RESUMEN
Multiplex, digital nucleic acid detections have important biomedical applications, but the multiplexity of existing methods is predominantly achieved using fluorescent dyes or probes, making the detection complicated and costly. Here, we present the StratoLAMP for label-free, multiplex digital loop-mediated isothermal amplification based on visual stratification of the precipitate byproduct. The StratoLAMP designates two sets of primers with different concentrations to achieve different precipitate yields when amplifying different nucleic acid targets. In the detection, deep learning image analysis is used to stratify the precipitate within each droplet and determine the encapsulated targets for nucleic acid quantification. We investigated the effect of the amplification reagents and process on the precipitate generation and optimized the assay conditions. We then implemented a deep-learning image analysis pipeline for droplet detection, achieving an overall accuracy of 94.3%. In the application, the StratoLAMP successfully achieved the simultaneous quantification of two nucleic acid targets with high accuracy. By eliminating the need for fluorescence, StratoLAMP represents a unique concept toward label-free, multiplex nucleic acid assays and an analytical tool with great cost-effectiveness.
Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Ácidos Nucleicos , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Cartilla de ADN , Sensibilidad y EspecificidadRESUMEN
Digital polymerase chain reaction (dPCR) is a best-in-class molecular biology technique for the accurate and precise quantification of nucleic acids. The recent maturation of dPCR technology allows the quantification of up to thousands of targeted nucleic acids per instrument per day. A key step in the dPCR data analysis workflow is the classification of partitions into two classes based on their partition intensities: partitions either containing or lacking target nucleic acids of interest. Much effort has been invested in the design and tailoring of automated dPCR partition classification procedures, and such procedures will be increasingly important as the technology ventures into high-throughput applications. However, automated partition classification is not fail-safe, and evaluation of its accuracy is highly advised. This accuracy evaluation is a manual endeavor and is becoming a bottleneck for high-throughput dPCR applications. Here, we introduce dipcensR, the first data-analysis procedure that automates the assessment of any linear partition classifier's partition classification accuracy, offering potentially substantial efficiency gains. dipcensR is based on a robustness evaluation of said partition classification and flags classifications with low robustness as needing review. Additionally, dipcensR's robustness analysis underpins (optional) automatic optimization of partition classification to achieve maximal robustness. A freely available R implementation supports dipcensR's use.
Asunto(s)
Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa/métodos , Programas Informáticos , AlgoritmosRESUMEN
Digital PCR (dPCR) is a highly accurate technique for the quantification of target nucleic acid(s). It has shown great potential in clinical applications, like tumor liquid biopsy and validation of biomarkers. Accurate classification of partitions based on end-point fluorescence intensities is crucial to avoid biased estimators of the concentration of the target molecules. We have evaluated many clustering methods, from general-purpose methods to specific methods for dPCR and flowcytometry, on both simulated and real-life data. Clustering method performance was evaluated by simulating various scenarios. Based on our extensive comparison of clustering methods, we describe the limits of these methods, and formulate guidelines for choosing an appropriate method. In addition, we have developed a novel method for simulating realistic dPCR data. The method is based on a mixture distribution of a Poisson point process and a skew-$t$ distribution, which enables the generation of irregularities of cluster shapes and randomness of partitions between clusters ('rain') as commonly observed in dPCR data. Users can fine-tune the model parameters and generate labeled datasets, using their own data as a template. Besides, the database of experimental dPCR data augmented with the labeled simulated data can serve as training and testing data for new clustering methods. The simulation method is available as an R Shiny app.
Asunto(s)
Neoplasias , Ácidos Nucleicos , Humanos , Reacción en Cadena de la Polimerasa/métodos , Benchmarking , Biopsia LíquidaRESUMEN
With the widespread clinical adoption of noninvasive screening for fetal chromosomal aneuploidies based on cell-free DNA analysis from maternal plasma, more researchers are turning their attention to noninvasive prenatal assessment for single-gene disorders. The development of a spectrum of approaches to analyze cell-free DNA in maternal circulation, including relative mutation dosage, relative haplotype dosage, and size-based methods, has expanded the scope of noninvasive prenatal testing to sex-linked and autosomal recessive disorders. Cell-free fetal DNA analysis for several of the more prevalent single-gene disorders has recently been introduced into clinical service. This article reviews the analytical approaches currently available and discusses the extent of the clinical implementation of noninvasive prenatal testing for single-gene disorders.
Asunto(s)
Ácidos Nucleicos Libres de Células , Aneuploidia , ADN/genética , Femenino , Feto , Humanos , Embarazo , Diagnóstico Prenatal/métodosRESUMEN
Rapid and accurate identification of bacterial pathogens is crucial for effective treatment and infection control, particularly in hospital settings. Conventional methods like culture techniques and MALDI-TOF mass spectrometry are often time-consuming and less sensitive. This study addresses the need for faster and more precise diagnostic methods by developing novel digital PCR (dPCR) assays for the rapid quantification of biomarkers from three Gram-negative bacteria: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Utilizing publicly available genomes and the rapid identification of PCR primers for unique core sequences or RUCS algorithm, we designed highly specific dPCR assays. These assays were validated using synthetic DNA, bacterial genomic DNA, and DNA extracted from clinical samples. The developed dPCR methods demonstrated wide linearity, a low limit of detection (â¼30 copies per reaction), and robust analytical performance with measurement uncertainty below 25â¯%. The assays showed high repeatability and intermediate precision, with no cross-reactivity observed. Comparison with MALDI-TOF mass spectrometry revealed substantial concordance, highlighting the methods' suitability for clinical diagnostics. This study underscores the potential of dPCR for rapid and precise quantification of Gram-negative bacterial biomarkers. The developed methods offer significant improvements over existing techniques, providing faster, more accurate, and SI-traceable measurements. These advancements could enhance clinical diagnostics and infection control practices.
RESUMEN
Human epithelial growth factor receptor 2 (HER2)-targeted therapies are effective in patients with HER2-positive breast cancer. Recent advances have shown that HER2-targeted therapies can also be of benefit when treating tumors expressing low levels of HER2, highlighting the importance of identifying the HER2-low subgroup. This clinical trend has opened new therapeutic avenues for patients who were previously ineligible for HER2-targeted therapies. Thus, the development of new diagnostic methods for real-time HER2 profiling is crucial for accurately tailoring the treatment for these patients. We hypothesized that tumor-derived extracellular vesicles (TEVs) could reflect the HER2 profiles of primary tumors and potentially serve as diagnostic tools for HER2 status. This approach was validated using six breast cancer cell lines, which confirmed that the TEVs accurately reflected the HER2 profiles of the tumor cells. TEVs were isolated using an immunoaffinity method, and copy number variation (CNV) in the ERBB2/EIF2C ratio was assessed using droplet digital PCR of DNA from these vesicles. Clinical validation using plasma samples from 33 breast cancer patients further reinforced the diagnostic potential of our method. Pearson's correlation coefficient analysis of the flow cytometry results demonstrated that TEVs reflected HER2 expression in primary cells. To distinguish between HER2-negative and HER2-low patients, the area under the curve (AUC) of the ROC curve in our method was 0.796, with a sensitivity of 53.8% and a specificity of 100%. These findings suggest the clinical utility of extracellular vesicles derived from plasma and emphasize the need for further research to distinguish HER2-negative from HER2-low patients.
Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Receptor ErbB-2 , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Femenino , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Variaciones en el Número de Copia de ADN , Persona de Mediana EdadRESUMEN
Myxofibrosarcoma (MFS) is a common adult soft tissue sarcoma characterized by high-local recurrence rate, poorly understood molecular pathogenesis, lack of specific prognostic markers, and effective targeted therapies. To gain further insights into the disease, we analyzed a well-defined group of 133 primary MFS cases. Immunohistochemical (IHC) staining for p53, MET, RET, and RB was performed. Twenty-five cases were analyzed by targeted resequencing of known cancer driver hotspot mutations, whereas 66 and 64 MFSs were examined for the presence of genetic variants in TP53 and MET gene, respectively. All clinical, histologic, immunostaining, and genetic variables were analyzed for their impact on 5-years overall survival (OS) and 5-years event-free survival (EFS). In our series, no grade I tumors relapsed and high grade are related to a positive MET immunostaining (P = .034). Both local recurrence (P = .038) and distal metastases (P = .016) correlated to the presence of "single nucleotide variant (SNV) plus copy number variation (CNV)" in TP53. Multivariate analysis revealed that age (>60 years), metastasis at presentation, and positive IHC-p53 signal are risk factors for a poor OS (P = .003, P = .000, and P = .002), whereas age (>60 years), synchronous metastasis, and tumor size (>10 cm) predict an unfavorable 5-years EFS (P = .011, P = .000, and P = .023). Considering the smaller series (n = 66) that underwent molecular screening, the presence of "SNV+CNV" in TP53 represents a risk factor for a worse 5-years EFS (hazard ratio, 2.5; P = .017). The present series confirms that TP53 is frequently altered in MFS (86.4% of cases), appearing to play an important role in MFS tumorigenesis and being a potentially drugable target. A positive p53 immunostainings is related to a poor diagnosis, and it is the presence of a single nucleotide genetic alterations in TP53 that is essential in conferring MFS an aggressive phenotype, thus supporting the use of molecular profiling in MFS to better define the role of p53 as a prognostic factor.
Asunto(s)
Fibrosarcoma , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Fibrosarcoma/genética , Fibrosarcoma/metabolismo , Fibrosarcoma/patología , Persona de Mediana Edad , Femenino , Masculino , Anciano , Adulto , Anciano de 80 o más Años , Mutación , Variaciones en el Número de Copia de ADN , Adulto Joven , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/metabolismo , Neoplasias de los Tejidos Blandos/patologíaRESUMEN
Biomarkers that could detect the postoperative recurrence of upper tract urothelial carcinoma (UTUC) have not been established. In this prospective study, we aim to evaluate the utility of individualized circulating tumor DNA (ctDNA) monitoring using digital PCR (dPCR) as a tumor recurrence biomarker for UTUC in the perioperative period. Twenty-three patients who underwent radical nephroureterectomy (RNU) were included. In each patient, whole exome sequencing by next-generation sequencing and TERT promoter sequencing of tumor DNA were carried out. Case-specific gene mutations were selected from sequencing analysis to examine ctDNA by dPCR analysis. We also prospectively collected plasma and urine ctDNA from each patient. The longitudinal variant allele frequencies of ctDNA during the perioperative period were plotted. Case-specific gene mutations were detected in 22 cases (96%) from ctDNA in the preoperative samples. Frequently detected genes were TERT (39%), FGFR3 (26%), TP53 (22%), and HRAS (13%). In all cases, we obtained plasma and urine samples for 241 time points and undertook individualized ctDNA monitoring for 2 years after RNU. Ten patients with intravesical recurrence had case-specific ctDNA detected in urine at the time of recurrence. The mean lead time of urinary ctDNA in intravesical recurrence was 60 days (range, 0-202 days). Two patients with distal metastasis had case-specific ctDNA in plasma at the time of metastasis. In UTUC, tumor-specific gene mutations can be monitored postoperatively as ctDNA in plasma and urine. Individualized ctDNA might be a minimally invasive biomarker for the early detection of postoperative recurrence.
Asunto(s)
Carcinoma de Células Transicionales , ADN Tumoral Circulante , Neoplasias de la Vejiga Urinaria , Humanos , Carcinoma de Células Transicionales/diagnóstico , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/cirugía , ADN Tumoral Circulante/genética , Estudios Prospectivos , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Biomarcadores , Biomarcadores de Tumor/genéticaRESUMEN
BACKGROUD: Neurofibromatosis type 1 (NF1) is a heterogeneous neurocutaneous disorder. Spinal neurofibromatosis (SNF) is a distinct clinical entity of NF1, characterized by bilateral neurofibromas involving all spinal nerve roots. Although both forms are caused by intragenic heterozygous variants of NF1, missense variants have been associated with SNF, according to a dominant inheritance model causing haploinsufficiency. Most patients carry pathogenic variants in one of the NF1 alleles; nevertheless, patients with both NF1-mutated copies have been described. Interestingly, all NF1 variants carried by the known SNF compound heterozygotes were missense/splicing variants or in-frame insertion-deletions. AIMS: To investigate whether there is a differential expression of NF1 variant alleles in an NF1 compound heterozygous SNF patient possibly contributing to clinical phenotype. MATERIALS & METHODS: We performed an allele-specific expression study, by chip-based digital PCR, in an SNF family carrying two NF1 missense variants. We evaluated the expression levels of the two NF1-mutated alleles both carried by the compound heterozygous SNF patient and his relatives. RESULTS: Both alleles were expressed at comparable levels in the patient and hyper-expressed compared to the wild-type alleles of healthy controls. DISCUSSION: Here we provide new insights into expression studies of NF1-mutated transcripts suggesting that a novel pathogenetic mechanism, caused by gain-of-function variants, could be associated with SNF. CONCLUSIONS: Further studies should be performed in larger cohorts, opening new perspectives in the NF1 pathogenesis comprehension.
Asunto(s)
Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/genética , Alelos , Fenotipo , Mutación Missense , Reacción en Cadena de la Polimerasa , Genes de Neurofibromatosis 1RESUMEN
While the Plasmodium falciparum malaria parasite continues to cause severe disease globally, Mozambique is disproportionally represented in malaria case totals. Acquisition of copy number variations (CNVs) in the parasite genome contributes to antimalarial drug resistance through overexpression of drug targets. Of interest, piperaquine resistance is associated with plasmepsin 2 and 3 CNVs (pfpmp2 and pfpmp3, respectively), while CNVs in the multidrug efflux pump, multidrug resistance-1 (pfmdr1), increase resistance to amodiaquine and lumefantrine. These antimalarials are partner drugs in artemisinin combination therapies (ACTs) and therefore, CNV detection with accurate and efficient tools is necessary to track ACT resistance risk. Here, we evaluated ~300 clinically derived samples collected from three sites in Mozambique for resistance-associated CNVs. We developed a novel, medium-throughput, quadruplex droplet digital PCR (ddPCR) assay to simultaneously quantify the copy number of pfpmp3, pfpmp2, and pfmdr1 loci in these clinical samples. By using DNA from laboratory parasite lines, we show that this nanodroplet-based method is capable of detecting picogram levels of parasite DNA, which facilitates its application for low yield and human host-contaminated clinical surveillance samples. Following ddPCR and the application of quality control standards, we detected CNVs in 13 of 229 high-quality samples (prevalence of 5.7%). Overall, our study revealed a low number of resistance CNVs present in the parasite population across all three collection sites, including various combinations of pfmdr1, pfpmp2, and pfpmp3 CNVs. The potential for future ACT resistance across Mozambique emphasizes the need for continued molecular surveillance across the region.
Asunto(s)
Antimaláricos , Variaciones en el Número de Copia de ADN , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Antimaláricos/farmacología , Mozambique , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Humanos , Resistencia a Medicamentos/genética , Variaciones en el Número de Copia de ADN/genética , Malaria Falciparum/parasitología , Malaria Falciparum/tratamiento farmacológico , Proteínas Protozoarias/genética , Reacción en Cadena de la Polimerasa/métodos , Quinolinas/farmacología , Amodiaquina/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Ácido Aspártico Endopeptidasas/genética , Artemisininas/farmacología , Lumefantrina/farmacología , PiperazinasRESUMEN
BACKGROUND: The disease-causing mutation in Huntington disease (HD) is a CAG trinucleotide expansion in the huntingtin (HTT) gene. The mutated CAG tract results in the production of a small RNA, HTT1a, coding for only exon 1 of HTT. HTT1a is generated by a block in the splicing reaction of HTT exon 1 to exon 2 followed by cleavage in intron 1 and polyadenylation. Translation of HTT1a leads to the expression of the highly toxic HTT exon 1 protein fragment. We have previously shown that the levels of HTT1a expression in mouse models of HD is dependent on the CAG repeat length. However, these data are lacking for human tissues. METHODS: To answer this question, we developed highly sensitive digital PCR assays to determine HTT1a levels in human samples. These assays allow the absolute quantification of transcript numbers and thus also facilitate the comparison of HTT1a levels between tissues, cell types and across different studies. Furthermore, we measured CAG repeat sizes for every sample used in the study. Finally, we analysed our data with ANOVA and linear modelling to determine the correlation of HTT1a expression levels with CAG repeat sizes. RESULTS: In summary, we show that HTT1a is indeed expressed in a CAG repeat-length-dependent manner in human post mortem brain tissues as well as in several peripheral cell types. In particular, PBMCs show a statistically significant positive correlation of HTT1a expression with CAG repeat length, and elevated HTT1a expression levels even in the adult-onset CAG repeat range. CONCLUSIONS: Our results show that HTT1a expression occurs throughout a wide range of tissues and likely with all CAG lengths. Our data from peripheral sample sources demonstrate that HTT1a is indeed generated throughout the body in a CAG repeat-length-dependent manner. Therefore, the levels of HTT1a might be a sensitive marker of disease state and/or progression and should be monitored over time, especially in clinical trials targeting HTT expression.
Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , Expansión de Repetición de Trinucleótido , Adulto , Animales , Humanos , Ratones , Exones/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , ARN/metabolismoRESUMEN
Juvenile myelomonocytic leukaemia (JMML) is a rare myeloproliferative neoplasm requiring haematopoietic stem cell transplantation (HSCT) for potential cure. Relapse poses a significant obstacle to JMML HSCT treatment, as the lack of effective minimal residual disease (MRD)-monitoring methods leads to delayed interventions. This retrospective study utilized the droplet digital PCR (ddPCR) technique, a highly sensitive nucleic acid detection and quantification technique, to monitor MRD in 32 JMML patients. The results demonstrated that ddPCR detected relapse manifestations earlier than traditional methods and uncovered molecular insights into JMML MRD dynamics. The findings emphasized a critical 1- to 3-month window post-HSCT for detecting molecular relapse, with 66.7% (8/12) of relapses occurring within this period. Slow MRD clearance post-HSCT was observed, as 65% (13/20) of non-relapse patients took over 6 months to achieve ddPCR-MRD negativity. Furthermore, bone marrow ddPCR-MRD levels at 1-month post-HSCT proved to be prognostically significant. Relapsed patients exhibited significantly elevated ddPCR-MRD levels at this time point (p = 0.026), with a cut-off of 0.465% effectively stratifying overall survival (p = 0.007), event-free survival (p = 0.035) and cumulative incidence of relapse (p = 0.035). In conclusion, this study underscored ddPCR's superiority in JMML MRD monitoring post-HSCT. It provided valuable insights into JMML MRD dynamics, offering guidance for the effective management of JMML.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mielomonocítica Juvenil , Neoplasia Residual , Reacción en Cadena de la Polimerasa , Humanos , Neoplasia Residual/diagnóstico , Masculino , Femenino , Reacción en Cadena de la Polimerasa/métodos , Leucemia Mielomonocítica Juvenil/terapia , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/diagnóstico , Estudios Retrospectivos , Pronóstico , Preescolar , Lactante , NiñoRESUMEN
Interlaboratory agreement of viral load assays depends on the accuracy and uniformity of quantitative calibrators. Previous work demonstrated poor agreement of secondary cytomegalovirus (CMV) standards with nominal values. This study re-evaluated this issue among commercially produced secondary standards for both BK virus (BKV) and CMV, using digital polymerase chain reaction (dPCR) to compare the materials from three different manufacturers. Overall, standards showed an improved agreement compared to prior work, against nominal values in both log10 copies/mL and log10 international unit (IU)/mL, with bias from manufacturer-assigned nominal values of 0.0-0.9 log10 units (either copies or IU)/mL. Standards normalized to IU and those values assigned by dPCR rather than by real-time PCR (qPCR) showed better agreement with nominal values. The latter reinforces prior conclusions regarding the utility of using such methods for quantitative value assignment in reference materials. Quantitative standards have improved over the last several years, and the remaining bias from nominal values might be further reduced by universal implementation of dPCR methods for value assignment, normalized to IU. IMPORTANCE: Interlaboratory agreement of viral load assays depends on accuracy and uniformity of quantitative calibrators. Previous work, published in JCM several years ago, demonstrated poor agreement of secondary cytomegalovirus (CMV) standards with nominal values. This study re-evaluated this issue among commercially produced secondary standards for both BK virus (BKV) and CMV, using digital polymerase chain reaction (dPCR) to compare the materials from three different manufacturers. Overall, standards showed an improved agreement compared to prior work, against nominal values, indicating a substantial improvement in the production of accurate secondary viral standards, while supporting the need for further work in this area and for the broad adaption of international unit (IU) as a reporting standard for quantitative viral load results.
Asunto(s)
Virus BK , Infecciones por Citomegalovirus , Humanos , Citomegalovirus/genética , Infecciones por Citomegalovirus/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Carga Viral/métodos , Virus BK/genética , ADN ViralRESUMEN
IMPORTANCE: Marek's disease virus (MDV) is a ubiquitous chicken pathogen that inflicts a large economic burden on the poultry industry, despite worldwide vaccination programs. MDV is only partially controlled by available vaccines, and the virus retains the ability to replicate and spread between vaccinated birds. Following an initial infection, MDV enters a latent state and integrates into host telomeres and this may be a prerequisite for malignant transformation, which is usually fatal. To understand the mechanism that underlies the dynamic relationship between integrated-latent and reactivated MDV, we have characterized integrated MDV (iMDV) genomes and their associated telomeres. This revealed a single orientation among iMDV genomes and the loss of some terminal sequences that is consistent with integration by homology-directed recombination and excision via a telomere-loop-mediated process.
Asunto(s)
Pollos , Genoma Viral , Herpesvirus Gallináceo 2 , Recombinación Homóloga , Enfermedad de Marek , Telómero , Integración Viral , Animales , Pollos/virología , Genoma Viral/genética , Herpesvirus Gallináceo 2/genética , Enfermedad de Marek/genética , Enfermedad de Marek/virología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/virología , Telómero/genética , Vacunas Virales/inmunología , Activación Viral , Latencia del Virus , Integración Viral/genéticaRESUMEN
BACKGROUND: Comprehensive next-generation sequencing is widely used for precision oncology and precision prevention approaches. We aimed to determine the yield of actionable gene variants, the capacity to uncover hereditary predisposition and liquid biopsy appropriateness instead of, or in addition to, tumor tissue analysis, in a real-world cohort of cancer patients, who may benefit the most from comprehensive genomic profiling. METHODS: Seventy-eight matched germline/tumor tissue/liquid biopsy DNA and RNA samples were profiled using the Hereditary Cancer Panel (germline) and the TruSight Oncology 500 panel (tumor tissue/cfDNA) from 23 patients consecutively enrolled at our center according to at least one of the following criteria: no available therapeutic options; long responding patients potentially fit for other therapies; rare tumor; suspected hereditary cancer; primary cancer with high metastatic potential; tumor of unknown primary origin. Variants were annotated for OncoKB and AMP/ASCO/CAP classification. RESULTS: The overall yield of actionable somatic and germline variants was 57% (13/23 patients), and 43.5%, excluding variants previously identified by somatic or germline routine testing. The accuracy of tumor/cfDNA germline-focused analysis was demonstrated by overlapping results of germline testing. Five germline variants in BRCA1, VHL, CHEK1, ATM genes would have been missed without extended genomic profiling. A previously undetected BRAF p.V600E mutation was emblematic of the clinical utility of this approach in a patient with a liver undifferentiated embryonal sarcoma responsive to BRAF/MEK inhibition. CONCLUSIONS: Our study confirms the clinical relevance of performing extended parallel tumor DNA and cfDNA testing to broaden therapeutic options, to longitudinally monitor cfDNA during patient treatment, and to uncover possible hereditary predisposition following tumor sequencing in patient care.
Asunto(s)
Genómica , Mutación de Línea Germinal , Neoplasias , Humanos , Femenino , Biopsia Líquida , Neoplasias/genética , Neoplasias/patología , Masculino , Persona de Mediana Edad , Estudios de Cohortes , Mutación de Línea Germinal/genética , Genómica/métodos , Adulto , Anciano , Células Germinativas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Predisposición Genética a la EnfermedadRESUMEN
BACKGROUND: Sporadic desmoid fibromatosis (DF) is a rare locally aggressive tumor characterized by mutation in exon 3 of CTNNB1 (T41A, S45F, and S45P). Standard of care is active surveillance (AS), but 30% require treatment. DF clinical course is unpredictable and identification of prognostic markers is needed to tailor strategy. In this prospective study, we investigated the consistency between mutation detected in tumor biopsies with that detected in plasma by digital droplet PCR (ddPCR) and the association between circulating tumor DNA (ctDNA) abundancy with clinical outcome. PATIENTS AND METHODS: A total of 56 patients and 10 healthy donors were included. CTNNB1 mutation status of DF biopsies was determined by Sanger and in case of WT CTNNB1 with NGS. In matched plasma samples at enrollment and during AS at specific timepoints, we evaluated cfDNA quantity and ctDNA. RESULTS: ctDNA levels were measured in 46 patients with CTNNB1 mutation. Detection rate for T41A, S45F and S45P was 68%, 42% and 100%, respectively. S45P variant has been detected in all patients with S45P mutation. Longitudinal assessment of ctDNA during AS in nine patients (four with regression and five with progression as first event according to RECIST) showed a concordance between the event and ctDNA level change in six out of nine patients tested (4/5 with progression and 2/4 with regression). CONCLUSIONS: Results of ctDNA analysis support its potential clinical implementation as diagnostic tool in specific clinical scenarios where biopsy can be challenging. A prospective clinical trial needs to be performed to evaluate the potential role of ctDNA as predictive biomarker.
RESUMEN
Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease with a mean survival time of three years. The 97% of the cases have TDP-43 nuclear depletion and cytoplasmic aggregation in motor neurons. TDP-43 prevents non-conserved cryptic exon splicing in certain genes, maintaining transcript stability, including ATG4B, which is crucial for autophagosome maturation and Microtubule-associated proteins 1A/1B light chain 3B (LC3B) homeostasis. In ALS mice (G93A), Atg4b depletion worsens survival rates and autophagy function. For the first time, we observed an elevation of LC3ylation in the CNS of both ALS patients and atg4b-/- mouse spinal cords. Furthermore, LC3ylation modulates the distribution of ATG3 across membrane compartments. Antisense oligonucleotides (ASOs) targeting cryptic exon restore ATG4B mRNA in TARDBP knockdown cells. We further developed multi-target ASOs targeting TDP-43 binding sequences for a broader effect. Importantly, our ASO based in peptide-PMO conjugates show brain distribution post-IV administration, offering a non-invasive ASO-based treatment avenue for neurodegenerative diseases.
Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas Relacionadas con la Autofagia , Cisteína Endopeptidasas , Proteínas de Unión al ADN , Proteínas Asociadas a Microtúbulos , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Masculino , Médula Espinal/metabolismo , Médula Espinal/patología , Autofagia/fisiología , Ratones Noqueados , Empalme del ARN/genética , Femenino , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Oligonucleótidos Antisentido/farmacologíaRESUMEN
BACKGROUND: Extracellular mitochondrial DNA (mtDNA) is released from damaged cells and increases in the serum and bronchoalveolar lavage fluid (BALF) of idiopathic pulmonary fibrosis (IPF) patients. While increased levels of serum mtDNA have been reported to be linked to disease progression and the future development of acute exacerbation (AE) of IPF (AE-IPF), the clinical significance of mtDNA in BALF (BALF-mtDNA) remains unclear. We investigated the relationships between BALF-mtDNA levels and other clinical variables and prognosis in IPF. METHODS: Extracellular mtDNA levels in BALF samples collected from IPF patients were determined using droplet-digital PCR. Levels of extracellular nucleolar DNA in BALF (BALF-nucDNA) were also determined as a marker for simple cell collapse. Patient characteristics and survival information were retrospectively reviewed. RESULTS: mtDNA levels in serum and BALF did not correlate with each other. In 27 patients with paired BALF samples obtained in a stable state and at the time of AE diagnosis, BALF-mtDNA levels were significantly increased at the time of AE. Elevated BALF-mtDNA levels were associated with inflammation or disordered pulmonary function in a stable state (n = 90), while being associated with age and BALF-neutrophils at the time of AE (n = 38). BALF-mtDNA ≥ 4234.3 copies/µL in a stable state (median survival time (MST): 42.4 vs. 79.6 months, p < 0.001) and ≥ 11,194.3 copies/µL at the time of AE (MST: 2.6 vs. 20.0 months, p = 0.03) were associated with shorter survival after BALF collection, even after adjusting for other known prognostic factors. On the other hand, BALF-nucDNA showed different trends in correlation with other clinical variables and did not show any significant association with survival time. CONCLUSIONS: Elevated BALF-mtDNA was associated with a poor prognosis in both IPF and AE-IPF. Of note, at the time of AE, it sharply distinguished survivors from non-survivors. Given the trends shown by analyses for BALF-nucDNA, the elevation of BALF-mtDNA might not simply reflect the impact of cell collapse. Further studies are required to explore the underlying mechanisms and clinical applications of BALF-mtDNA in IPF.
Asunto(s)
Líquido del Lavado Bronquioalveolar , ADN Mitocondrial , Fibrosis Pulmonar Idiopática , Humanos , Líquido del Lavado Bronquioalveolar/química , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/mortalidad , Masculino , Femenino , ADN Mitocondrial/genética , ADN Mitocondrial/análisis , Anciano , Pronóstico , Persona de Mediana Edad , Estudios Retrospectivos , Estudios de Cohortes , Anciano de 80 o más AñosRESUMEN
BACKGROUND AIMS: Gene therapy using lentiviral vectors (LVs) that harbor a functional ß-globin gene provides a curative treatment for hemoglobinopathies including beta-thalassemia and sickle cell disease. Accurate quantification of the vector copy number (VCN) and/or the proportion of transduced cells is critical to evaluate the efficacy of transduction and stability of the transgene during treatment. Moreover, commonly used techniques for LV quantification, including real-time quantitative polymerase chain reaction (PCR) or fluorescence-activated cell sorting, require either a standard curve or expression of a reporter protein for the detection of transduced cells. In the present study, we describe a digital droplet PCR (ddPCR) technique to measure the lentiviral VCN in transduced hematopoietic stem and progenitor cells (HSPCs). METHODS: After HSPCs were transduced with an LV encoding the therapeutic ß-globin (ßA-T87Q) gene, the integrated lentiviral sequence in the host genome was amplified with primers that targeted a sequence within the vector and the human RPP30 gene. The dynamic range of ddPCR was between 5 × 10-3 ng and 5 × 10-6 ng of target copy per reaction. RESULTS: We found that the ddPCR-based approach was able to estimate VCN with high sensitivity and a low standard deviation. Furthermore, ddPCR-mediated quantitation of lentiviral copy numbers in differentiated erythroblasts correlated with the level of ßA-T87Q protein detected by reverse-phase high-performance liquid chromatography. CONCLUSIONS: Taken together, the ddPCR technique has the potential to precisely detect LV copy numbers in the host genome, which can be used for VCN estimation, calculation of infectious titer and multiplicity of infection for HSPC transduction in a clinical setting.
Asunto(s)
Terapia Genética , Vectores Genéticos , Células Madre Hematopoyéticas , Lentivirus , Transducción Genética , Globinas beta , Humanos , Lentivirus/genética , Células Madre Hematopoyéticas/metabolismo , Vectores Genéticos/genética , Globinas beta/genética , Transducción Genética/métodos , Terapia Genética/métodos , Talasemia beta/terapia , Talasemia beta/genética , Reacción en Cadena de la Polimerasa/métodos , Dosificación de Gen/genéticaRESUMEN
BACKGROUND AIMS: With the continuous development and advancement of human pluripotent stem cell (PSC)-derived cell therapies, an ever-increasing number of clinical indications can benefit from their application. Due to the capacity for PSCs to form teratomas, safety testing is required to ensure the absence of residual PSCs in a cell product. To mitigate these limitations, in vitro analytical methods can be utilized as quality control after the production of a PSC-derived cell product. Sensitivity of these analytic methods is critical in accurately quantifying residual PSC in the final cell product. In this study, we compared the sensitivity of three in vitro assays: qPCR, ddPCR and RT-LAMP. METHODS: The spike-in samples were produced from three independent experiments, each spiked with different PSC lines (PSC1, NH50191, and WA09 referred to as H9) into a background of primary fibroblasts (Hs68). These samples were then subjected to qPCR, ddPCR and RT-LAMP to determine their detection limit in measuring a commonly used PSC marker, LIN28A. RESULTS: The results indicated that the three analytic methods all exhibited consistent results across different cell-line spiked samples, with ddPCR demonstrating the highest sensitivity of the three methods. The LIN28A ddPCR assay could confidently detect 10 residual PSCs in a million fibroblasts. DISCUSSION: In our hand, ddPCR LIN28A assay demonstrated the highest sensitivity for detection of residual PSCs compared to the other two assays. Correlating such in vitro safety results with corresponding in vivo studies demonstrating the tumorigenicity profile of PSC-derived cell therapy could accelerate the safe clinical translation of cell therapy.