Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Más filtros

Intervalo de año de publicación
1.
Clin Gastroenterol Hepatol ; 22(4): 741-748.e2, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37879518

RESUMEN

BACKGROUND & AIMS: The aim of this study was to characterize baseline morphologic features of crypts in nondysplastic Barrett's esophagus and correlate them with DNA content abnormalities and risk of progression to high-grade dysplasia (HGD) or esophageal adenocarcinoma (EAC). METHODS: The morphologic features of nondysplastic crypts in baseline biopsy specimens from 212 BE patients (2956 biopsy specimens) were graded histologically using a 4-point scale (crypt atypia levels, 0-3). DNA content abnormalities were detected using flow cytometry. RESULTS: In patients who had dysplasia in their baseline biopsy specimens, dysplasia was associated significantly with increasing grades of crypt atypia in the background nondysplastic Barrett's esophagus (P < .001). In a subset of patients without dysplasia at baseline (N = 149), a higher grade of crypt atypia was associated with longer Barrett's esophagus segment length (5.5 vs 3.3 cm; P = .0095), and a higher percentage of cells with 4N DNA content (3.67 ± 1.27 vs 2.93 ± 1.22; P = .018). Crypt atypia was associated with the development of any neoplasia (low-grade dysplasia and HGD/EAC). Although no significant association was noted between the grade of crypt atypia and increased 4N, aneuploidy, or progression to HGD/EAC, only patients with grade 2 or 3 crypt atypia showed increased 4N, aneuploidy, or progression to HGD/EAC. CONCLUSIONS: Patients with Barrett's esophagus likely develop dysplasia via a progressive increase in the level of crypt atypia before the onset of dysplasia, and these changes may reflect some alteration of DNA content.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Neoplasias Esofágicas , Lesiones Precancerosas , Humanos , Esófago de Barrett/complicaciones , Neoplasias Esofágicas/patología , Aneuploidia , Hiperplasia , ADN , Evaluación de Resultado en la Atención de Salud , Progresión de la Enfermedad , Lesiones Precancerosas/patología
2.
Biol Chem ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39241223

RESUMEN

Flow cytometry is a versatile tool used for cell sorting, DNA content imaging, and determining various cellular characteristics. With the possibility of high-throughput analyses, it combines convenient labelling techniques to serve rapid, quantitative, and qualitative workflows. The ease of sample preparation and the broad range of applications render flow cytometry a preferred approach for many scientific questions. Yet, we lack practical adaptations to fully harness the quantitative and high-throughput capabilities of most cytometers for many organisms. Here, we present simple and advanced protocols for the analysis of total DNA content, de novo DNA synthesis, and protein association to chromatin in budding yeast and human cells. Upon optimization of experimental conditions and choice of fluorescent dyes, up to four parameters can be measured simultaneously and quantitatively for each cell of a population in a multi-well plate format. Reducing sample numbers, plastic waste, costs per well, and hands-on time without compromising signal quality or single-cell accuracy are the main advantages of the presented protocols. In proof-of-principle experiments, we show that DNA content increase in S-phase correlates with de novo DNA synthesis and can be predicted by the presence of the replicative helicase MCM2-7 on genomic DNA.

3.
New Phytol ; 242(2): 744-759, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38264772

RESUMEN

Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.


Asunto(s)
Magnoliopsida , Magnoliopsida/genética , Tamaño del Genoma , Genoma de Planta , Poliploidía , Plantas/genética , Filogenia
4.
Mol Biol Rep ; 51(1): 489, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578370

RESUMEN

BACKGROUND: The determination of genome size is a fundamental step which provides a basis to initiate studies aimed at deciphering the genetic similarity of a species and to carry out other genomics based investigations. Fenugreek (Trigonella spp.) is an important spice crop which has numerous health promoting phytochemicals. Many species within this genus are known for their various health benefits owing to the presence of a wide diversity of important phytochemicals like diosgenin, trigonelline, fenugreekine, galactomannan, 4-hydroxy isoleucine, etc. It is a multipurpose crop being cultivated for food, animal feed and industrial purposes. Despite its importance, research on the genomics aspect of fenugreek remains scant. In the absence of sufficient genomic information, crop improvement in fenugreek is severely lagging. METHODS AND RESULTS: Estimation of genome size of a species is the preliminary step for initiation of any genomic studies and therefore in the present study we have estimated the genome size for fenugreek. Here, we have determined the genome sizes of three different Trigonella spp. namely T. foenum-graecum, T. corniculata and T. caerulea through flow cytometry (FC). The 2 C DNA content values were found to be 6.05 pg (T. foenum-graecum), 1.83 pg (T. corniculata) and 1.96 pg (T. caerulea). The genome size of T. foenum-graecum is approximately three times the genome size of T. corniculata and T. caerulea. This variation in genome size of more than three-fold indicates the level of genetic divergence among the three species, though within the same genus. CONCLUSIONS: The differences observed in the genome sizes of the three species provide conclusive evidence of their genetic divergence. Additionally, the information about the genome size would provide an impetus to the structural and functional genomics-based research in this crop.


Asunto(s)
Trigonella , Animales , Trigonella/genética , Trigonella/química , Tamaño del Genoma , Citometría de Flujo , Extractos Vegetales , Evolución Biológica
5.
Cryobiology ; 115: 104899, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663664

RESUMEN

In biotechnological processes such as chromosomal manipulation studies, semen has become a reference in the ploidy verification of the evaluated material. However, the use of fresh samples is limited to the use at field conditions because the analysis is performed under laboratory conditions. Thus, this study aimed to develop a simpler procedure for storing dry semen at 28 °C to reduce cold storage costs. For this, semen samples were evaluated according to established quality semen parameters, a protocol for dry, and 3 sterilization treatments of dry semen were applied to the store. The integrity of the DNA was evaluated every two months, using fresh semen, dry semen (untreated), and particles 3C to compare the peaks by flow cytometry. The results indicated that all samples evaluated before and after drying showed no significant difference in the DNA content. UV-treated semen showed a 1C peak in the histogram up to 180 days of storage and a non-significant difference (P > 0.05) from fresh control in the number of DNA particles up to 120 days and untreated only showed a 1C peak up to 120 days. The developed method may become an interesting procedure to serve as a reference peak for practical flow cytometric analysis, not only in the field of fish biology but also in biomedical and agricultural sciences. Furthermore, dried semen can become a tool for the preservation of genetic material and is a promising low-cost storage technique for biobanking.


Asunto(s)
ADN , Citometría de Flujo , Preservación de Semen , Espermatozoides , Citometría de Flujo/métodos , Masculino , Preservación de Semen/métodos , Preservación de Semen/veterinaria , Espermatozoides/citología , Animales , ADN/análisis , Frío , Criopreservación/métodos , Análisis de Semen/métodos , Desecación/métodos , Rayos Ultravioleta
6.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L568-L579, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37697923

RESUMEN

The prevalence of electronic cigarette (EC) use among adult with asthma has continued to increase over time, in part due to the belief of being less harmful than smoking. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. In the present project, we tested the hypothesis that EC use contributes to respiratory damage and worsening inflammation in the lungs of patients with asthma. To define the consequences of EC exposure in established asthma, we used a mouse model with/without preexisting asthma for short-term exposure to EC aerosols. C57/BL6J mice were sensitized and challenged with a DRA (dust mite, ragweed, Aspergillus fumigates, 200 µg/mL) mixture and exposed daily to EC with nicotine (2% nicotine in 30:70 propylene glycol: vegetable glycerin) or filtered air for 2 wk. The mice were evaluated at 24 h after the final EC exposure. After EC exposure in asthmatic mice, lung inflammatory cell infiltration and goblet cell hyperplasia were increased, whereas EC alone did not cause airway inflammation. Our data also show that mitochondrial DNA (mtDNA) content and a key mtDNA regulator, mitochondrial transcription factor A (TFAM), are reduced in asthmatic EC-exposed mice in a sex-dependent manner. Together, these results indicate that TFAM loss in lung epithelium following EC contributes to male-predominant sex pathological differences, including mitochondrial damage, inflammation, and remodeling in asthmatic airways.NEW & NOTEWORTHY Respiratory immunity is dysregulated in preexisting asthma, and further perturbations by EC use could exacerbate asthma severity. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. We found that EC has unique biological impacts in lungs and potential sex differences with loss of TFAM, a key mtDNA regulator, in lung epithelial region from our animal EC study.


Asunto(s)
Asma , Sistemas Electrónicos de Liberación de Nicotina , Neumonía , Humanos , Adulto , Masculino , Femenino , Ratones , Animales , Nicotina/toxicidad , Aerosoles y Gotitas Respiratorias , Asma/patología , Pulmón/patología , Neumonía/patología , Inflamación/patología , Modelos Animales de Enfermedad , ADN Mitocondrial
7.
Br J Haematol ; 200(2): 126-127, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342482

RESUMEN

Mitochondrial biology may influence the outcome of therapy for acute promyelocytic leukemia if arsenic trioxide is not part of the treatment. Inclusion of arsenic trioxide in the treatment regimen may cancel the adverse impact of certain mitochondrial abnormalities frequently associated with the disease. Commentary on: Pereira-Martins et al. Clinical significance of mitochondrial DNA content in acute promyelocytic leukaemia. Br J Haematol 2023;200:170-174.


Asunto(s)
Arsenicales , Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Trióxido de Arsénico/uso terapéutico , Tretinoina/uso terapéutico , ADN Mitocondrial/genética , Óxidos/uso terapéutico , Arsenicales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
8.
Ann Bot ; 132(7): 1249-1258, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37823772

RESUMEN

BACKGROUND AND AIMS: Endoreduplication, the duplication of the nuclear genome without mitosis, is a common process in plants, especially in angiosperms and mosses. Accumulating evidence supports the relationship between endoreduplication and plastic responses to stress factors. Here, we investigated the level of endoreduplication in Ceratodon (Bryophyta), which includes the model organism Ceratodon purpureus. METHODS: We used flow cytometry to estimate the DNA content of 294 samples from 67 localities and found three well-defined cytotypes, two haploids and one diploid, the haploids corresponding to C. purpureus and Ceratodon amazonum, and the diploid to Ceratodon conicus, recombination occurring between the former two. KEY RESULTS: The endoreduplication index (EI) was significantly different for each cytotype, being higher in the two haploids. In addition, the EI of the haploids was higher during the hot and dry periods typical of the Mediterranean summer than during spring, whereas the EI of the diploid cytotype did not differ between seasons. CONCLUSIONS: Endopolyploidy may be essential in haploid mosses to buffer periods of drought and to respond rapidly to desiccation events. Our results also suggest that the EI is closely related to the basic ploidy level, but less so to the nuclear DNA content as previously suggested.


Asunto(s)
Briófitas , Bryopsida , Diploidia , Haploidia , Endorreduplicación/genética , Sequías , ADN
9.
Am J Bot ; 110(2): e16133, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36706341

RESUMEN

PREMISE: Whole-genome duplication is considered a major mechanism of sympatric speciation due to the creation of strong and instantaneous reproductive barriers. Although postzygotic reproductive isolation between diploids and polyploids is often expected, the extent of reproductive incompatibility must be empirically determined and compared to patterns of genetic isolation to fully characterize the reproductive dynamics between cytotypes. METHODS: We investigated reproductive compatibility between diploid and tetraploid Lycium australe in two mixed-cytotype populations using (1) controlled crossing experiments to evaluate fruit and seed production and (2) germination trials to test seed viability following homoploid and heteroploid crosses. We contrast these experiments with a single-nucleotide polymorphism (SNP) data set to measure genetic isolation between cytotypes and explore whether cytotype or population origin better explains patterns of genetic variation. Finally, we explore mating patterns using the observed germination rates of naturally produced seeds in each population. RESULTS: Although homoploid and heteroploid crosses resulted in similar fruit and seed production, reproductive isolation between co-occurring diploids and tetraploids was nearly complete, due to low seed viability following heteroploid crosses. Of 191,182 total SNPs, 21,679 were present in ≥90% of individuals and replicate runs using unlinked SNPs revealed strong clustering by cytotype and differentiation of tetraploids based on population origin. CONCLUSIONS: As often reported, diploid and tetraploid L. australe experience strong postzygotic isolation via hybrid seed inviability. Consistent with this result, cytotype explained a greater amount of variation in the SNP data set than population origin, despite some evidence of historical introgression.


Asunto(s)
Diploidia , Lycium , Tetraploidía , Aislamiento Reproductivo , Poliploidía
10.
Genes Dev ; 29(23): 2405-19, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26637526

RESUMEN

Whole-genome duplication (WGD) doubles the DNA content in the nucleus and leads to polyploidy. In whole-organism polyploids, WGD has been implicated in adaptability and the evolution of increased genome complexity, but polyploidy can also arise in somatic cells of otherwise diploid plants and animals, where it plays important roles in development and likely environmental responses. As with whole organisms, WGD can also promote adaptability and diversity in proliferating cell lineages, although whether WGD is beneficial is clearly context-dependent. WGD is also sometimes associated with aging and disease and may be a facilitator of dangerous genetic and karyotypic diversity in tumorigenesis. Scaling changes can affect cell physiology, but problems associated with WGD in large part seem to arise from problems with chromosome segregation in polyploid cells. Here we discuss both the adaptive potential and problems associated with WGD, focusing primarily on cellular effects. We see value in recognizing polyploidy as a key player in generating diversity in development and cell lineage evolution, with intriguing parallels across kingdoms.


Asunto(s)
Adaptación Fisiológica/genética , Fenómenos Fisiológicos Celulares/genética , Genoma/genética , Animales , Evolución Biológica , Linaje de la Célula , Segregación Cromosómica , Poliploidía
11.
J Environ Sci Health B ; 58(10): 617-627, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37671814

RESUMEN

The Ferronikel smelter in Drenas is one of the main industrial areas in the Kosovo and pollution by heavy metals causes serious threat for all living organisms on this area. The objective of this study was to determine the concentration of some heavy metals (Fe, Cu, Mn, Cr, Cd, Ni and Pb) in agricultural soils and in maize plants, and their potential toxic effects on this plant through some sensitive biochemical and molecular markers. Maize seedlings growth in nine soil samples from different locations of this area. The highest concentrations of heavy metals in soils and maize leaves were conducted close to the Ferronikel smelter, and in some locations, the nickel and chromium concertation in soils exceeded 800 mg kg-1. A significant effects of heavy metals induced toxicity resulted in the, build-up aminolevulinic acid and reduced activity of δ-aminolevulinic acid dehydratase, and chlorophyll content in the maize leaves. In general, maize seedlings growth in polluted locations showed an increase in nuclear DNA content and in G2M phase. We concluded that locations close to the smelter are affected by soil heavy metals pollution and these biochemical and molecular analysis would be a powerful ecotoxicological tool in biomonitoring of heavy metal pollution.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Zea mays , Kosovo , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Biomarcadores , Daño del ADN , Medición de Riesgo , China
12.
Turk J Med Sci ; 53(4): 883-893, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38031951

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide. Many factors such as stress, lifestyle, and dietary habits are known to play a role in the initiation and progression of the disease. Herbal therapeutic agents including curcumin can hold a great potential against cancer treatment; however, their efficacy on CRC is still under investigation. Herein, we evaluated the anticancer mechanism of curcumin on four different CRC cell lines. METHODS: Cells were treated with curcumin for 24, 48 and 72 h, and IC50 doses for each cell line were calculated. Mechanistic studies were conducted with the lowest IC50 dose determined for each cell line by evaluating apoptosis and necrosis, cell division, and NLRP3-mediated pyroptosis. RESULTS: Curcumin treatment significantly decreased viability while increasing the SubG1 phase in all cell lines tested, indicating apoptosis is the main programmed cell death pathway activated upon curcumin treatment in CRC. In terms of pyroptosis, components of NLRP3 inflammasome were found to be elevated in SW480 and HCT116 cell lines, although to a lesser extent in the latter, and NLRP3 inflammasome activation was not observed in LoVo and HT29 cells. DISCUSSION: Our results reveal that while curcumin effectively induces apoptosis, its effects on NLRP3-inflammasome mediated pyroptosis vary. Our results underline the need for further research focusing on the other inflammasome complexes to confirm the differential effects of curcumin on CRC.


Asunto(s)
Neoplasias Colorrectales , Curcumina , Humanos , Apoptosis , Neoplasias Colorrectales/tratamiento farmacológico , Curcumina/farmacología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis
13.
BMC Plant Biol ; 22(1): 382, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35909100

RESUMEN

BACKGROUND: The genus Daucus (Apiaceae) comprises about 40 wild species and the cultivated carrot, a crop of great economic and nutritional importance. The rich genetic diversity of wild Daucus species makes them a valuable gene pool for carrot improvement breeding programs. Therefore, it is essential to have good knowledge of the genome structure and relationships among wild Daucus species. To broaden such knowledge, in this research, the nuclear DNA content for 14 Daucus accessions and four closely related species was estimated by flow cytometry and their pollen morphology was analyzed by light and scanning electron microscopy (SEM). RESULTS: The flow cytometric analysis showed a 3.2-fold variation in the mean 2C values among Daucus taxa, ranging from 0.999 (D. carota subsp. sativus) to 3.228 pg (D. littoralis). Among the outgroup species, the mean 2C values were 1.775-2.882 pg. The pollen grains of Daucus were tricolporate, mainly prolate or perprolate (rarely) in shape, and mainly medium or small (rarely) in size (21.19-40.38 µm), whereas the outgroup species had tricolporate, perprolate-shaped, and medium-sized (26.01-49.86 µm) pollen grains. In the studied taxa, SEM analysis revealed that exine ornamentation was striate, rugulate, perforate, or the ornamentation pattern was mixed. At the time of shedding, all pollen grains were three-celled, as evidenced by DAPI staining. We also found high positive correlations between the length of the polar axis (P) and the length of the equatorial diameter (E) of pollen grains, as well as between P and P/E. However, when comparing cytogenetic information with palynological data, no significant correlations were observed. CONCLUSIONS: This study complements the information on the nuclear DNA content in Daucus and provides comprehensive knowledge of the pollen morphology of its taxa. These findings may be important in elucidating the taxonomic relationships among Daucus species and can help in the correct identification of gene bank accessions. In a broader view, they could also be meaningful for the interpretation of evolutionary trends in the genus.


Asunto(s)
Apiaceae , Daucus carota , Apiaceae/genética , Daucus carota/genética , Tamaño del Genoma , Microscopía Electrónica de Rastreo , Fitomejoramiento , Polen/anatomía & histología , Polen/genética
14.
BMC Med ; 20(1): 328, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36171556

RESUMEN

BACKGROUND: Studies often evaluate mental health and well-being in association with individual health behaviours although evaluating multiple health behaviours that co-occur in real life may reveal important insights into the overall association. Also, the underlying pathways of how lifestyle might affect our health are still under debate. Here, we studied the mediation of different health behaviours or lifestyle factors on mental health and its effect on core markers of ageing: telomere length (TL) and mitochondrial DNA content (mtDNAc). METHODS: In this study, 6054 adults from the 2018 Belgian Health Interview Survey (BHIS) were included. Mental health and well-being outcomes included psychological and severe psychological distress, vitality, life satisfaction, self-perceived health, depressive and generalised anxiety disorder and suicidal ideation. A lifestyle score integrating diet, physical activity, smoking status, alcohol consumption and BMI was created and validated. On a subset of 739 participants, leucocyte TL and mtDNAc were assessed using qPCR. Generalised linear mixed models were used while adjusting for a priori chosen covariates. RESULTS: The average age (SD) of the study population was 49.9 (17.5) years, and 48.8% were men. A one-point increment in the lifestyle score was associated with lower odds (ranging from 0.56 to 0.74) for all studied mental health outcomes and with a 1.74% (95% CI: 0.11, 3.40%) longer TL and 4.07% (95% CI: 2.01, 6.17%) higher mtDNAc. Psychological distress and suicidal ideation were associated with a lower mtDNAc of - 4.62% (95% CI: - 8.85, - 0.20%) and - 7.83% (95% CI: - 14.77, - 0.34%), respectively. No associations were found between mental health and TL. CONCLUSIONS: In this large-scale study, we showed the positive association between a healthy lifestyle and both biological ageing and different dimensions of mental health and well-being. We also indicated that living a healthy lifestyle contributes to more favourable biological ageing.


Asunto(s)
Estilo de Vida , Salud Mental , Adulto , Anciano , Envejecimiento , Biomarcadores , ADN Mitocondrial , Femenino , Estilo de Vida Saludable , Humanos , Masculino , Persona de Mediana Edad
15.
Planta ; 256(1): 18, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35748952

RESUMEN

MAIN CONCLUSION: Genome size of alpine plants is not related to their resistance against frost and heat. Genome size is a variable trait in angiosperms, and it was suggested that large genome size represents a constraint in stressful environments. We measured genome size and resistance to frost and heat in 89 species of plants from tropical and temperate alpine habitats. Genome size of the species, ranging from 0.49 pg to 25.8 pg across the entire dataset, was not related to either frost or heat resistance in either group of plants. Genome size does not predict resistance to extreme temperatures in alpine plants and is thus not likely to predict plant responses to climate changes.


Asunto(s)
Cambio Climático , Plantas , Tamaño del Genoma , Plantas/genética , Estaciones del Año , Temperatura
16.
Planta ; 255(6): 112, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501619

RESUMEN

MAIN CONCLUSION: Coffea karyotype organization and evolution has been uncovered by classical cytogenetics and cytogenomics. We revisit these discoveries and present new karyotype data. Coffea possesses ~ 124 species, including C. arabica and C. canephora responsible for commercial coffee production. We reviewed the Coffea cytogenetics, from the first chromosome counting, encompassing the karyotype characterization, chromosome DNA content, and mapping of chromosome portions and DNA sequences, until the integration with genomics. We also showed new data about Coffea karyotype. The 2n chromosome number evidenced the diploidy of almost all Coffea, and the C. arabica tetraploidy, as well as the polyploidy of other hybrids. Since then, other genomic similarities and divergences among the Coffea have been shown by karyotype morphology, nuclear and chromosomal C-value, AT and GC rich chromosome portions, and repetitive sequence and gene mapping. These cytogenomic data allowed us to know and understand the phylogenetic relations in Coffea, as well as their ploidy level and genomic origin, highlighting the relatively recent allopolyploidy. In addition to the euploidy, the role of the mobile elements in Coffea diversification is increasingly more evident, and the comparative analysis of their structure and distribution on the genome of different species is in the spotlight for future research. An integrative look at all these data is fundamental for a deeper understanding of Coffea karyotype evolution, including the key role of polyploidy in C. arabica origin. The 'Híbrido de Timor', a recent natural allotriploid, is also in the spotlight for its potential as a source of resistance genes and model for plant polyploidy research. Considering this, we also present some unprecedented results about the exciting evolutionary history of these polyploid Coffea.


Asunto(s)
Coffea , Coffea/genética , Café , Genómica , Cariotipo , Filogenia , Poliploidía
17.
J Transl Med ; 20(1): 353, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945616

RESUMEN

BACKGROUND: Increasing evidence supports the concept of prenatal programming as an early factor in the aging process. DNA methylation age (DNAm age), global genome-wide DNA methylation (global methylation), telomere length (TL), and mitochondrial DNA content (mtDNA content) have independently been shown to be markers of aging, but their interrelationship and determinants at birth remain uncertain. METHODS: We assessed the inter-correlation between the aging biomarkers DNAm age, global methylation, TL and mtDNA content using Pearson's correlation in 190 cord blood samples of the ENVIRONAGE birth cohort. TL and mtDNA content was measured via qPCR, while the DNA methylome was determined using the human 450K methylation Illumina microarray. Subsequently, DNAm age was calculated according to Horvath's epigenetic clock, and mean global, promoter, gene-body, and intergenic DNA methylation were determined. Path analysis, a form of structural equation modeling, was performed to disentangle the complex causal relationships among the aging biomarkers and their potential determinants. RESULTS: DNAm age was inversely correlated with global methylation (r = -0.64, p < 0.001) and mtDNA content (r = - 0.16, p = 0.027). Cord blood TL was correlated with mtDNA content (r = 0.26, p < 0.001) but not with global methylation or DNAm age. Path analysis showed the strongest effect for global methylation on DNAm age with a decrease of 0.64 standard deviations (SD) in DNAm age for each SD (0.01%) increase in global methylation (p < 0.001). Among the applied covariates, newborn sex and season of delivery were the strongest determinants of aging biomarkers. CONCLUSIONS: We provide insight into molecular aging signatures at the start of life, including their interrelations and determinants, showing that cord blood DNAm age is inversely associated with global methylation and mtDNA content but not with newborn telomere length. Our findings demonstrate that cord blood TL and DNAm age relate to different pathways/mechanisms of biological aging and can be influenced by environmental factors already at the start of life. These findings are relevant for understanding fetal programming and for the early prevention of noncommunicable diseases.


Asunto(s)
Metilación de ADN , Sangre Fetal , Envejecimiento/genética , Biomarcadores , Metilación de ADN/genética , ADN Mitocondrial/genética , Epigénesis Genética , Femenino , Humanos , Recién Nacido , Embarazo
18.
Cytometry A ; 101(9): 749-781, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34585818

RESUMEN

Flow cytometry (FCM) is currently the most widely-used method to establish nuclear DNA content in plants. Since simple, 1-3-parameter, flow cytometers, which are sufficient for most plant applications, are commercially available at a reasonable price, the number of laboratories equipped with these instruments, and consequently new FCM users, has greatly increased over the last decade. This paper meets an urgent need for comprehensive recommendations for best practices in FCM for different plant science applications. We discuss advantages and limitations of establishing plant ploidy, genome size, DNA base composition, cell cycle activity, and level of endoreduplication. Applications of such measurements in plant systematics, ecology, molecular biology research, reproduction biology, tissue cultures, plant breeding, and seed sciences are described. Advice is included on how to obtain accurate and reliable results, as well as how to manage troubleshooting that may occur during sample preparation, cytometric measurements, and data handling. Each section is followed by best practice recommendations; tips as to what specific information should be provided in FCM papers are also provided.


Asunto(s)
Plantas , Ploidias , ADN de Plantas/genética , Citometría de Flujo/métodos , Tamaño del Genoma , Genoma de Planta , Plantas/genética
19.
Cytometry A ; 101(9): 737-748, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34254737

RESUMEN

In theory, any plant tissue providing intact nuclei in sufficient quantity is suitable for nuclear DNA content estimation using flow cytometry (FCM). While this certainly opens a wide variety of possible applications of FCM, especially when compared to classical karyological techniques restricted to tissues with active cell division, tissue selection and quality may directly affect the precision (and sometimes even reliability) of FCM measurements. It is usually convenient to first consider the goals of the study to either aim for the highest possible accuracy of estimates (e.g., for inferring genome size, detecting homoploid intraspecific genome size variation, aneuploidy, among others), or to decide that histograms of reasonable resolution provide sufficient information (e.g., ploidy level screening within a single model species). Here, a set of best practices guidelines for selecting the optimal plant tissue for FCM analysis, sampling of material, and material preservation and storage are provided. In addition, factors potentially compromising the quality of FCM estimates of nuclear DNA content and data interpretation are discussed.


Asunto(s)
Núcleo Celular , Ploidias , Núcleo Celular/química , Núcleo Celular/genética , ADN de Neoplasias/análisis , ADN de Plantas/genética , Citometría de Flujo/métodos , Reproducibilidad de los Resultados
20.
Genome ; 65(8): 459-468, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35917258

RESUMEN

Genome size (GS) or DNA nuclear content is considered a useful index for making inferences about evolutionary models and life history in animals, including taxonomic, biogeographical, and ecological scenarios. However, patterns of GS variation and their causes in crustaceans are still poorly understood. This study aimed to describe the GS of five Neotropical Synalpheus non-gambarelloides shrimps (S. apioceros, S. minus, S. brevicarpus, S. fritzmueller, and S. scaphoceris) and compare the C-values of all Caridea infraorder in terms of geography and phylogenetics. All animals were sampled in the coast of São Paulo State, Brazil, and GS was assessed by flow cytometry analysis (FCA). The C-values ranged from 7.89 pg in S. apioceros to 12.24 pg in S. scaphoceris. Caridean shrimps had higher GS than other Decapoda crustaceans. The results reveal a tendency of obtaining larger genomes in species with direct development in Synalpheus shrimps. In addition, a tendency of positive biogeographical (latitudinal) correlation with Caridea infraorder was also observed. This study provides remarkable and new protocol for FCA (using gating strategy for the analysis), which led to the discovery of new information regarding GS of caridean shrimps, especially for Neotropical Synalpheus, which represents the second-largest group in the Caridea infraorder.


Asunto(s)
Decápodos , Animales , Evolución Biológica , Brasil , Decápodos/genética , Tamaño del Genoma , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA