Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 465
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 151(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39012257

RESUMEN

The Forkhead box transcription factors FOXC1 and FOXC2 are expressed in condensing mesenchyme cells at the onset of endochondral ossification. We used the Prx1-cre mouse to ablate Foxc1 and Foxc2 in limb skeletal progenitor cells. Prx1-cre;Foxc1Δ/Δ;Foxc2Δ/Δ limbs were shorter than controls, with worsening phenotypes in distal structures. Cartilage formation and mineralization was severely disrupted in the paws. The radius and tibia were malformed, whereas the fibula and ulna remained unmineralized. Chondrocyte maturation was delayed, with fewer Indian hedgehog-expressing, prehypertrophic chondrocytes forming and a smaller hypertrophic chondrocyte zone. Later, progression out of chondrocyte hypertrophy was slowed, leading to an accumulation of COLX-expressing hypertrophic chondrocytes and formation of a smaller primary ossification center with fewer osteoblast progenitor cells populating this region. Targeting Foxc1 and Foxc2 in hypertrophic chondrocytes with Col10a1-cre also resulted in an expanded hypertrophic chondrocyte zone and smaller primary ossification center. Our findings suggest that FOXC1 and FOXC2 direct chondrocyte maturation towards hypertrophic chondrocyte formation. At later stages, FOXC1 and FOXC2 regulate function in hypertrophic chondrocyte remodeling to allow primary ossification center formation and osteoblast recruitment.


Asunto(s)
Condrocitos , Factores de Transcripción Forkhead , Placa de Crecimiento , Hipertrofia , Osteogénesis , Animales , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Condrocitos/metabolismo , Condrocitos/citología , Ratones , Placa de Crecimiento/metabolismo , Placa de Crecimiento/patología , Placa de Crecimiento/embriología , Osteogénesis/genética , Extremidades/embriología , Extremidades/patología , Condrogénesis/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Regulación del Desarrollo de la Expresión Génica , Diferenciación Celular , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Cartílago/metabolismo , Cartílago/patología , Cartílago/embriología
2.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38117077

RESUMEN

During endochondral ossification, chondrocytes secrete a proteoglycan (PG)-rich extracellular matrix that can inhibit the process of cartilage maturation, including expression of Ihh and Col10a1. Because bone morphogenetic proteins (BMPs) can promote cartilage maturation, we hypothesized that cartilage PGs normally inhibit BMP signalling. Accordingly, BMP signalling was evaluated in chondrocytes of wild-type and PG mutant (fam20b-/-) zebrafish and inhibited with temporal control using the drug DMH1 or an inducible dominant-negative BMP receptor transgene (dnBMPR). Compared with wild type, phospho-Smad1/5/9, but not phospho-p38, was increased in fam20b-/- chondrocytes, but only after they secreted PGs. Phospho-Smad1/5/9 was decreased in DMH1-treated or dnBMPR-activated wild-type chondrocytes, and DMH1 also decreased phospho-p38 levels. ihha and col10a1a were decreased in DMH1-treated or dnBMPR-activated chondrocytes, and less perichondral bone formed. Finally, early ihha and col10a1a expression and early perichondral bone formation of fam20b mutants were rescued with DMH1 treatment or dnBMPR activation. Therefore, PG inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification, and these results offer hope for the development of growth factor therapies for skeletal defects of PG diseases.


Asunto(s)
Osteogénesis , Proteoglicanos , Animales , Osteogénesis/genética , Proteoglicanos/genética , Proteoglicanos/metabolismo , Pez Cebra/genética , Cartílago/metabolismo , Condrocitos/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo
3.
Semin Cell Dev Biol ; 155(Pt B): 58-65, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423854

RESUMEN

Thrombospondins (TSPs) belong to a functional class of ECM proteins called matricellular proteins that are not primarily structural, but instead influence cellular interactions within the local extracellular environment. The 3D arrangement of TSPs allow interactions with other ECM proteins, sequestered growth factors, and cell surface receptors. They are expressed in mesenchymal condensations and limb buds during skeletal development, but they are not required for patterning. Instead, when absent, there are alterations in musculoskeletal connective tissue ECM structure, organization, and function, as well as altered skeletal cell phenotypes. Both functional redundancies and unique contributions to musculoskeletal tissue structure and physiology are revealed in mouse models with compound TSP deletions. Crucial roles of individual TSPs are revealed during musculoskeletal injury and regeneration. The interaction of TSPs with mesenchymal stem cells (MSC), and their influence on cell fate, function, and ultimately, musculoskeletal phenotype, suggest that TSPs play integral, but as yet poorly understood roles in musculoskeletal health. Here, unique and overlapping contributions of trimeric TSP1/2 and pentameric TSP3/4/5 to musculoskeletal cell and matrix physiology are reviewed. Opportunities for new research are also noted.


Asunto(s)
Proteínas de la Matriz Extracelular , Trombospondinas , Ratones , Animales , Trombospondinas/genética , Trombospondinas/metabolismo , Esqueleto/metabolismo , Fenómenos Fisiológicos Celulares
4.
Development ; 150(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37539462

RESUMEN

Endochondral ossification contributes to longitudinal skeletal growth. Osteoblasts, which are bone-forming cells, appear close to terminally differentiated hypertrophic chondrocytes during endochondral ossification. We established mice with conditional knockout (cKO) of Smad4, an essential co-activator for transforming growth factor ß family signaling. The mice showed a marked increase in bone volume in the metaphysis as a result of increased bone formation by osteoblasts, in which ß-catenin, an effector of canonical Wnt signaling, accumulated. We identified Wnt7b as a factor with increased expression in growth plate cartilage in Smad4 cKO mice. Wnt7b mRNA was expressed in differentiated chondrocytes and suppressed by BMP4 stimulation. Ablation of Wnt7b blunted the increase in bone in adult Smad4 cKO mice and reduced skeletal growth in juvenile mice. Overall, we conclude that Wnt7b is a crucial factor secreted from hypertrophic chondrocytes to initiate endochondral ossification. These results suggest that Smad4-dependent BMP signaling regulates the Wnt7b-ß-catenin axis during endochondral ossification.


Asunto(s)
Condrocitos , Osteogénesis , Animales , Ratones , beta Catenina/metabolismo , Huesos , Cartílago/metabolismo , Diferenciación Celular/genética , Condrocitos/metabolismo , Osteogénesis/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
5.
Biochem Biophys Res Commun ; 703: 149634, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38354465

RESUMEN

Fractures are frequent and severe musculoskeletal injuries. This study aimed to investigate the function of tenascin-C (TNC) in regulating chondrogenic during fracture healing and elucidate the underlying molecular mechanisms. A well-established femur fracture model in male C57BL/6J mice was used to transect the middle diaphysis of the femur. To identify the essential role of TNC, shTNC lentiviruses or TNC protein were administered in the animal model. Micro-CT analysis, histologic analysis, immunostaining assays, and gene expression analysis were employed to investigate the effect of TNC during fracture healing. An in vitro mesenchymal stem cell culture system was developed to investigate the role and molecular mechanism of TNC in regulating chondrogenesis. TNC expression was induced at the inflammatory phase and peaked at the cartilaginous callus phase during fracture healing. Knockdown of TNC expression in callus results in decreased callus formation and impaired fracture healing. Conversely, administration of exogenous TNC promoted chondrogenic differentiation, cartilage template formation and ultimately improved fracture healing. Both the Hedgehog and Hippo signaling pathways were found to be involved in the pro-chondrogenic function of TNC. Our observations demonstrate that TNC is a crucial factor responsible for endochondral ossification in fracture healing and provide a potential therapeutic strategy for promoting fracture healing.


Asunto(s)
Fracturas del Fémur , Curación de Fractura , Osteogénesis , Tenascina , Animales , Masculino , Ratones , Callo Óseo/patología , Fracturas del Fémur/patología , Erizos , Vía de Señalización Hippo , Ratones Endogámicos C57BL , Tenascina/genética , Tenascina/metabolismo
6.
Biochem Biophys Res Commun ; 701: 149583, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330731

RESUMEN

Endochondral ossification is a developmental process in the skeletal system and bone marrow of vertebrates. During endochondral ossification, primitive cartilaginous anlages derived from mesenchymal stem cells (MSCs) undergo vascular invasion and ossification. In vitro regeneration of endochondral ossification is beneficial for research on the skeletal system and bone marrow development as well as their clinical aspects. However, to achieve the regeneration of endochondral ossification, a stem cell-based artificial cartilage (cartilage organoid, Cart-Org) that possesses an endochondral ossification phenotype is required. Here, we modified a conventional 3D culture method to create stem cell-based Cart-Org by mixing it with a basement membrane extract (BME) and further characterized its chondrogenic and ossification properties. BME enlarged and matured the bone marrow MSC-based Cart-Orgs without any shape abnormalities. Histological analysis using Alcian blue staining showed that the production of cartilaginous extracellular matrices was enhanced in Cart-Org treated with BME. Transcriptome analysis using RNA sequencing revealed that BME altered the gene expression pattern of Cart-Org to a dominant chondrogenic state. BME triggered the activation of the SMAD pathway and inhibition of the NK-κB pathway, which resulted in the upregulation of SOX9, COL2A1, and ACAN in Cart-Org. BME also facilitated the upregulation of genes associated with hypertrophic chondrocytes (IHH, PTH1R, and COL10A1) and ossification (SP7, ALPL, and MMP13). Our findings indicate that BME promotes cartilaginous maturation and further ossification of bone marrow MSC-based Cart-Org, suggesting that Cart-Org treated with BME possesses the phenotype of endochondral ossification.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Osteogénesis/genética , Médula Ósea , Membrana Basal , Cartílago/metabolismo , Condrocitos/metabolismo , Fenotipo , Condrogénesis/genética , Organoides , Diferenciación Celular
7.
Biochem Biophys Res Commun ; 711: 149888, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38603833

RESUMEN

OBJECTIVE: To investigate the effect of intermittent parathyroid hormone (iPTH) administration on pathological new bone formation during treatment of ankylosing spondylitis-related osteoporosis. METHODS: Animal models with pathological bone formation caused by hypothetical AS pathogenesis received treatment with iPTH. We determined the effects of iPTH on bone loss and the formation of pathological new bone with micro-computed tomography (micro-CT) and histological examination. In addition, the tamoxifen-inducible conditional knockout mice (CAGGCre-ERTM; PTHflox/flox, PTH-/-) was established to delete PTH and investigate the effect of endogenous PTH on pathological new bone formation. RESULTS: iPTH treatment significantly improved trabecular bone mass in the modified collagen-induced arthritis (m-CIA) model and unbalanced mechanical loading models. Meanwhile, iPTH treatment did not enhance pathological new bone formation in all types of animal models. Endogenous PTH deficiency had no effects on pathological new bone formation in unbalanced mechanical loading models. CONCLUSION: Experimental animal models of AS treated with iPTH show improvement in trabecular bone density, but not entheseal pathological bone formation,indicating it may be a potential treatment for inflammatory bone loss does in AS.


Asunto(s)
Osteogénesis , Hormona Paratiroidea , Animales , Hormona Paratiroidea/administración & dosificación , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/uso terapéutico , Osteogénesis/efectos de los fármacos , Ratones , Osteoporosis/tratamiento farmacológico , Osteoporosis/patología , Ratones Noqueados , Masculino , Microtomografía por Rayos X , Espondilitis Anquilosante/tratamiento farmacológico , Espondilitis Anquilosante/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Densidad Ósea/efectos de los fármacos
8.
Immunol Cell Biol ; 102(2): 131-148, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184783

RESUMEN

The cellular complexity of the endochondral bone underlies its essential and pleiotropic roles during organismal life. While the adult bone has received significant attention, we still lack a deep understanding of the perinatal bone cellulome. Here, we have profiled the full composition of the murine endochondral bone at the single-cell level during the transition from fetal to newborn life and in comparison with the adult tissue, with particular emphasis on the mesenchymal compartment. The perinatal bone contains different fibroblastic clusters with blastema-like characteristics in organizing and supporting skeletogenesis, angiogenesis and hematopoiesis. Our data also suggest dynamic inter- and intra-compartment interactions, as well as a bone marrow milieu that seems prone to anti-inflammation, which we hypothesize is necessary to ensure the proper program of lymphopoiesis and the establishment of central and peripheral tolerance in early life. Our study provides an integrative roadmap for the future design of genetic and cellular functional assays to validate cellular interactions and lineage relationships within the perinatal bone.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Ratones , Animales , Osteogénesis/genética , Huesos , Médula Ósea , Hematopoyesis
9.
Small ; 20(26): e2309868, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38259052

RESUMEN

Critical-sized segmental long bone defects represent a challenging clinical dilemma in the management of battlefield and trauma-related injuries. The residual bone marrow cavity of damaged long bones contains many bone marrow mesenchymal stem cells (BMSCs), which provide a substantial source of cells for bone repair. Thus, a three-dimensional (3D) vertically aligned nanofiber scaffold (VAS) is developed with long channels and large pore size. The pore of VAS toward the bone marrow cavity after transplantation, enables the scaffolds to recruit BMSCs from the bone marrow cavity to the defect area. In vivo, it is found that VAS can significantly shorten gap distance and promote new bone formation compared to the control and collagen groups after 4 and 8 weeks of implantation. The single-cell sequencing results discovered that the 3D nanotopography of VAS can promote BMSCs differentiation to chondrocytes and osteoblasts, and up-regulate related gene expression, resulting in enhancing the activities of bone regeneration, endochondral ossification, bone trabecula formation, bone mineralization, maturation, and remodeling. The Alcian blue and bone morphogenetic protein 2 (BMP-2) immunohistochemical staining verified significant cartilage formation and bone formation in the VAS group, corresponding to the single-cell sequencing results. The study can inspire the design of next-generation scaffolds for effective long-bone regeneration is expected by the authors.


Asunto(s)
Regeneración Ósea , Diferenciación Celular , Condrogénesis , Células Madre Mesenquimatosas , Nanofibras , Osteogénesis , Andamios del Tejido , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Nanofibras/química , Andamios del Tejido/química , Animales
10.
J Theor Biol ; 592: 111874, 2024 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-38908475

RESUMEN

Treating bone-cartilage defects is a fundamental clinical problem. The ability of damaged cartilage to self-repair is limited due to its avascularity. Left untreated, these defects can lead to osteoarthritis. Details of osteochondral defect repair are elusive, but animal models indicate healing occurs via an endochondral ossification-like process, similar to that in the growth plate. In the growth plate, the signalling molecules parathyroid hormone-related protein (PTHrP) and Indian Hedgehog (Ihh) form a feedback loop regulating chondrocyte hypertrophy, with Ihh inducing and PTHrP suppressing hypertrophy. To better understand this repair process and to explore the regulatory role of signalling molecules on the regeneration process, we formulate a reaction-diffusion mathematical model of osteochondral defect regeneration after chondrocyte implantation. The drivers of healing are assumed to be chondrocytes and osteoblasts, and their interaction via signalling molecules. We model cell proliferation, migration and chondrocyte hypertrophy, and matrix production and conversion, spatially and temporally. We further model nutrient and signalling molecule diffusion and their interaction with the cells. We consider the PTHrP-Ihh feedback loop as the backbone mechanisms but the model is flexible to incorporate extra signalling mechanisms if needed. Our mathematical model is able to represent repair of osteochondral defects, starting with cartilage formation throughout the defect. This is followed by chondrocyte hypertrophy, matrix calcification and bone formation deep inside the defect, while cartilage at the surface is maintained and eventually separated from the deeper bone by a thin layer of calcified cartilage. The complete process requires around 48 months. A key highlight of the model demonstrates that the PTHrP-Ihh loop alone is insufficient and an extra mechanism is required to initiate chondrocyte hypertrophy, represented by a critical cartilage density. A parameter sensitivity study reveals that the timing of the repair process crucially depends on parameters, such as the critical cartilage density, and those describing the actions of PTHrP to suppress hypertrophy, such as its diffusion coefficient, threshold concentration and degradation rate.


Asunto(s)
Condrocitos , Proteínas Hedgehog , Modelos Biológicos , Proteína Relacionada con la Hormona Paratiroidea , Transducción de Señal , Condrocitos/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Animales , Proteínas Hedgehog/metabolismo , Humanos , Proliferación Celular , Regeneración/fisiología , Movimiento Celular
11.
Curr Rheumatol Rep ; 26(4): 133-143, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38324125

RESUMEN

PURPOSE OF REVIEW: Over the past two decades, significant progress has been made to untangle the etiology of inflammation and new bone formation (NBF) associated with axial spondyloarthritis (axSpA). However, exact mechanisms as to how the disease initiates and develops remain elusive. RECENT FINDINGS: Type 3 immunity, centered around the IL-23/IL-17 axis, has been recognized as a key player in the pathogenesis of axSpA. Multiple hypotheses associated with HLA-B*27 have been proposed to account for disease onset and progression of axSpA, potentially by driving downstream T cell responses. However, HLA-B*27 alone is not sufficient to fully explain the development of axSpA. Genome-wide association studies (GWAS) identified several genes that are potentially relevant to disease pathogenesis leading to a better understanding of the immune activation seen in axSpA. Furthermore, gut microbiome studies suggest an altered microbiome in axSpA, and animal studies suggest a pathogenic role for immune cells migrating from the gut to the joint. Recent studies focusing on the pathogenesis of new bone formation (NBF) have highlighted the importance of endochondral ossification, mechanical stress, pre-existing inflammation, and activated anabolic signaling pathways during the development of NBF. Despite the complex etiology of axSpA, recent studies have shed light on pivotal pieces that could lead to a better understanding of the pathogenic events in axSpA.


Asunto(s)
Espondiloartritis Axial , Espondiloartritis , Espondilitis Anquilosante , Humanos , Espondiloartritis/genética , Estudio de Asociación del Genoma Completo , Espondilitis Anquilosante/genética , Espondilitis Anquilosante/complicaciones , Inflamación/genética , Inflamación/complicaciones , Antígenos HLA-B/genética
12.
Exp Cell Res ; 431(1): 113751, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37574037

RESUMEN

Primary cilia are non-motile, microtubule-based sensory organelle present in most vertebrate cells with a fundamental role in the modulation of organismal development, morphogenesis, and repair. Here we focus on the role of primary cilia in embryonic and postnatal skeletal development. We examine evidence supporting its involvement in physiochemical and developmental signaling that regulates proliferation, patterning, differentiation and homeostasis of osteoblasts, chondrocytes, and their progenitor cells in the skeleton. We discuss how signaling effectors in mechanotransduction and bone development, such as Hedgehog, Wnt, Fibroblast growth factor and second messenger pathways operate at least in part at the primary cilium. The relevance of primary cilia in bone formation and maintenance is underscored by a growing list of rare genetic skeletal ciliopathies. We collate these findings and summarize the current understanding of molecular factors and mechanisms governing primary ciliogenesis and ciliary function in skeletal development and disease.


Asunto(s)
Huesos , Esqueleto , Cilios , Humanos , Animales , Huesos/citología , Huesos/patología , Esqueleto/crecimiento & desarrollo , Organogénesis , Osteogénesis , Transducción de Señal , Mecanotransducción Celular
13.
Mol Ther ; 31(2): 420-434, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36245128

RESUMEN

An estimated 100,000 patients each year in the United States suffer severe disability from bone defects that fail to heal, a condition where bone-regenerative therapies could provide substantial clinical benefits. Although recombinant human bone morphogenetic protein-2 (rhBMP2) is an osteogenic growth factor that is clinically approved for this purpose, it is only effective when used at exceedingly high doses that incur substantial costs, induce severe inflammation, produce adverse side effects, and form morphologically abnormal bone. Using a validated rat femoral segmental defect model, we show that bone formed in response to clinically relevant doses of rhBMP2 is accompanied by elevated expression of interleukin-1 (IL-1). Local delivery of cDNA encoding the IL-1 receptor antagonist (IL-1Ra) achieved bridging of segmental, critical size defects in bone with a 90% lower dose of rhBMP2. Unlike use of high-dose rhBMP2, bone formation in the presence of IL-1Ra occurred via the native process of endochondral ossification, resulting in improved quality without sacrificing the mechanical properties of the regenerated bone. Our results demonstrate that local immunomodulation may permit effective use of growth factors at lower doses to recapitulate more precisely the native biology of healing, leading to higher-quality tissue regeneration.


Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1 , Osteogénesis , Humanos , Ratas , Animales , Osteogénesis/genética , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Factor de Crecimiento Transformador beta/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Regeneración Ósea/genética , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/farmacología
14.
Endocr J ; 71(7): 643-650, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38569854

RESUMEN

Achondroplasia (ACH) is a representative skeletal disorder characterized by rhizomelic shortened limbs and short stature. ACH is classified as belonging to the fibroblast growth factor receptor 3 (FGFR3) group. The downstream signal transduction of FGFR3 consists of STAT1 and RAS/RAF/MEK/ERK pathways. The mutant FGFR3 found in ACH is continuously phosphorylated and activates downstream signals, resulting in abnormal proliferation and differentiation of chondrocytes in the growth plate and cranial base synchondrosis. A patient registry has been developed and has contributed to revealing the natural history of ACH patients. Concerning the short stature, the adult height of ACH patients ranges between 126.7-135.2 cm for men and 119.9-125.5 cm for women in many countries. Along with severe short stature, foramen magnum stenosis and spinal canal stenosis are major complications: the former leads to sleep apnea, breathing disorders, myelopathy, hydrocephalus, and sudden death, and the latter causes pain in the extremities, numbness, muscle weakness, movement disorders, intermittent claudication, and bladder-rectal disorders. Growth hormone treatment is available for ACH only in Japan. However, the effect of the treatment on adult height is not satisfactory. Recently, the neutral endopeptidase-resistant CNP analogue vosoritide has been approved as a new drug for ACH. Additionally in development are a tyrosine kinase inhibitor, a soluble FGFR3, an antibody against FGFR3, meclizine, and the FGF2-aptamer. New drugs will bring a brighter future for patients with ACH.


Asunto(s)
Acondroplasia , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Acondroplasia/tratamiento farmacológico , Humanos , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Desarrollo de Medicamentos , Péptido Natriurético Tipo-C/análogos & derivados
15.
Bioelectromagnetics ; 45(5): 226-234, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38546158

RESUMEN

Pulsed electromagnetic field (PEMF) stimulation has been widely applied clinically to promote bone healing; however, its detailed mechanism of action, particularly in endochondral ossification, remains elusive, and long-term stimulation is required for its satisfactory effect. The aim of this study was to investigate the involvement of the mammalian target of rapamycin (mTOR) pathway in chondrocyte differentiation and proliferation using a mouse prechondroblast cell line (ATDC5), and establish an efficient PEMF stimulation strategy for endochondral ossification. The changes in cell differentiation (gene expression levels of aggrecan, type II collagen, and type X collagen) and proliferation (cellular uptake of bromodeoxyuridine [BrdU]) in ATDC5 cells in the presence or absence of rapamycin, an mTOR inhibitor, was measured. The effects of continuous and intermittent PEMF stimulation on changes in cell differentiation and proliferation were compared. Rapamycin significantly suppressed the induction of cell differentiation markers and the cell proliferation activity. Furthermore, only intermittent PEMF stimulation continuously activated the mTOR pathway in ATDC5 cells, significantly promoting cell proliferation. These results demonstrate the involvement of the mTOR pathway in chondrocyte differentiation and proliferation and suggest that intermittent PEMF stimulation could be effective as a stimulus for endochondral ossification during fracture healing process, thereby reducing stimulation time.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Condrocitos , Campos Electromagnéticos , Osteogénesis , Serina-Treonina Quinasas TOR , Animales , Ratones , Osteogénesis/efectos de la radiación , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/fisiología , Línea Celular , Serina-Treonina Quinasas TOR/metabolismo , Sirolimus/farmacología , Cartílago/metabolismo , Cartílago/citología , Cartílago/fisiología , Transducción de Señal , Regulación de la Expresión Génica/efectos de la radiación
16.
Vet Pathol ; 61(1): 74-87, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37431760

RESUMEN

Recently, the central and third tarsal bones of 23 equine fetuses and foals were examined using micro-computed tomography. Radiological changes, including incomplete ossification and focal ossification defects interpreted as osteochondrosis, were detected in 16 of 23 cases. The geometry of the osteochondrosis defects suggested they were the result of vascular failure, but this requires histological confirmation. The study aim was to examine central and third tarsal bones from the 16 cases and to describe the tissues present, cartilage canals, and lesions, including suspected osteochondrosis lesions. Cases included 9 males and 7 females from 0 to 150 days of age, comprising 11 Icelandic horses, 2 standardbred horses, 2 warmblood riding horses, and 1 coldblooded trotting horse. Until 4 days of age, all aspects of the bones were covered by growth cartilage, but from 105 days, the dorsal and plantar aspects were covered by fibrous tissue undergoing intramembranous ossification. Cartilage canal vessels gradually decreased but were present in most cases up to 122 days and were absent in the next available case at 150 days. Radiological osteochondrosis defects were confirmed in histological sections from 3 cases and consisted of necrotic vessels surrounded by ischemic chondronecrosis (articular osteochondrosis) and areas of retained, morphologically viable hypertrophic chondrocytes (physeal osteochondrosis). The central and third tarsal bones formed by both endochondral and intramembranous ossification. The blood supply to the growth cartilage of the central and third tarsal bones regressed between 122 and 150 days of age. Radiological osteochondrosis defects represented vascular failure, with chondrocyte necrosis and retention, or a combination of articular and physeal osteochondrosis.


Asunto(s)
Enfermedades de los Caballos , Osteocondrosis , Huesos Tarsianos , Masculino , Femenino , Animales , Caballos , Microtomografía por Rayos X , Osteocondrosis/diagnóstico por imagen , Osteocondrosis/veterinaria , Osteocondrosis/patología , Cartílago/patología , Necrosis/veterinaria , Huesos Tarsianos/diagnóstico por imagen , Huesos Tarsianos/patología , Enfermedades de los Caballos/diagnóstico por imagen , Enfermedades de los Caballos/patología
17.
Environ Toxicol ; 39(6): 3314-3329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38440912

RESUMEN

BACKGROUND: Previous studies on the effects of microplastics (MPs) on bone in early development are limited. This study aimed to investigate the adverse effects of MPs on bone in young rats and the potential mechanism. METHODS: Three-week-old female rats were orally administered MPs for 28 days, and endoplasmic reticulum (ER) stress inhibitor salubrinal (SAL) and ER stress agonist tunicamycin (TM) were added to evaluate the effect of ER stress on toxicity of MPs. The indicators of growth and plasma markers of bone turnover were evaluated. Tibias were analyzed using micro-computed tomography (micro-CT). Histomorphological staining of growth plates was performed, and related gene expression of growth plate chondrocytes was tested. RESULTS: After exposure of MPs, the rats had decreased growth, shortened tibial length, and altered blood calcium and phosphorus metabolism. Trabecular bone was sparse according to micro-CT inspection. In the growth plate, the thickness of proliferative zone substantial reduced while the thickness of hypertrophic zone increased significantly, and the chondrocytes were scarce and irregularly arranged according to tibial histological staining. The transcription of the ER stress-related genes BIP, PERK, ATF4, and CHOP dramatically increased, and the transcription factors involved in chondrocyte proliferation, differentiation, apoptosis, and matrix secretion were aberrant according to RT-qPCR and western blotting. Moreover, the addition of TM showed higher percentage of chondrocyte death. Administration of SAL alleviated all of the MPs-induced symptoms. CONCLUSION: These results indicated that MPs could induce growth retardation and longitudinal bone damage in early development. The toxicity of MPs may attribute to induced ER stress and impaired essential processes of the endochondral ossification after MPs exposure.


Asunto(s)
Estrés del Retículo Endoplásmico , Placa de Crecimiento , Microplásticos , Poliestirenos , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Placa de Crecimiento/efectos de los fármacos , Placa de Crecimiento/patología , Femenino , Ratas , Microplásticos/toxicidad , Poliestirenos/toxicidad , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Condrocitos/efectos de los fármacos , Tibia/efectos de los fármacos , Tibia/patología
18.
J Oral Rehabil ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363428

RESUMEN

BACKGROUND: Condylar fractures (CFs) are a common type of maxillofacial trauma, especially in adolescents. Conservative treatment of CF avoids the possible complications of surgical intervention, but prolongs the patient's suffering because of the requirement for extended intermaxillary fixation. Therefore, the development of a new strategy to accelerate the rate of fracture healing to shorten the period of conservative treatment is of great clinical importance. OBJECTIVE: To investigate the potential of deferoxamine (DFO) in promoting the healing process of CF in adolescent mice. METHODS: Thirty-two 4-week-old male C57BL/6J mice were randomly assigned to four groups: vehicle + sham group, vehicle + CF group, DFO + sham group and DFO + CF group. After constructing the mandibular CF model, mandibular tissue samples were collected respectively at 1, 2 and 4 weeks postoperatively. Radiographic and histomorphometric analyses were employed to assess bone tissue healing and vascular formation. RESULTS: Deferoxamine was observed to promote the early bone healing of fracture, both radiologically and histomorphometrically. Furthermore, this enhancement of condylar neck fracture healing was attributed to the upregulation of the hypoxia-inducible factor-1α (HIF-1α) signalling pathway while facilitating the formation of type H vessels. In addition, DFO did not produce significant effects on the condylar neck between vehicle + sham and DFO + sham group. CONCLUSION: The application of the HIF-1α inducer DFO can enhance type H vessels expansion thereby accelerating condylar neck fracture healing.

19.
Int J Mol Sci ; 25(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39337434

RESUMEN

Endochondral ossification is the process by which cartilage is mineralized into bone, and is essential for the development of long bones. Osteocalcin (OCN), a protein abundant in bone matrix, also exhibits high expression in chondrocytes, especially hypertrophic chondrocytes, while its role in endochondral ossification remains unclear. Utilizing a new CRISPR/Cas9-mediated bglap-bglap2 deficiency (OCNem) mouse model generated in our laboratory, we provide the first evidence of OCN's regulatory function in chondrocyte differentiation and endochondral ossification. The OCNem mice exhibited significant delays in primary and secondary ossification centers compared to wild-type mice, along with increased cartilage length in growth plates and hypertrophic zones during neonatal and adolescent stages. These anomalies indicated that OCN deficiency disturbed endochondral ossification during embryonic and postnatal periods. Mechanism wise, OCN deficiency was found to increase chondrocyte differentiation and postpone vascularization process. Furthermore, bone marrow mesenchymal stromal cells (BMSCs) from OCNem mice demonstrated an increased capacity for chondrogenic differentiation. Transcriptional network analysis implicated that BMP and TGF-ß signaling pathways were highly affected in OCNem BMSCs, which is closely associated with cartilage development and maintenance. This elucidation of OCN's function in chondrocyte differentiation and endochondral ossification contributes to a more comprehensive understanding of its impact on skeletal development and homeostasis.


Asunto(s)
Sistemas CRISPR-Cas , Diferenciación Celular , Condrocitos , Condrogénesis , Osteocalcina , Osteogénesis , Animales , Ratones , Cartílago/metabolismo , Diferenciación Celular/genética , Condrocitos/metabolismo , Condrocitos/citología , Condrogénesis/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones Noqueados , Osteocalcina/metabolismo , Osteocalcina/genética , Osteogénesis/genética , Transducción de Señal
20.
Dev Biol ; 492: 126-132, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36252613

RESUMEN

Estrogen is a steroid hormone that induces skeletal growth and affects endochondral ossification of the long tubular bone growth plate during the growth period. However, the effects of estrogen on endochondral ossification of the mandibular condylar cartilage are unclear. In this study, ovariectomized Wistar/ST rats were used to investigate the longitudinal effects of estrogen on mandibular growth. The rats were administered different doses of estrogen. Longitudinal micro-computed tomographic scanning, histological staining and ELISA on plasma growth hormone were performed to examine the effects of estrogen on mandibular growth. The results showed that mandibular growth was suppressed throughout the growth period by estrogen in a dose-dependent manner. In addition, long-term administration of a high dose of estrogen to the rats resulted in significant increase in growth hormone throughout the growth period, significant circularization of cell nuclei in the proliferative layer, intensely staining cartilage matrix in the subchondral bone, and significant suppression of estrogen receptor (ER) alpha and beta expression in the mandibular cartilage. However, regardless of estrogen concentration, in the posterior part of the mandibular cartilage, ER expression extended to both the hypertrophic and proliferative layers. These results indicate that estrogen suppresses mandibular growth throughout the growth period. Additionally, it influences endochondral ossification via its effect on ERs.


Asunto(s)
Cartílago , Cóndilo Mandibular , Ratas , Animales , Ratas Wistar , Cartílago/metabolismo , Cóndilo Mandibular/metabolismo , Estrógenos/metabolismo , Estrógenos/farmacología , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA