Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.629
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2322934121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38701119

RESUMEN

EPH receptors (EPHs), the largest family of tyrosine kinases, phosphorylate downstream substrates upon binding of ephrin cell surface-associated ligands. In a large cohort of endometriotic lesions from individuals with endometriosis, we found that EPHA2 and EPHA4 expressions are increased in endometriotic lesions relative to normal eutopic endometrium. Because signaling through EPHs is associated with increased cell migration and invasion, we hypothesized that chemical inhibition of EPHA2/4 could have therapeutic value. We screened DNA-encoded chemical libraries (DECL) to rapidly identify EPHA2/4 kinase inhibitors. Hit compound, CDD-2693, exhibited picomolar/nanomolar kinase activity against EPHA2 (Ki: 4.0 nM) and EPHA4 (Ki: 0.81 nM). Kinome profiling revealed that CDD-2693 bound to most EPH family and SRC family kinases. Using NanoBRET target engagement assays, CDD-2693 had nanomolar activity versus EPHA2 (IC50: 461 nM) and EPHA4 (IC50: 40 nM) but was a micromolar inhibitor of SRC, YES, and FGR. Chemical optimization produced CDD-3167, having picomolar biochemical activity toward EPHA2 (Ki: 0.13 nM) and EPHA4 (Ki: 0.38 nM) with excellent cell-based potency EPHA2 (IC50: 8.0 nM) and EPHA4 (IC50: 2.3 nM). Moreover, CDD-3167 maintained superior off-target cellular selectivity. In 12Z endometriotic epithelial cells, CDD-2693 and CDD-3167 significantly decreased EFNA5 (ligand) induced phosphorylation of EPHA2/4, decreased 12Z cell viability, and decreased IL-1ß-mediated expression of prostaglandin synthase 2 (PTGS2). CDD-2693 and CDD-3167 decreased expansion of primary endometrial epithelial organoids from patients with endometriosis and decreased Ewing's sarcoma viability. Thus, using DECL, we identified potent pan-EPH inhibitors that show specificity and activity in cellular models of endometriosis and cancer.


Asunto(s)
Inhibidores de Proteínas Quinasas , Humanos , Femenino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Endometriosis/tratamiento farmacológico , Endometriosis/metabolismo , Endometriosis/patología , ADN/metabolismo , Receptores de la Familia Eph/metabolismo , Receptores de la Familia Eph/antagonistas & inhibidores , Receptor EphA2/metabolismo , Receptor EphA2/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Movimiento Celular/efectos de los fármacos
2.
FASEB J ; 38(5): e23515, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38470367

RESUMEN

Endometriosis is a benign gynecological disease that shares some common features of malignancy. Autophagy plays vital roles in endometriosis and influences endometrial cell metastasis, and hypoxia was identified as the initiator of this pathological process through hypoxia inducible factor 1 alpha (HIF-1α). A newly discovered circular RNA FOXO3 (circFOXO3) is critical in cell autophagy, migration, and invasion of various diseases and is reported to be related to hypoxia, although its role in endometriosis remains to be elucidated up to now. In this study, a lower circFOXO3 expression in ectopic endometrium was investigated. Furthermore, we verified that circFOXO3 could regulate autophagy by downregulating the level of p53 protein to mediate the migration and invasion of human endometrial stromal cells (T HESCs). Additionally, the effects of HIF-1α on circFOXO3 and autophagy were examined in T HESCs. Notably, overexpression of HIF-1α could induce autophagy and inhibit circFOXO3 expression, whereas overexpressing of circFOXO3 under hypoxia significantly inhibited hypoxia-induced autophagy. Mechanistically, the direct combination between HIF-1α and HIF-1α-binding site on adenosine deaminase 1 acting on RNA (ADAR1) promoter increased the level of ADAR1 protein, which bind directly with circFOXO3 pre-mRNA to block the cyclization of circFOXO3. All these results support that hypoxia-mediated ADAR1 elevation inhibited the expression of circFOXO3, and then autophagy was induced upon loss of circFOXO3 via inhibition of p53 degradation, participating in the development of endometriosis.


Asunto(s)
Endometriosis , Femenino , Humanos , Endometriosis/genética , Proteína p53 Supresora de Tumor , ARN , ARN Circular/genética , Autofagia , Hipoxia
3.
FASEB J ; 38(9): e23622, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703029

RESUMEN

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Asunto(s)
Endometriosis , ARN Largo no Codificante , Proteínas de Unión al ARN , Adulto , Femenino , Humanos , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Decidua/metabolismo , Decidua/patología , Endometriosis/metabolismo , Endometriosis/genética , Endometriosis/patología , Endometrio/metabolismo , Endometrio/patología , Infertilidad Femenina/metabolismo , Infertilidad Femenina/genética , Infertilidad Femenina/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal , Células del Estroma/metabolismo , Proteínas Smad , Adulto Joven
4.
Cell Mol Life Sci ; 81(1): 237, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795132

RESUMEN

Ovarian endometriosis is a common gynecological disease, and one of its most significant symptoms is infertility. In patients with endometriosis, defects in endometrial decidualization lead to impaired endometrial receptivity and embryo implantation, thus affecting early pregnancy and women's desire to have children. However, the mechanisms underlying the development of endometriosis and its associated defective decidualization are unclear. We find that NEK2 expression is increased in the ectopic and eutopic endometrium of patients with endometriosis. Meanwhile, NEK2 interacts with FOXO1 and phosphorylates FOXO1 at Ser184, inhibiting the stability of the FOXO1 protein. Importantly, NEK2-mediated phosphorylation of FOXO1 at Ser184 promotes cell proliferation, migration, invasion and impairs decidualization. Furthermore, INH1, an inhibitor of NEK2, inhibits the growth of ectopic lesions in mouse models of endometriosis and promotes endometrial decidualization in mouse models of artificially induced decidualization. Taken together, these findings indicate that NEK2 regulates the development of endometriosis and associated disorders of decidualization through the phosphorylation of FOXO1, providing a new therapeutic target for its treatment.


Asunto(s)
Proliferación Celular , Endometriosis , Endometrio , Proteína Forkhead Box O1 , Quinasas Relacionadas con NIMA , Femenino , Endometriosis/metabolismo , Endometriosis/patología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Humanos , Animales , Fosforilación , Ratones , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/genética , Endometrio/metabolismo , Endometrio/patología , Movimiento Celular , Decidua/metabolismo , Decidua/patología , Adulto , Modelos Animales de Enfermedad
5.
Genomics ; 116(2): 110803, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38290592

RESUMEN

N6-methyladenosine (m6A) methylation is the most prevalent internal epigenetic posttranscriptional mechanism for regulating mammalian RNA. Despite recent advances in determining the biological functions of m6A methylation, its association with the pathology of ovarian endometriosis remains uncertain. Herein, we performed m6A transcriptome-wide profiling to identify key lncRNAs with m6A modification involved in ovarian endometriosis development by bioinformatics analysis. We found the total m6A level was lower in ovarian endometriosis than in normal endometrium samples, with 9663 m6A peaks associated with 8989 lncRNAs detected in ovarian endometriosis and 9902 m6A peaks associated with 9210 lncRNAs detected in normal endometrium samples. These m6A peaks were primarily enriched within AAACU motifs. Functional enrichment analysis indicated that pathways involving the regulation of adhesion and development were significantly enriched in these differentially methylated lncRNAs. The regulatory relationships among lncRNAs, microRNAs (miRNAs), and mRNAs were identified by competing endogenous RNA (ceRNA) analysis and determination of the network regulating lncRNA-mRNA expression. Several specific lncRNA, including LINC00665, LINC00937, FZD10-AS1, DIO3OS and GATA2-AS1 which were differently expressed and modified by m6A, were validated using qRT-PCR and its interaction with infiltrating immune cells was explored. Furthermore, we found LncRNA DIO3OS promotes the invasion and migration of Human endometrial stromal cells (THESCs) and ALKBH5 regulates the expression of the lncRNA DIO3OS through m6A modification in vitro. Our study firstly revealed the transcriptome-wide map of m6A modification in lncRNAs of ovarian endometriosis. These findings may enable the determination of the underlying mechanism governing the pathogenesis of ovarian endometriosis and provide theoretical basis for further deeper research on the role of m6A in the development of ovarian endometriosis.


Asunto(s)
Endometriosis , ARN Largo no Codificante , Femenino , Humanos , Animales , ARN Largo no Codificante/genética , Transcriptoma , Endometriosis/genética , Adenosina , Metilación , Mamíferos
6.
J Cell Physiol ; 239(4): e31188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38192157

RESUMEN

Extracellular vesicles (EVs) play a key role in various diseases. However, their effect on endometriosis (EMs)-associated infertility is poorly understood. We co-cultured EVs from the female vaginal secretions with human sperm and also generated a mouse model of EMs by allogenic transplant to explore the effect of EVs on fertility. EVs from individuals with EMs-associated infertility (E-EVs) significantly inhibited the total motility (26.46% vs. 47.1%), progressive motility (18.78% vs. 41.06%), linear velocity (21.98 vs. 41.91 µm/s) and the acrosome reaction (AR) rate (5% vs. 22.3%) of human sperm in contrast to the control group (PBS). Furthermore, E-EVs dose-dependently decreased the intracellular Ca2+ ([Ca2+]i), a pivotal regulator of sperm function. Conversely, healthy women (H-EVs) increased human sperm motion parameters, the AR rate, and sperm [Ca2+]i. Importantly, the mouse model of EMs confirmed that E-EVs further decreased the conception rate and the mean number of embryo implantations (7.6 ± 3.06 vs. 4.5 ± 3.21) compared with the control mice by inducing the production of inflammatory cytokines leading to a Th17/Treg imbalance. H-EVs could restore impaired fertility by restoring the Th17/Treg balance. We determined the impact of EVs derived from the female genital tract on human sperm function and studied the possible mechanisms by which it affects fertility. Our findings provide a novel rationale to ameliorate EMs-associated infertility.


Asunto(s)
Endometriosis , Vesículas Extracelulares , Infertilidad Femenina , Motilidad Espermática , Espermatozoides , Vagina , Animales , Femenino , Humanos , Masculino , Ratones , Endometriosis/complicaciones , Fertilidad , Ratones Endogámicos BALB C , Espermatozoides/inmunología , Espermatozoides/fisiología , Linfocitos T Reguladores , Vagina/fisiopatología , Infertilidad Femenina/etiología
7.
Immunology ; 172(3): 469-485, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38544333

RESUMEN

Endometriosis is defined as an oestrogen-dependent and inflammatory gynaecological disease of which the pathogenesis remains unclear. This study aimed to investigate the cellular heterogeneity and reveal the effect of CD8+ T cells on the progress of endometriosis. Three ovarian endometriosis patients were collected, and single-cell RNA sequencing (scRNA-seq) progressed and delineated the cellular landscape of endometriosis containing five cell clusters. The endometrial cells (EMCs) were the major component, of which the mesenchymal cells were preponderant and characterized with increased inflammation and oestrogen synthesis in endometriosis. The proportion of T cells, mainly CD8+ T cells rather than CD4+, was reduced in endometriotic lesions, and the cytokines and cytotoxicity of ectopic T cells were depressed. CD8+ T cells depressed the proliferation of ESCs through inhibiting CDK1/CCNB1 pathway to arrest the cell cycle and triggered inflammation through activating STAT1 pathway. Correspondingly, the coculture with ESCs resulted in the dysfunction of CD8+ T cells through upregulating STAT1/PDCD1 pathway and glycolysis-promoted metabolism reprogramming. The endometriotic lesions were larger in nude mouse models with T-cell deficiency than the normal mouse models. The inhibition of T cells via CD90.2 or CD8A antibody increased the endometriotic lesions in mouse models, and the supplement of T cells to nude mouse models diminished the lesion sizes. In conclusion, this study revealed the global cellular variation of endometriosis among which the cellular count and physiology of EMCs and T cells were significantly changed. The depressed cytotoxicity and aberrant metabolism of CD8+ T cells were induced by ESCs with the activation of STAT1/PDCD1 pathway resulting in immune survival to promote endometriosis.


Asunto(s)
Linfocitos T CD8-positivos , Endometriosis , Factor de Transcripción STAT1 , Células del Estroma , Endometriosis/inmunología , Endometriosis/patología , Endometriosis/metabolismo , Femenino , Linfocitos T CD8-positivos/inmunología , Humanos , Animales , Ratones , Células del Estroma/inmunología , Células del Estroma/metabolismo , Factor de Transcripción STAT1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Endometrio/inmunología , Endometrio/patología , Modelos Animales de Enfermedad , Transducción de Señal , Ratones Desnudos , Adulto , Proteína Quinasa CDC2/metabolismo , Técnicas de Cocultivo , Citocinas/metabolismo
8.
Int J Cancer ; 154(11): 1948-1954, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38323658

RESUMEN

Endometriosis has been reported in epidemiological studies to be associated with certain types of cancer. However, the presence of reverse causality and residual confounding due to common risk factors introduces uncertainty regarding the extent to which endometriosis itself contributes to the development of cancer. We performed the Mendelian randomization (MR) to investigate the causal associations between endometriosis and 34 different types of cancers. The results of the inverse-variance-weighted (IVW) model suggested that genetic predisposition to endometriosis was causally associated with an increased risk for ovarian cancer (OR = 3.2913; p-value = .0320). The genetic liabilities to endometriosis had causal associations with the decreased risk for skin cancer (OR = 0.9973; p-value = .0219), hematological cancer (OR = 0.9953; p-value = .0175) and ER- breast cancer (OR = 0.6960; p-value = .0381). The causal association of the above combinations were robust by test of heterogeneity and pleiotropy. Together, our study suggests that endometriosis had causal effect on cancer risk.


Asunto(s)
Neoplasias de la Mama , Endometriosis , Femenino , Humanos , Endometriosis/complicaciones , Endometriosis/epidemiología , Endometriosis/genética , Análisis de la Aleatorización Mendeliana , Causalidad , Factores de Riesgo , Neoplasias de la Mama/etiología , Neoplasias de la Mama/genética , Estudio de Asociación del Genoma Completo
9.
Curr Issues Mol Biol ; 46(4): 3579-3594, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38666954

RESUMEN

Although endometriosis is a benign disease, it is associated with cancer-related gene mutations, such as KRAS or PIK3CA. Endometriosis is associated with elevated levels of inflammatory factors that cause severe pain. In a previous study, we demonstrated that KRAS or PIK3CA mutations are associated with the activation of cell proliferation, migration, and invasion in a patient-derived immortalized endometriotic cell line, HMOsisEC10. In this study, we investigated the effects of these mutations on progesterone resistance. Since the HMOsisEC10 had suppressed progesterone receptor (PR) expression, we transduced PR-B to HMOsisEc10 cell lines including KRAS mutant and PIK3CA mutant cell lines. We conducted a migration assay, invasion assay, and MTT assay using dienogest and medroxyprogestrone acetate. All cell lines showed progesterone sensitivity with or without mutations. Regarding inflammatory factors, real-time quantitative RT-PCR revealed that the KRAS mutation cell line exhibited no suppression of Cox-2 and mPGES-1 on progesterone treatment, whereas IL-6, MCP-1, VEGF, and CYP19A1 were significantly suppressed by progesterone in both mutated cell lines. Our results suggest that KRAS mutation and PIK3CA mutation in endometriotic cells may not be associated with progesterone resistance in terms of aggressiveness. However, KRAS mutations may be associated with progesterone resistance in the context of pain.

10.
Apoptosis ; 29(5-6): 757-767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38358580

RESUMEN

Autophagy has emerged as an important process of cell metabolism. With continuous in-depth research on autophagy, TFEB has been a key transcription factor regulating autophagy levels in recent years. Studies have established that TFEB regulates autophagy and apoptosis in various diseases. However, the relationship between TFEB and the pathogenesis of endometriosis remains unclear. This study aimed to investigate the effect of TFEB on the mechanism of endometriosis progression. The results showed that TFEB and autophagy-related protein LC3 are highly expressed in ectopic endometrium of patients with endometriosis, overexpression of TFEB in cultured human endometrial stromal cells (HESCs) by lentivirus not only promoted autophagy but also inhibited apoptosis. In addition, the migration and invasion ability of HESCs were enhanced by TFEB overexpression. Furthermore, inhibiting autophagy with specific inhibitors can attenuate migration and invasion of HESCs induced by TFEB. The rat models of endometriosis show that TFEB knockdown can suppress lesion growth in vivo. Our results suggest that autophagy may be involved in the progression mechanism of endometriosis, and the mechanism of autophagy disorder in endometriosis is probably related to TFEB. TFEB may be a key molecule in promoting endometriosis.


Asunto(s)
Apoptosis , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Movimiento Celular , Endometriosis , Endometrio , Adulto , Animales , Femenino , Humanos , Ratas , Apoptosis/genética , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Movimiento Celular/genética , Endometriosis/metabolismo , Endometriosis/patología , Endometriosis/genética , Endometrio/metabolismo , Endometrio/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Ratas Sprague-Dawley , Células del Estroma/metabolismo , Células del Estroma/patología
11.
Mol Med ; 30(1): 64, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760723

RESUMEN

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS: Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS: Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION: These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.


Asunto(s)
Endometriosis , Glutaminasa , Glutamina , Estabilidad del ARN , ARN Largo no Codificante , Proteínas de Unión al ARN , Femenino , Humanos , Glutaminasa/metabolismo , Glutaminasa/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Endometriosis/metabolismo , Endometriosis/genética , Endometriosis/patología , Glutamina/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proliferación Celular , Adulto , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica , Unión Proteica
12.
Biochem Biophys Res Commun ; 692: 149338, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38043156

RESUMEN

Resveratrol is involved in regulating ferroptosis, but its role in Endometriosis (EMS) is not clear. In this study, we aim to investigate the effect of ferroptosis and resveratrol intervention in the pathogenesis of EMS cyst. Cell proliferation, migration, and oxidative stress level were analyzed. The interaction of miR-21-3p and p53 was analyzed by dual luciferase assay. The interaction between p53 and SLC7A11 were analyzed by chromatin immunoprecipitation (CHIP). The miR-21-3p, GPX4, ACSL4, FTH1, p53, SLC7A11, Ptgs2 and Chac1 expression were analyzed by RT-qPCR or Western blot. The Fe3+ deposition and miR-21-3p, GPX4, FTH1 and SLC7A11 expressions were increased, and ACSL4, p53, Ptgs2 and Chac1 expression were decreased in EMS patients. Resveratrol inhibited migration, induced Ptgs2 and Chac1 expression in EESCs. Overexpression of miR-21-3p inhibited p53, Ptgs2 and Chac1 expression, and promoted SLC7A11 expression, which was reversed by resveratrol. miR-21-3p bound to p53, which interacted with SLC7A11. Resveratrol promoted Ptgs2 and Chac1 expression in the sh-p53 EESCs. Resveratrol reduced miR-21-3p and SLC7A11 expressions, and increased p53, Ptgs2 and Chac1 expressions, and Fe3+ deposition in the lesion tissues of EMS mice, which were reversed by miR-21-3p mimics. Resveratrol activated p53/SLC7A11 pathway by down-regulating miR-21-3p to promote ferroptosis and prevent the development of EMS.


Asunto(s)
Endometriosis , Ferroptosis , MicroARNs , Femenino , Humanos , Animales , Ratones , Ciclooxigenasa 2/genética , Endometriosis/genética , Resveratrol/farmacología , Proteína p53 Supresora de Tumor/genética , Transducción de Señal , MicroARNs/genética , Sistema de Transporte de Aminoácidos y+/genética
13.
Breast Cancer Res Treat ; 204(2): 359-365, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38141056

RESUMEN

PURPOSE: Given the relatively high incidence of both endometriosis and breast cancer, investigating the potential connection between these gynecological diseases is of substantial clinical significance. However, there is no clear consensus in the literature on the extent to which the risk of breast cancer is increased in patients with endometriosis. Therefore, we conducted a large-scale observational study investigating the association between endometriosis and breast cancer risk. METHODS: This study included women aged ≥ 18 years with an initial endometriosis diagnosis from one of 315 office-based gynecologists in Germany between January 2005 and December 2021. Non-endometriosis patients were matched 1:1 to patients with endometriosis based on age, index year, average yearly consultation frequency, and predefined co-diagnoses within 12 months before or on the index date, including obesity and benign breast disorders. The association between endometriosis and the 10-year incidence of breast cancer was studied using Kaplan-Meier curves and log-rank tests. Finally, a univariable Cox regression analysis was conducted to assess the association between endometriosis and breast cancer. RESULTS: Over a follow-up period of up to 10 years, no significant difference was observed between the endometriosis (2.4%) and the matched non-endometriosis group (2.5%) with regard to breast cancer diagnoses. Furthermore, the regression analysis revealed no significant association between endometriosis and subsequent breast cancer. CONCLUSION: In summary, our comprehensive 10-year study involving a substantial sample of women indicates that endometriosis is not significantly associated with an increased risk of subsequent breast cancer.


Asunto(s)
Neoplasias de la Mama , Endometriosis , Femenino , Humanos , Endometriosis/complicaciones , Endometriosis/epidemiología , Endometriosis/diagnóstico , Estudios Retrospectivos , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/epidemiología , Riesgo , Alemania/epidemiología
14.
BMC Med ; 22(1): 283, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972981

RESUMEN

BACKGROUND: Chronic pelvic pain (CPP) is a multifactorial syndrome that can substantially affect a patient's quality of life. Endometriosis is one cause of CPP, and alterations of the immune and microbiome profiles have been observed in patients with endometriosis. The objective of this pilot study was to investigate differences in the vaginal and gastrointestinal microbiomes and cervicovaginal immune microenvironment in patients with CPP and endometriosis diagnosis compared to those with CPP without endometriosis and no CPP. METHODS: Vaginal swabs, rectal swabs, and cervicovaginal lavages (CVL) were collected among individuals undergoing gynecologic laparoscopy. Participants were grouped based on patients seeking care for chronic pain and/or pathology results: CPP and endometriosis (CPP-Endo) (n = 35), CPP without endometriosis (n = 23), or patients without CPP or endometriosis (controls) (n = 15). Sensitivity analyses were performed on CPP with endometriosis location, stage, and co-occurring gynecologic conditions (abnormal uterine bleeding, fibroids). 16S rRNA sequencing was performed to profile the microbiome, and a panel of soluble immune mediators was quantified using a multiplex assay. Statistical analysis was conducted with SAS, R, MicrobiomeAnalyst, MetaboAnalyst, and QIIME 2. RESULTS: Significant differences were observed between participants with CPP alone, CPP-Endo, and surgical controls for body mass index, ethnicity, diagnosis of ovarian cysts, and diagnosis of fibroids. In rectal microbiome analysis, both CPP alone and CPP-Endo exhibited lower alpha diversity than controls, and both CPP groups revealed enrichment of irritable bowel syndrome-associated bacteria. CPP-Endo exhibited an increased abundance of vaginal Streptococcus anginosus and rectal Ruminococcus. Patients with CPP and endometrioma (s) demonstrated increased vaginal Streptococcus, Lactobacillus, and Prevotella compared to other endometriosis sites. Further, abnormal uterine bleeding was associated with an increased abundance of bacterial vaginosis-associated bacteria. Immunoproteomic profiles were distinctly clustered by CPP alone and CPP-Endo compared to controls. CPP-Endo was enriched in TNF⍺, MDC, and IL-1⍺. CONCLUSIONS: Vaginal and rectal microbiomes were observed to differ between patients with CPP alone and CPP with endometriosis, which may be useful in personalized treatment for individuals with CPP and endometriosis from those with other causes of CPP. Further investigation is warranted in patients with additional co-occurring conditions, such as AUB/fibroids, which add additional complexity to these conditions and reveal the enrichment of distinct pathogenic bacteria in both mucosal sites. This study provides foundational microbiome-immunoproteomic knowledge related to chronic pelvic pain, endometriosis, and co-occurring gynecologic conditions that can help improve the treatment of patients seeking care for pain.


Asunto(s)
Dolor Crónico , Endometriosis , Microbiota , Dolor Pélvico , Vagina , Humanos , Femenino , Vagina/microbiología , Adulto , Dolor Pélvico/microbiología , Proyectos Piloto , Endometriosis/microbiología , Dolor Crónico/microbiología , Recto/microbiología , ARN Ribosómico 16S/genética , Microbioma Gastrointestinal , Persona de Mediana Edad , Inflamación/microbiología
15.
Biol Reprod ; 110(1): 5-13, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37930185

RESUMEN

Signal transducer and activator of transcription 3 (STAT3), when phosphorylated at tyrosine 705, plays an important role in endometrial stromal cell decidualization and the receptivity of the endometrial epithelium during embryo implantation. However, the function of phosphorylated STAT3 (p-STAT3) in normal uterine receptivity is distinct from that in adenomyosis and endometriosis. In normal pregnancy, STAT3 phosphorylation in the endometrial epithelium determines the success of embryo implantation by regulating uterine receptivity. Additionally, p-STAT3 promotes cellular proliferation and differentiation during endometrial decidualization, which is crucial for embryonic development. In contrast, excessive STAT3 phosphorylation occurs in adenomyosis and endometriosis, which may lead to disease progression. Therefore, achieving a delicate balance in STAT3 activation is crucial. This review aimed to focus on the current understanding and knowledge gaps regarding the control of p-STAT3 activity in normal and pathological endometrial processes. This topic is important because precise control of p-STAT3 production could alleviate the symptoms of adenomyosis and endometriosis, improve endometrial receptivity, and potentially mitigate infertility without compromising normal fertility processes.


Asunto(s)
Adenomiosis , Endometriosis , Embarazo , Femenino , Humanos , Endometriosis/etiología , Endometriosis/patología , Factor de Transcripción STAT3/metabolismo , Endometrio/metabolismo , Implantación del Embrión/fisiología , Fertilidad
16.
Biol Reprod ; 110(6): 1191-1200, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38738758

RESUMEN

In this brief review, we discuss our efforts to validate nanoplatforms for imaging and treatment of endometriosis. We specifically highlight our use of nonhuman primates and primate tissues in this effort. Endometriosis is a painful disorder of women and nonhuman primates where endometrium-like tissue exists outside of the uterus. There are no reliable, specific, and noninvasive diagnostic tests for endometriosis. Laparoscopic imaging remains the gold standard for identifying small endometriotic lesions in both women and monkeys. Visualizing and surgically removing microscopic lesions remains a clinical challenge. To address this challenge, we have created nanoparticle reagents that, when administered intravenously, enter endometriotic lesions both passively and by targeting endometriotic cells. The particles can carry payloads, including near-infrared fluorescent dyes and magnetic nanoparticles. These agents can be used for imaging and thermal ablation of diseased tissues. We evaluated this approach on macaque endometriotic cells, human and macaque endometrium engrafted into immunodeficient mice, in endometrium subcutaneously autografted in macaques, and in rhesus monkeys with spontaneous endometriosis. Employing these models, we report that nanoplatform-based reagents can improve imaging and provide thermal ablation of endometriotic tissues.


Asunto(s)
Endometriosis , Nanopartículas , Endometriosis/diagnóstico por imagen , Endometriosis/veterinaria , Endometriosis/patología , Femenino , Animales , Humanos
17.
Biol Reprod ; 110(5): 854-865, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38386960

RESUMEN

Endometriosis and adenomyosis are two similar gynecological diseases that are characterized by ectopic implantation and the growth of the endometrial tissue. Previous studies have reported that they share a common pathophysiology in some respects, such as a similar cellular composition and resistance to the progestogen of lesions, but their underlying mechanisms remain elusive. Emerging single-cell ribonucleic acid sequencing (scRNA-seq) technologies allow for the dissection of single-cell transcriptome mapping to reveal the etiology of diseases at the level of the individual cell. In this review, we summarized the published findings in research on scRNA-seq regarding the cellular components and molecular profiles of diverse lesions. They show that epithelial cell clusters may be the vital progenitors of endometriosis and adenomyosis. Subclusters of stromal cells, such as endometrial mesenchymal stem cells and fibroblasts, are also involved in the occurrence of endometriosis and adenomyosis, respectively. Moreover, CD8+ T cells, natural killer cells, and macrophages exhibit a deficiency in clearing the ectopic endometrial cells in the immune microenvironment of endometriosis. It seems that the immune responses are activated in adenomyosis. Understanding the immune characteristics of adenomyosis still needs further exploration. Finally, we discuss the application of findings from scRNA-seq for clinical diagnosis and treatment. This review provides fresh insights into the pathogenesis of endometriosis and adenomyosis as well as the therapeutic targets at the cellular level.


Asunto(s)
Adenomiosis , Endometriosis , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Endometriosis/genética , Endometriosis/etiología , Endometriosis/patología , Femenino , Adenomiosis/genética , Adenomiosis/etiología , Humanos , Endometrio/patología , Endometrio/metabolismo , Transcriptoma
18.
J Transl Med ; 22(1): 445, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735939

RESUMEN

BACKGROUND: Endometriosis, characterized by the presence of active endometrial-like tissues outside the uterus, causes symptoms like dysmenorrhea and infertility due to the fibrosis of endometrial cells, which involves excessive deposition of extracellular matrix (ECM) proteins. Ubiquitination, an important post-transcriptional modification, regulates various biological processes in human diseases. However, its role in the fibrosis process in endometriosis remains unclear. METHODS: We employed multi-omics approaches on two cohorts of endometriosis patients with 39 samples. GO terms and KEGG pathways enrichment analyses were used to investigate the functional changes involved in endometriosis. Pearson's correlation coefficient analysis was conducted to explore the relationship between global proteome and ubiquitylome in endometriosis. The protein expression levels of ubiquitin-, fibrosis-related proteins, and E3 ubiquitin-protein ligase TRIM33 were validated via Western blot. Transfecting human endometrial stroma cells (hESCs) with TRIM33 small interfering RNA (siRNA) in vitro to explore how TRIM33 affects fibrosis-related proteins. RESULTS: Integration of proteomics and transcriptomics showed genes with concurrent change of both mRNA and protein level which involved in ECM production in ectopic endometria. Ubiquitylomics distinguished 1647 and 1698 ubiquitinated lysine sites in the ectopic (EC) group compared to the normal (NC) and eutopic (EU) groups, respectively. Further multi-omics integration highlighted the essential role of ubiquitination in key fibrosis regulators in endometriosis. Correlation analysis between proteome and ubiquitylome showed correlation coefficients of 0.32 and 0.36 for ubiquitinated fibrosis proteins in EC/NC and EC/EU groups, respectively, indicating positive regulation of fibrosis-related protein expression by ubiquitination in ectopic lesions. We identified ubiquitination in 41 pivotal proteins within the fibrosis-related pathway of endometriosis. Finally, the elevated expression of TGFBR1/α-SMA/FAP/FN1/Collagen1 proteins in EC tissues were validated across independent samples. More importantly, we demonstrated that both the mRNA and protein levels of TRIM33 were reduced in endometriotic tissues. Knockdown of TRIM33 promoted TGFBR1/p-SMAD2/α-SMA/FN1 protein expressions in hESCs but did not significantly affect Collagen1/FAP levels, suggesting its inhibitory effect on fibrosis in vitro. CONCLUSIONS: This study, employing multi-omics approaches, provides novel insights into endometriosis ubiquitination profiles and reveals aberrant expression of the E3 ubiquitin ligase TRIM33 in endometriotic tissues, emphasizing their critical involvement in fibrosis pathogenesis and potential therapeutic targets.


Asunto(s)
Endometriosis , Fibrosis , Proteómica , Ubiquitinación , Humanos , Femenino , Endometriosis/metabolismo , Endometriosis/patología , Endometriosis/genética , Adulto , Ontología de Genes , Proteoma/metabolismo , Multiómica
19.
Hum Reprod ; 39(1): 83-92, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37879845

RESUMEN

STUDY QUESTION: What are the attitudes and perceptions towards endocrine endometriosis therapy? SUMMARY ANSWER: Among the study population, endocrine endometriosis therapies are associated with negative mental images and emotions and there seems to be a pre-therapeutic information deficit on the part of physicians. WHAT IS KNOWN ALREADY: Endocrine therapies, as the current standard of conservative endometriosis treatment, have good efficacy and improve symptoms and quality of life in most patients. Nevertheless, clinical practice repeatedly shows rejection on the part of patients, which may result in reduced compliance and discontinuation of therapy. STUDY DESIGN, SIZE, DURATION: Cross-sectional study among endometriosis patients using a multilingual questionnaire distributed via the most popular social media channels between November 2020 and February 2021. A total of 3348 women participated in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS: Based on a pilot phase, an international, multilingual online survey was conducted among women affected by endometriosis. The questionnaire included free-word associations and questions about personal medical history, source of information, and demographic data. Mental representations were detected based on modules of the co-occurrence network of associations. MAIN RESULTS AND THE ROLE OF CHANCE: Six modules with different dominant emotional labels emerged from the confluence of associations to endocrine endometriosis therapy mentioned by participants. Five modules reflected negative mental associations, with the most frequently mentioned words being 'side effects', 'pain', 'ineffective', 'depression', and 'uncertainty'. Of the 12 most frequently selected emotions, only 'optimistic' was positive. Side effects affecting mental health are the most important reason for deciding against endocrine therapy in our survey population. Twenty-seven percent of respondents reported knowing little about endocrine therapies for endometriosis. Social media are the most frequently used sources of information and were rated as the most useful. LIMITATIONS, REASONS FOR CAUTION: By translating the questionnaire, questions might have been understood differently depending on the language. By using social media channels for distribution, digitally literate patients were targeted. The survey population might not be representative as patients who are critical/unhappy with therapy are more likely to seek advice from peer groups. WIDER IMPLICATIONS OF THE FINDINGS: The findings of this study replicate the findings of a recent survey in three European countries. Given the prevalence of endometriosis and the few emerging pharmaceutical alternatives, these data point to a growing need for further research and development of non-hormonal drugs for treating endometriosis. Most endometriosis patients are young and digitally literate, and much information is obtained from alternative sources, such as social media. Careful education before starting therapy should be taken seriously, and patients' concerns should be addressed individually by health care providers. This could help reduce misunderstanding and misinformation and improve treatment adherence and satisfaction. STUDY FUNDING/COMPETING INTEREST(S): There is no funding or conflict of interest to declare. TRIAL REGISTRATION NUMBER: The trial is not registered at any trial registry.


Asunto(s)
Endometriosis , Humanos , Femenino , Endometriosis/complicaciones , Calidad de Vida , Estudios Transversales , Dolor , Encuestas y Cuestionarios
20.
Hum Reprod ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775332

RESUMEN

STUDY QUESTION: What are the sonographic and clinical findings in women diagnosed with external and internal adenomyosis by ultrasound? SUMMARY ANSWER: Patients with external and internal adenomyosis phenotypes, diagnosed by ultrasound, present differences in sonographic features of the disease and demographic characteristics including age, parity, and association with deep endometriosis (DE) and leiomyomas. WHAT IS KNOWN ALREADY: Two different phenotypes of adenomyosis have been described based on the anatomical location of adenomyotic lesions in the myometrium, suggesting that adenomyosis affecting the inner myometrium and that affecting the external myometrial layer may have distinct origins. STUDY DESIGN, SIZE, DURATION: A cross-sectional study including 505 patients with a sonographic diagnosis of adenomyosis was performed between January 2021 and December 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women sonographically diagnosed with adenomyosis in a tertiary referral hospital that serves as a national reference center for endometriosis were included over a 2-year period. Patients were divided into two groups (internal and external adenomyosis) according to the myometrial layer affected by adenomyosis. We compared sonographic and clinical outcomes including a multivariate analysis between the two groups. MAIN RESULTS AND THE ROLE OF CHANCE: According to ultrasound findings, 353 (69.9%) patients presented with internal adenomyosis, while 152 (30.1%) presented with external adenomyosis. Women with internal adenomyosis were significantly older and less frequently nulliparous compared to those with external adenomyosis. Sonographically, internal adenomyosis appeared diffusely, it had a greater number of adenomyosis features, it presented a globular morphology of the uterus more frequently, and it coexisted with leiomyomas more frequently, compared to external adenomyosis. Conversely, the presence of translesional vascularity and associated DE were more common among the external adenomyosis group. No significant differences were found between internal and external adenomyosis groups regarding pain, heavy menstrual bleeding, spotting, or infertility. In the multivariate analysis, nulliparity, the presence of leiomyomas, and the presence of DE were independently associated with adenomyosis phenotypes (the presence of DE and nulliparity increased the risk of external adenomyosis, whereas the presence of leiomyomas was a risk factor for internal adenomyosis). Considering the impact of hormonal treatment, we found that the number of ultrasound adenomyosis criteria was significantly greater in patients without hormonal treatment. Non-treated patients more commonly presented dysmenorrhea or bleeding-associated pain and heavy menstrual bleeding than women on hormonal treatment, although there were no significant differences according to adenomyosis phenotypes. LIMITATIONS, REASONS FOR CAUTION: As the population was selected from the Endometriosis Unit of a tertiary center, there may be patient selection bias, given the high prevalence of individuals with associated endometriosis, previous endometriosis-related surgery, and/or receiving hormonal treatment. WIDER IMPLICATIONS OF THE FINDINGS: Transvaginal ultrasound is the most available and cost-effective tool for the diagnosis of adenomyosis. Adenomyosis phenotypes based on ultrasound findings may be key in achieving an accurate diagnosis and in decision-making regarding the most adequate therapeutic strategy for the management of patients with adenomyosis. Determination of the sonographic features associated with symptoms could help in the evaluation of treatment response. STUDY FUNDING/COMPETING INTEREST(S): No funding was obtained for this study and there are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA