP and DM20 in detergent complexes, and pinpoint structural variations between the isoforms and their influence on protein function. In phosphatidylcholine membranes, reconstituted PLP and DM20 spontaneously induced formation of multilamellar myelin-like membrane assemblies. Cholesterol and sphingomyelin enhanced the membrane organization but were not crucial for membrane stacking. Electron cryomicroscopy, atomic force microscopy, and X-ray diffraction experiments for membrane-embedded PLP/DM20 illustrated effective membrane stacking and ordered organization of membrane assemblies with a repeat distance in line with CNS myelin. Our results shed light on the 3D structure of myelin PLP and DM20, their structure-function differences, as well as fundamental protein-lipid interplay in CNS compact myelin.


Asunto(s)
Membrana Dobles de Lípidos , Proteína Proteolipídica de la Mielina , Axones/metabolismo , Sistema Nervioso Central/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Isoformas de Proteínas/metabolismo
3.
Dev Dyn ; 249(8): 946-960, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32353175

RESUMEN

BACKGROUND: The proteolipid protein (PLP) is the most abundant protein in the myelin sheath of the central nervous system (CNS). The gene coding PLP, proteolipid protein 1 (Plp1) is highly expressed in oligodendrocytes, the myelin-forming cells in the CNS. Previous studies demonstrate that Plp1 gene is expressed in the embryonic CNS much earlier before the generation of oligodendrocytes. However, the progenitor identity and the fate of Plp1-expressing cells are still elusive. RESULTS: We employed genetic approaches to permanently label Plp1-expressing cells with the reporter enhanced yellow fluorescence protein (EYFP) and used multicolored immunohistochemistry to characterize their identity and lineage fate. We found that Plp1-expressing cells were initially present without spatial restrictions and later confined to the ventral progenitor domains of the embryonic spinal cord. Our fate-mapping results showed that Plp1-expressing cells during early embryogenesis were multipotent neural progenitor cells that gave rise to not only neurons but also glial progenitor cells whereas they were bipotent glial progenitor cells during later neural development stages and generated oligodendroglial and astroglial lineage cells but not neurons. Intriguingly, postnatal astrocytes generated from embryonic Plp1-expressing glial progenitor cells were present only in the ventral spinal cord. CONCLUSION: Our study reveals that Plp1-expressing cells during embryonic neural development display dynamic cellular identities and have a broader lineage fate than oligodendroglial lineage.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteína Proteolipídica de la Mielina/genética , Médula Espinal/embriología , Animales , Astrocitos/citología , Astrocitos/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , Linaje de la Célula , Sistema Nervioso Central/metabolismo , Femenino , Genotipo , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Células Madre/citología
4.
Histochem Cell Biol ; 145(2): 147-61, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26563642

RESUMEN

Proteolipid protein (PLP) is the major component of myelin; its gene encodes two major splicing variants: PLP and DM-20. Compared with PLP, DM-20 lacks the amino acids encoded by exon IIIb. The expression of PLP/DM-20 in cells outside the oligodendrocyte-lineage is unclear. To address this issue, we analyzed the detailed expression pattern of PLP/DM-20 mRNA in the adult rat spinal cord by in situ hybridization (ISH) with a cRNA probe complementary to DM-20 mRNA, which has been used to detect both PLP and DM-20 both mRNA. ISH did not label the cells expressing NeuN nor glial fibrillary acidic protein but detected those expressing Olig2, indicating that PLP/DM-20 mRNA are expressed only in oligodendrocyte-lineage cells. This cell population was expected to contain NG2-expressing oligodendrocyte precursor cells (OPCs), because some exhibited the expression of glutathione S-transferase pi isoform in the nucleus. A recent publication showed that OPCs express PLP but not DM-20 mRNA. However, no OPCs were detected. We performed ISH with a cRNA probe that specifically recognizes PLP mRNA to successfully detect some OPCs. Additionally, OPCs were detected by ISH with a cRNA probe complementary to DM-20 mRNA that was digested via alkaline hydrolysis prior to ISH. These findings collectively demonstrate that PLP and DM-20 mRNA expression is restricted to oligodendrocyte-lineage cells, and imply that the undigested cRNA probe complementary to the full-length DM-20 mRNA sequence only recognizes DM-20 mRNA and not the PLP counterpart when applied to ISH without denaturation/digestion methods.


Asunto(s)
Linaje de la Célula , Proteína Proteolipídica de la Mielina/genética , Oligodendroglía/metabolismo , ARN Mensajero/análisis , Médula Espinal/citología , Animales , Linaje de la Célula/genética , Hibridación in Situ , Masculino , ARN Mensajero/genética , Ratas , Ratas Wistar
5.
Histochem Cell Biol ; 146(1): 45-57, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26921198

RESUMEN

We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.


Asunto(s)
Diferenciación Celular , Gutatión-S-Transferasa pi/metabolismo , Proteína Proteolipídica de la Mielina/genética , Oligodendroglía/citología , Oligodendroglía/metabolismo , ARN Mensajero/biosíntesis , Médula Espinal/citología , Animales , Masculino , Oligodendroglía/enzimología , Ratas , Ratas Wistar , Médula Espinal/metabolismo
6.
Front Cell Neurosci ; 17: 1175614, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293625

RESUMEN

Recently, the myelin proteolipid protein gene (Plp1) was shown to be expressed in the glia of the enteric nervous system (ENS) in mouse. However, beyond this, not much is known about its expression in the intestine. To address this matter, we investigated Plp1 expression at the mRNA and protein levels in the intestine of mice at different ages (postnatal days 2, 9, 21, and 88). In this study, we show that Plp1 expression preferentially occurs during early postnatal development, primarily as the DM20 isoform. Western blot analysis indicated that DM20 migrated according to its formula weight when isolated from the intestine. However, mobilities of both PLP and DM20 were faster than expected when procured from the brain. The 6.2hPLP(+)Z/FL transgene, which uses the first half of the human PLP1 gene to drive expression of a lacZ reporter gene, recapitulated the developmental pattern observed with the native gene in the intestine, indicating that it can be used as a proxy for Plp1 gene expression. As such, the relative levels of ß-galactosidase (ß-gal) activity emanating from the 6.2hPLP(+)Z/FL transgene suggest that Plp1 expression is highest in the duodenum, and decreases successively along the segments, toward the colon. Moreover, removal of the wmN1 enhancer region from the transgene (located within Plp1 intron 1) resulted in a dramatic reduction in both transgene mRNA levels and ß-gal activity in the intestine, throughout development, suggesting that this region contains a regulatory element crucial for Plp1 expression. This is consistent with earlier studies in both the central and peripheral nervous systems, indicating that it may be a common (if not universal) means by which Plp1 gene expression is governed.

7.
Brain Sci ; 11(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33450882

RESUMEN

The PLP1 gene, located on chromosome Xq22, encodes the proteolipid protein 1 and its isoform DM20. Mutations in PLP1 cause a spectrum of white matter disorders of variable severity. Here we report on four additional HEMS patients from three families harboring three novel PLP1 mutations in exon 3B detected by targeted next-generation sequencing. Patients experienced psychomotor delay or nystagmus in the first year of age and then developed ataxic-spastic or ataxic syndrome, compatible with a phenotype of intermediate severity in the spectrum of PLP1-related disorders. Regression occurred at the beginning of the third decade of the eldest patient. Extrapyramidal involvement was rarely observed. Brain MRI confirmed the involvement of structures that physiologically myelinate early, although the pattern of abnormalities may differ depending on the age at which the study is performed. These new cases contribute to expanding the phenotypic and genotypic spectrum of HEMS. Additional studies, especially enriched by systematic functional evaluations and long-term follow-up, are welcome to better delineate the natural history of this rare hypomyelinating leukodystrophy.

8.
Brain Dev ; 38(6): 581-4, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26725305

RESUMEN

A patient with an unusually mild form of Pelizaeus-Merzbacher disease was studied. Clinically, mild developmental delay with acquisition of assisted walking at 16months and mild spastic tetraplegia were evident, but no nystagmus, cerebellar, or extra-pyramidal signs were present. PLP1 mutation analysis revealed a nucleotide substitution adjacent to the acceptor site of intron 3, NM_000533.4:c.454-9T>G. Expression analysis using the patient's leukocytes demonstrated an additional abnormal transcript including the last 118bp of intron 3. In silico prediction analysis suggested the reduction of wild-type acceptor activity, which presumably evokes the cryptic splicing variant. Putative cryptic transcript results in premature termination, which may explain the mild clinical phenotype observed in this patient.


Asunto(s)
Mutación , Proteína Proteolipídica de la Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Encéfalo/diagnóstico por imagen , Niño , Análisis Mutacional de ADN , Humanos , Intrones , Leucocitos/metabolismo , Imagen por Resonancia Magnética , Masculino , Proteína Proteolipídica de la Mielina/metabolismo , Enfermedad de Pelizaeus-Merzbacher/diagnóstico por imagen , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Índice de Severidad de la Enfermedad
9.
Brain Res ; 1641(Pt A): 34-42, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-26776480

RESUMEN

Myelin is probably one of the most fascinating and innovative biological acquisition: a glia plasma membrane tightly wrapped around an axon and insulating it. Chondrichthyans (cartilaginous fishes) form a large group of vertebrates, and they are among oldest extant jawed vertebrate lineage. It has been known from studies 150 years ago, that they are positioned at the root of the successful appearance of compact myelin and main adhesive proteins in vertebrates. More importantly, the ultrastructure of their compact myelin is indistinguishable from the one observed in tetrapods and the first true myelin basic protein (MBP) and myelin protein zero (MPZ) seem to have originated on cartilaginous fish or their ancestors, the placoderms. Thus, the study of their myelin formation would bring new insights in vertebrate׳s myelin evolution. Chondrichthyans central nervous system (CNS) myelin composition is also very similar to peripheral nervous system (PNS) myelin composition. And while they lack true proteolipid protein (PLP) like tetrapods, they express a DM-like protein in their myelin. This article is part of a Special Issue entitled SI: Myelin Evolution.


Asunto(s)
Peces/anatomía & histología , Peces/metabolismo , Vaina de Mielina/metabolismo , Animales , Evolución Biológica , Proteínas de Peces/metabolismo
10.
Brain Res ; 1639: 28-37, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26944297

RESUMEN

We investigated the effects of auraptene on mouse oligodendroglial cell lineage in an animal model of demyelination induced by cuprizone. Auraptene, a citrus coumarin, was intraperitoneally administered to mice fed the demyelinating agent cuprizone. Immunohistochemical analysis of the corpus callosum and/or Western blotting analysis of brain extracts revealed that cuprizone reduced immunoreactivity for myelin-basic protein, a marker of myelin, whereas it increased immunoreactivity to platelet derived-growth factor receptor-α, a marker of oligodendrocyte precursor cells. Administration of auraptene enhanced the immunoreactivity to oligodendrocyte transcription factor 2, a marker of oligodendrocyte precursor cells and oligodendrocyte lineage precursor cells, but had no effect on immunoreactivity to myelin-basic protein or platelet-derived growth factor receptor-α. These findings suggest that auraptene promotes the production of oligodendrocyte lineage precursor cells in an animal model of demyelination and may be useful for individuals with demyelinating diseases.


Asunto(s)
Cumarinas/farmacología , Enfermedades Desmielinizantes/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Oligodendroglía/efectos de los fármacos , Células Madre/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Cuprizona , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Expresión Génica/efectos de los fármacos , Inyecciones Intraperitoneales , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteína Básica de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/metabolismo , Oligodendroglía/patología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células Madre/fisiología
11.
Gene ; 533(1): 447-50, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24103481

RESUMEN

Hereditary spastic paraplegia (HSP) type 2 is a proteolipid protein (PLP1)-related genetic disorder that is characterized by dysmyelination of the central nervous system resulting primarily in limb spasticity, cognitive impairment, nystagmus, and spastic urinary bladder of varying severity. Previously reported PLP1 mutations include duplications, point mutations, or whole gene deletions with a continuum of phenotypes ranging from severe Pelizaeus-Merzbacher disease (PMD) to uncomplicated HSP type 2. In this manuscript we report a novel PLP1 missense mutation (c.88G>C) in a family from Argentina. This mutation is in a highly conserved transmembrane domain of PLP1 and the mutant protein was found to be retained in the endoplasmic reticulum when expressed in vitro. Due to the variable expressivity that characterizes these disorders our report contributes to the knowledge of genotype-phenotype correlations of PLP1-related disorders.


Asunto(s)
Mutación , Proteína Proteolipídica de la Mielina/genética , Paraplejía Espástica Hereditaria/genética , Femenino , Humanos , Masculino , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA