Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.332
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(1): 209-229.e26, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608654

RESUMEN

Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.


Asunto(s)
Diferenciación Celular , Factores de Transcripción , Humanos , Cromatina , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Factores de Transcripción/metabolismo , Atlas como Asunto
2.
Cell ; 185(13): 2213-2233.e25, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35750033

RESUMEN

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Astrocitos/metabolismo , Colesterol/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Microglía/metabolismo
3.
Cell ; 175(7): 1796-1810.e20, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30528432

RESUMEN

The 9p21.3 cardiovascular disease locus is the most influential common genetic risk factor for coronary artery disease (CAD), accounting for ∼10%-15% of disease in non-African populations. The ∼60 kb risk haplotype is human-specific and lacks coding genes, hindering efforts to decipher its function. Here, we produce induced pluripotent stem cells (iPSCs) from risk and non-risk individuals, delete each haplotype using genome editing, and generate vascular smooth muscle cells (VSMCs). Risk VSMCs exhibit globally altered transcriptional networks that intersect with previously identified CAD risk genes and pathways, concomitant with aberrant adhesion, contraction, and proliferation. Unexpectedly, deleting the risk haplotype rescues VSMC stability, while expressing the 9p21.3-associated long non-coding RNA ANRIL induces risk phenotypes in non-risk VSMCs. This study shows that the risk haplotype selectively predisposes VSMCs to adopt a cell state associated with CAD phenotypes, defines new VSMC-based networks of CAD risk genes, and establishes haplotype-edited iPSCs as powerful tools for functionally annotating the human genome.


Asunto(s)
Cromosomas Humanos Par 9 , Enfermedad de la Arteria Coronaria , Edición Génica , Haplotipos , Células Madre Pluripotentes Inducidas , Polimorfismo de Nucleótido Simple , Anciano , Anciano de 80 o más Años , Cromosomas Humanos Par 9/genética , Cromosomas Humanos Par 9/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Femenino , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Masculino , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcripción Genética
4.
Cell ; 167(7): 1734-1749.e22, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984724

RESUMEN

Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity. In human cardiomyocytes, GATA4 broadly co-occupied cardiac enhancers with TBX5, another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment, particularly to cardiac super-enhancers, concomitant with dysregulation of genes related to the phenotypic abnormalities, including cardiac septation. Conversely, the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity, leading to aberrant chromatin states and cellular dysfunction, including those related to morphogenetic defects.


Asunto(s)
Factor de Transcripción GATA4/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Cromatina , Elementos de Facilitación Genéticos , Femenino , Corazón/crecimiento & desarrollo , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Mutación Missense , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Proteínas de Dominio T Box/genética
5.
Annu Rev Neurosci ; 43: 375-389, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32640930

RESUMEN

Scientists have been fascinated by the human brain for centuries, yet knowledge of the cellular and molecular events that build the human brain during embryogenesis and of how abnormalities in this process lead to neurological disease remains very superficial. In particular, the lack of experimental models for a process that largely occurs during human in utero development, and is therefore poorly accessible for study, has hindered progress in mechanistic understanding. Advances in stem cell-derived models of human organogenesis, in the form of three-dimensional organoid cultures, and transformative new analytic technologies have opened new experimental pathways for investigation of aspects of development, evolution, and pathology of the human brain. Here, we consider the biology of brain organoids, compared and contrasted with the endogenous human brain, and highlight experimental strategies to use organoids to pioneer new understanding of human brain pathology.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Red Nerviosa/fisiología , Organogénesis/fisiología , Organoides/citología , Animales , Humanos , Células Madre Pluripotentes Inducidas/citología , Enfermedades del Sistema Nervioso/patología
6.
Development ; 151(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38349741

RESUMEN

The mechanosensitive PIEZO channel family has been linked to over 26 disorders and diseases. Although progress has been made in understanding these channels at the structural and functional levels, the underlying mechanisms of PIEZO-associated diseases remain elusive. In this study, we engineered four PIEZO-based disease models using CRISPR/Cas9 gene editing. We performed an unbiased chemical mutagen-based genetic suppressor screen to identify putative suppressors of a conserved gain-of-function variant pezo-1[R2405P] that in human PIEZO2 causes distal arthrogryposis type 5 (DA5; p. R2718P). Electrophysiological analyses indicate that pezo-1(R2405P) is a gain-of-function allele. Using genomic mapping and whole-genome sequencing approaches, we identified a candidate suppressor allele in the C. elegans gene gex-3. This gene is an ortholog of human NCKAP1 (NCK-associated protein 1), a subunit of the Wiskott-Aldrich syndrome protein (WASP)-verprolin homologous protein (WAVE/SCAR) complex, which regulates F-actin polymerization. Depletion of gex-3 by RNAi, or with the suppressor allele gex-3(av259[L353F]), significantly increased brood size and ovulation rate, as well as alleviating the crushed oocyte phenotype of the pezo-1(R2405P) mutant. Expression of GEX-3 in the soma is required to rescue the brood size defects in pezo-1(R2405P) animals. Actin organization and orientation were disrupted and distorted in the pezo-1 mutants. Mutation of gex-3(L353F) partially alleviated these defects. The identification of gex-3 as a suppressor of the pathogenic variant pezo-1(R2405P) suggests that the PIEZO coordinates with the cytoskeleton regulator to maintain the F-actin network and provides insight into the molecular mechanisms of DA5 and other PIEZO-associated diseases.


Asunto(s)
Actinas , Artrogriposis , Oftalmoplejía , Enfermedades de la Retina , Animales , Femenino , Humanos , Actinas/genética , Artrogriposis/genética , Caenorhabditis elegans/genética , Canales Iónicos , Mutación/genética , Polimerizacion
7.
Proc Natl Acad Sci U S A ; 121(10): e2308255121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38412125

RESUMEN

MicroRNAs (miRNA) associate with Argonaute (AGO) proteins and repress gene expression by base pairing to sequences in the 3' untranslated regions of target genes. De novo coding variants in the human AGO genes AGO1 and AGO2 cause neurodevelopmental disorders (NDD) with intellectual disability, referred to as Argonaute syndromes. Most of the altered amino acids are conserved between the miRNA-associated AGO in Homo sapiens and Caenorhabditis elegans, suggesting that the human mutations could disrupt conserved functions in miRNA biogenesis or activity. We genetically modeled four human AGO1 mutations in C. elegans by introducing identical mutations into the C. elegans AGO1 homologous gene, alg-1. These alg-1 NDD mutations cause phenotypes in C. elegans indicative of disrupted miRNA processing, miRISC (miRNA silencing complex) formation, and/or target repression. We show that the alg-1 NDD mutations are antimorphic, causing developmental and molecular phenotypes stronger than those of alg-1 null mutants, likely by sequestrating functional miRISC components into non-functional complexes. The alg-1 NDD mutations cause allele-specific disruptions in mature miRNA profiles, accompanied by perturbation of downstream gene expression, including altered translational efficiency and/or messenger RNA abundance. The perturbed genes include those with human orthologs whose dysfunction is associated with NDD. These cross-clade genetic studies illuminate fundamental AGO functions and provide insights into the conservation of miRNA-mediated post-transcriptional regulatory mechanisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , MicroARNs , Trastornos del Neurodesarrollo , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , MicroARNs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mutación
8.
Semin Cell Dev Biol ; 155(Pt C): 23-29, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37202277

RESUMEN

The interests in blood endothelial cells arise from their therapeutic potential in vascular repair and regeneration. Our understanding of blood endothelial cells that exist in the circulation has been evolving significantly from the original concept of endothelial progenitor cells. Many studies have uncovered heterogeneities of blood endothelial subtypes where some cells express both endothelial and hematopoietic antigens, and others possess either mature or immature endothelial markers. Due to the lack of definitive cell marker identities, there have been momentums in the field to adopt a technical-oriented labeling system based on the cells' involvement in postnatal neovascularization and cell culture derivatives. Our review streamlines nomenclatures for blood endothelial subtypes and standardizes understanding of their functional differences. Broadly, we will discuss about myeloid angiogenic cells (MACs), endothelial colony-forming cells (ECFCs), blood outgrowth endothelial cells (BOECs) and circulating endothelial cells (CECs). The strategic location of blood endothelial cells confers them essential roles in supporting physiological processes. MACs exert angiogenic effects through paracrine mechanisms, while ECFCs are recruited to sites of vascular injury to participate directly in new vessel formation. BOECs are an in vitro derivative of ECFCs. CECs are shed into the bloodstream from damaged vessels, hence reflective of endothelial dysfunction. With clarity on the functional attributes of blood endothelial subtypes, we present recent advances in their applications in disease modelling, along with serving as biomarkers of vascular tissue homeostasis.


Asunto(s)
Células Progenitoras Endoteliales , Células Progenitoras Endoteliales/fisiología , Técnicas de Cultivo de Célula , Biomarcadores , Neovascularización Fisiológica , Células Cultivadas
9.
Annu Rev Genet ; 52: 271-293, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30208291

RESUMEN

Age-associated neurological diseases represent a profound challenge in biomedical research as we are still struggling to understand the interface between the aging process and the manifestation of disease. Various pathologies in the elderly do not directly result from genetic mutations, toxins, or infectious agents but are primarily driven by the many manifestations of biological aging. Therefore, the generation of appropriate model systems to study human aging in the nervous system demands new concepts that lie beyond transgenic and drug-induced models. Although access to viable human brain specimens is limited and induced pluripotent stem cell models face limitations due to reprogramming-associated cellular rejuvenation, the direct conversion of somatic cells into induced neurons allows for the generation of human neurons that capture many aspects of aging. Here, we review advances in exploring age-associated neurodegenerative diseases using human cell reprogramming models, and we discuss general concepts, promises, and limitations of the field.


Asunto(s)
Envejecimiento/genética , Células Madre Pluripotentes Inducidas/patología , Enfermedades Neurodegenerativas/genética , Neuronas/metabolismo , Envejecimiento/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Reprogramación Celular/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/patología
10.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36317797

RESUMEN

Deconstructing and then reconstructing developmental processes ex vivo is crucial to understanding how organs assemble and how physiology can be disrupted in disease. Human 3D stem cell-derived systems, such as organoids, have facilitated this pursuit; however, they often do not capture inter-tissue or inter-lineage cellular interactions that give rise to emergent tissue properties during development. Assembloids are self-organizing 3D cellular systems that result from the integration of multiple organoids or the combination of organoids with missing cell types or primary tissue explants. Here, we outline the concept and types of assembloids and present their applications for studying the nervous system and other tissues. We describe tools that are used to probe and manipulate assembloids and delineate current challenges and the potential for this new approach to interrogate development and disease.


Asunto(s)
Organoides , Humanos
11.
Annu Rev Biomed Eng ; 26(1): 383-414, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38424088

RESUMEN

Kidney disease is a global health crisis affecting more than 850 million people worldwide. In the United States, annual Medicare expenditures for kidney disease and organ failure exceed $81 billion. Efforts to develop targeted therapeutics are limited by a poor understanding of the molecular mechanisms underlying human kidney disease onset and progression. Additionally, 90% of drug candidates fail in human clinical trials, often due to toxicity and efficacy not accurately predicted in animal models. The advent of ex vivo kidney models, such as those engineered from induced pluripotent stem (iPS) cells and organ-on-a-chip (organ-chip) systems, has garnered considerable interest owing to their ability to more accurately model tissue development and patient-specific responses and drug toxicity. This review describes recent advances in developing kidney organoids and organ-chips by harnessing iPS cell biology to model human-specific kidney functions and disease states. We also discuss challenges that must be overcome to realize the potential of organoids and organ-chips as dynamic and functional conduits of the human kidney. Achieving these technological advances could revolutionize personalized medicine applications and therapeutic discovery for kidney disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Renales , Riñón , Dispositivos Laboratorio en un Chip , Organoides , Ingeniería de Tejidos , Humanos , Animales , Células Madre Pluripotentes Inducidas/citología , Ingeniería de Tejidos/métodos , Modelos Biológicos , Medicina de Precisión/métodos
12.
Stem Cells ; 42(9): 791-808, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39049437

RESUMEN

Vascular organoids (VOs), derived from induced pluripotent stem cells (iPSCs), hold promise as in vitro disease models and drug screening platforms. However, their ability to faithfully recapitulate human vascular disease and cellular composition remains unclear. In this study, we demonstrate that VOs derived from iPSCs of donors with diabetes (DB-VOs) exhibit impaired vascular function compared to non-diabetic VOs (ND-VOs). DB-VOs display elevated levels of reactive oxygen species (ROS), heightened mitochondrial content and activity, increased proinflammatory cytokines, and reduced blood perfusion recovery in vivo. Through comprehensive single-cell RNA sequencing, we uncover molecular and functional differences, as well as signaling networks, between vascular cell types and clusters within DB-VOs. Our analysis identifies major vascular cell types (endothelial cells [ECs], pericytes, and vascular smooth muscle cells) within VOs, highlighting the dichotomy between ECs and mural cells. We also demonstrate the potential need for additional inductions using organ-specific differentiation factors to promote organ-specific identity in VOs. Furthermore, we observe basal heterogeneity within VOs and significant differences between DB-VOs and ND-VOs. Notably, we identify a subpopulation of ECs specific to DB-VOs, showing overrepresentation in the ROS pathway and underrepresentation in the angiogenesis hallmark, indicating signs of aberrant angiogenesis in diabetes. Our findings underscore the potential of VOs for modeling diabetic vasculopathy, emphasize the importance of investigating cellular heterogeneity within VOs for disease modeling and drug discovery, and provide evidence of GAP43 (neuromodulin) expression in ECs, particularly in DB-VOs, with implications for vascular development and disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Humanos , Organoides/metabolismo , Organoides/patología , Células Madre Pluripotentes Inducidas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular , Células Endoteliales/metabolismo , Células Endoteliales/patología , Animales , Ratones , Diabetes Mellitus/patología , Diabetes Mellitus/metabolismo
13.
Stem Cells ; 42(3): 230-250, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38183264

RESUMEN

Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Enfermedad Pulmonar Obstructiva Crónica , Humanos , SARS-CoV-2 , Proteómica , Inmunoterapia , Inflamación
14.
Cell Mol Life Sci ; 81(1): 368, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179905

RESUMEN

Cockayne Syndrome B (CSB) is a hereditary multiorgan syndrome which-through largely unknown mechanisms-can affect the brain where it clinically presents with microcephaly, intellectual disability and demyelination. Using human induced pluripotent stem cell (hiPSC)-derived neural 3D models generated from CSB patient-derived and isogenic control lines, we here provide explanations for these three major neuropathological phenotypes. In our models, CSB deficiency is associated with (i) impaired cellular migration due to defective autophagy as an explanation for clinical microcephaly; (ii) altered neuronal network functionality and neurotransmitter GABA levels, which is suggestive of a disturbed GABA switch that likely impairs brain circuit formation and ultimately causes intellectual disability; and (iii) impaired oligodendrocyte maturation as a possible cause of the demyelination observed in children with CSB. Of note, the impaired migration and oligodendrocyte maturation could both be partially rescued by pharmacological HDAC inhibition.


Asunto(s)
Síndrome de Cockayne , Células Madre Pluripotentes Inducidas , Oligodendroglía , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patología , Oligodendroglía/metabolismo , Oligodendroglía/citología , Movimiento Celular , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Neuronas/metabolismo , Neuronas/patología , Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Ácido gamma-Aminobutírico/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Microcefalia/patología , Microcefalia/metabolismo , Microcefalia/genética , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/metabolismo , Diferenciación Celular
15.
Bioessays ; 45(2): e2200130, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36517085

RESUMEN

Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor impairments, and child mortality. Recently, we demonstrated that mutations leading to specific PCH subtypes destabilize TSEN in vitro and cause imbalances of immature to mature tRNA ratios in patient-derived cells. However, how tRNA processing defects translate to disease on a systems level has not been understood. Recent findings suggested that other cellular processes may be affected by mutations in TSEN/CLP1 and obscure the molecular mechanisms of PCH emergence. Here, we review PCH disease models linked to the TSEN/CLP1 machinery and discuss future directions to study neuropathogenesis.


Asunto(s)
Enfermedades Cerebelosas , Empalme del ARN , ARN de Transferencia , Niño , Humanos , Enfermedades Cerebelosas/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Empalme del ARN/fisiología , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35012976

RESUMEN

COVID-19 remains a stark health threat worldwide, in part because of minimal levels of targeted vaccination outside high-income countries and highly transmissible variants causing infection in vaccinated individuals. Decades of theoretical and experimental data suggest that nonspecific effects of non-COVID-19 vaccines may help bolster population immunological resilience to new pathogens. These routine vaccinations can stimulate heterologous cross-protective effects, which modulate nontargeted infections. For example, immunization with Bacillus Calmette-Guérin, inactivated influenza vaccine, oral polio vaccine, and other vaccines have been associated with some protection from SARS-CoV-2 infection and amelioration of COVID-19 disease. If heterologous vaccine interventions (HVIs) are to be seriously considered by policy makers as bridging or boosting interventions in pandemic settings to augment nonpharmaceutical interventions and specific vaccination efforts, evidence is needed to determine their optimal implementation. Using the COVID-19 International Modeling Consortium mathematical model, we show that logistically realistic HVIs with low (5 to 15%) effectiveness could have reduced COVID-19 cases, hospitalization, and mortality in the United States fall/winter 2020 wave. Similar to other mass drug administration campaigns (e.g., for malaria), HVI impact is highly dependent on both age targeting and intervention timing in relation to incidence, with maximal benefit accruing from implementation across the widest age cohort when the pandemic reproduction number is >1.0. Optimal HVI logistics therefore differ from optimal rollout parameters for specific COVID-19 immunizations. These results may be generalizable beyond COVID-19 and the US to indicate how even minimally effective heterologous immunization campaigns could reduce the burden of future viral pandemics.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Modelos Teóricos , SARS-CoV-2/inmunología , Estaciones del Año , Vacunación/métodos , Algoritmos , Vacuna BCG/administración & dosificación , Vacuna BCG/inmunología , COVID-19/epidemiología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Mortalidad Hospitalaria , Hospitalización/estadística & datos numéricos , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Pandemias/prevención & control , Admisión del Paciente/estadística & datos numéricos , SARS-CoV-2/fisiología , Tasa de Supervivencia , Estados Unidos/epidemiología , Vacunación/estadística & datos numéricos
17.
Genes Dev ; 31(13): 1325-1338, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794185

RESUMEN

Deciphering the fundamental mechanisms controlling cardiac specification is critical for our understanding of how heart formation is initiated during embryonic development and for applying stem cell biology to regenerative medicine and disease modeling. Using systematic and unbiased functional screening approaches, we discovered that the Id family of helix-loop-helix proteins is both necessary and sufficient to direct cardiac mesoderm formation in frog embryos and human embryonic stem cells. Mechanistically, Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation-Tcf3 and Foxa2-and activating inducers Evx1, Grrp1, and Mesp1. Most importantly, CRISPR/Cas9-mediated ablation of the entire Id (Id1-4) family in mouse embryos leads to failure of anterior cardiac progenitor specification and the development of heartless embryos. Thus, Id proteins play a central and evolutionarily conserved role during heart formation and provide a novel means to efficiently produce cardiovascular progenitors for regenerative medicine and drug discovery applications.


Asunto(s)
Linaje de la Célula/genética , Corazón/embriología , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Organogénesis/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Línea Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Edición Génica , Regulación del Desarrollo de la Expresión Génica/genética , Cardiopatías Congénitas/genética , Humanos , Mesodermo/citología , Mesodermo/fisiología , Ratones , Mutación , Semillas , Xenopus laevis/embriología
18.
J Mol Cell Cardiol ; 192: 65-78, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761989

RESUMEN

Endothelial dysfunction is a central contributor to the development of most cardiovascular diseases and is characterised by the reduced synthesis or bioavailability of the vasodilator nitric oxide together with other abnormalities such as inflammation, senescence, and oxidative stress. The use of patient-specific and genome-edited human pluripotent stem cell-derived endothelial cells (hPSC-ECs) has shed novel insights into the role of endothelial dysfunction in cardiovascular diseases with strong genetic components such as genetic cardiomyopathies and pulmonary arterial hypertension. However, their utility in studying complex multifactorial diseases such as atherosclerosis, metabolic syndrome and heart failure poses notable challenges. In this review, we provide an overview of the different methods used to generate and characterise hPSC-ECs before comprehensively assessing their effectiveness in cardiovascular disease modelling and high-throughput drug screening. Furthermore, we explore current obstacles that will need to be overcome to unleash the full potential of hPSC-ECs in facilitating patient-specific precision medicine. Addressing these challenges holds great promise in advancing our understanding of intricate cardiovascular diseases and in tailoring personalised therapeutic strategies.


Asunto(s)
Enfermedades Cardiovasculares , Células Endoteliales , Humanos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Células Endoteliales/metabolismo , Animales , Células Madre Pluripotentes/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología
19.
Pflugers Arch ; 476(6): 975-992, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38538988

RESUMEN

Human-induced pluripotent stem cells (iPS cells) are efficiently differentiated into sensory neurons. These cells express the voltage-gated sodium channel NaV1.7, which is a validated pain target. NaV1.7 deficiency leads to pain insensitivity, whereas NaV1.7 gain-of-function mutants are associated with chronic pain. During differentiation, the sensory neurons start spontaneous action potential firing around day 22, with increasing firing rate until day 40. Here, we used CRISPR/Cas9 genome editing to generate a HA-tag NaV1.7 to follow its expression during differentiation. We used two protocols to generate sensory neurons: the classical small molecule approach and a directed differentiation methodology and assessed surface NaV1.7 expression by Airyscan high-resolution microscopy. Our results show that maturation of at least 49 days is necessary to observe robust NaV1.7 surface expression in both protocols. Electric activity of the sensory neurons precedes NaV1.7 surface expression. A clinically effective NaV1.7 blocker is still missing, and we expect this iPS cell model system to be useful for drug discovery and disease modeling.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Canal de Sodio Activado por Voltaje NAV1.7 , Células Receptoras Sensoriales , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Potenciales de Acción , Sistemas CRISPR-Cas
20.
Am J Epidemiol ; 193(2): 339-347, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37715459

RESUMEN

Transmissible infections such as those caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread according to who contacts whom. Therefore, many epidemic models incorporate contact patterns through contact matrices. Contact matrices can be generated from social contact survey data. However, the resulting matrices are often imbalanced, such that the total number of contacts reported by group A with group B do not match those reported by group B with group A. We examined the theoretical influence of imbalanced contact matrices on the estimated basic reproduction number (R0). We then explored how imbalanced matrices may bias model-based epidemic projections using an illustrative simulation model of SARS-CoV-2 with 2 age groups (<15 and ≥15 years). Models with imbalanced matrices underestimated the initial spread of SARS-CoV-2, had later time to peak incidence, and had smaller peak incidence. Imbalanced matrices also influenced cumulative infections observed per age group, as well as the estimated impact of an age-specific vaccination strategy. Stratified transmission models that do not consider contact balancing may generate biased projections of epidemic trajectory and the impact of targeted public health interventions. Therefore, modeling studies should implement and report methods used to balance contact matrices for stratified transmission models.


Asunto(s)
COVID-19 , Epidemias , Humanos , Adolescente , COVID-19/epidemiología , SARS-CoV-2 , Simulación por Computador , Número Básico de Reproducción , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA