Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.655
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 91: 651-678, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35287476

RESUMEN

The endoplasmic reticulum (ER) is the site of membrane protein insertion, folding, and assembly in eukaryotes. Over the past few years, a combination of genetic and biochemical studies have implicated an abundant factor termed the ER membrane protein complex (EMC) in several aspects of membrane protein biogenesis. This large nine-protein complex is built around a deeply conserved core formed by the EMC3-EMC6 subcomplex. EMC3 belongs to the universally conserved Oxa1 superfamily of membrane protein transporters, whereas EMC6 is an ancient, widely conserved obligate partner. EMC has an established role in the insertion of transmembrane domains (TMDs) and less understood roles during the later steps of membrane protein folding and assembly. Several recent structures suggest hypotheses about the mechanism(s) of TMD insertion by EMC, with various biochemical and proteomics studies beginning to reveal the range of EMC's membrane protein substrates.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Biosíntesis de Proteínas , Dominios Proteicos , Pliegue de Proteína
2.
Cell ; 184(9): 2412-2429.e16, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33852913

RESUMEN

Cellular versatility depends on accurate trafficking of diverse proteins to their organellar destinations. For the secretory pathway (followed by approximately 30% of all proteins), the physical nature of the vessel conducting the first portage (endoplasmic reticulum [ER] to Golgi apparatus) is unclear. We provide a dynamic 3D view of early secretory compartments in mammalian cells with isotropic resolution and precise protein localization using whole-cell, focused ion beam scanning electron microscopy with cryo-structured illumination microscopy and live-cell synchronized cargo release approaches. Rather than vesicles alone, the ER spawns an elaborate, interwoven tubular network of contiguous lipid bilayers (ER exit site) for protein export. This receptacle is capable of extending microns along microtubules while still connected to the ER by a thin neck. COPII localizes to this neck region and dynamically regulates cargo entry from the ER, while COPI acts more distally, escorting the detached, accelerating tubular entity on its way to joining the Golgi apparatus through microtubule-directed movement.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Microtúbulos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transporte Biológico Activo , Células HeLa , Humanos , Transporte de Proteínas
3.
Cell ; 184(14): 3689-3701.e22, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34139175

RESUMEN

The cholesterol-sensing protein Scap induces cholesterol synthesis by transporting membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) from the endoplasmic reticulum (ER) to the Golgi apparatus for proteolytic activation. Transport requires interaction between Scap's two ER luminal loops (L1 and L7), which flank an intramembrane sterol-sensing domain (SSD). Cholesterol inhibits Scap transport by binding to L1, which triggers Scap's binding to Insig, an ER retention protein. Here we used cryoelectron microscopy (cryo-EM) to elucidate two structures of full-length chicken Scap: (1) a wild-type free of Insigs and (2) mutant Scap bound to chicken Insig without cholesterol. Strikingly, L1 and L7 intertwine tightly to form a globular domain that acts as a luminal platform connecting the SSD to the rest of Scap. In the presence of Insig, this platform undergoes a large rotation accompanied by rearrangement of Scap's transmembrane helices. We postulate that this conformational change halts Scap transport of SREBPs and inhibits cholesterol synthesis.


Asunto(s)
Colesterol/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/metabolismo , Pollos , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/ultraestructura , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Relación Estructura-Actividad
4.
Annu Rev Biochem ; 89: 637-666, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569522

RESUMEN

The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.


Asunto(s)
Retículo Endoplásmico/metabolismo , Evolución Molecular , Duplicación de Gen , Saccharomyces cerevisiae/metabolismo , Selección Genética , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Antiportadores/genética , Antiportadores/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Retículo Endoplásmico/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Células Eucariotas/citología , Células Eucariotas/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingosina N-Aciltransferasa/genética , Esfingosina N-Aciltransferasa/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
5.
Cell ; 183(2): 474-489.e17, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33035451

RESUMEN

Mg2+ is the most abundant divalent cation in metazoans and an essential cofactor for ATP, nucleic acids, and countless metabolic enzymes. To understand how the spatio-temporal dynamics of intracellular Mg2+ (iMg2+) are integrated into cellular signaling, we implemented a comprehensive screen to discover regulators of iMg2+ dynamics. Lactate emerged as an activator of rapid release of Mg2+ from endoplasmic reticulum (ER) stores, which facilitates mitochondrial Mg2+ (mMg2+) uptake in multiple cell types. We demonstrate that this process is remarkably temperature sensitive and mediated through intracellular but not extracellular signals. The ER-mitochondrial Mg2+ dynamics is selectively stimulated by L-lactate. Further, we show that lactate-mediated mMg2+ entry is facilitated by Mrs2, and point mutations in the intermembrane space loop limits mMg2+ uptake. Intriguingly, suppression of mMg2+ surge alleviates inflammation-induced multi-organ failure. Together, these findings reveal that lactate mobilizes iMg2+ and links the mMg2+ transport machinery with major metabolic feedback circuits and mitochondrial bioenergetics.


Asunto(s)
Retículo Endoplásmico/metabolismo , Ácido Láctico/metabolismo , Magnesio/metabolismo , Animales , Células COS , Calcio/metabolismo , Señalización del Calcio/fisiología , Chlorocebus aethiops , Retículo Endoplásmico/fisiología , Femenino , Células HeLa , Células Hep G2 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo
6.
Cell ; 180(6): 1160-1177.e20, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32160526

RESUMEN

Selective autophagy of organelles is critical for cellular differentiation, homeostasis, and organismal health. Autophagy of the ER (ER-phagy) is implicated in human neuropathy but is poorly understood beyond a few autophagosomal receptors and remodelers. By using an ER-phagy reporter and genome-wide CRISPRi screening, we identified 200 high-confidence human ER-phagy factors. Two pathways were unexpectedly required for ER-phagy. First, reduced mitochondrial metabolism represses ER-phagy, which is opposite of general autophagy and is independent of AMPK. Second, ER-localized UFMylation is required for ER-phagy to repress the unfolded protein response via IRE1α. The UFL1 ligase is brought to the ER surface by DDRGK1 to UFMylate RPN1 and RPL26 and preferentially targets ER sheets for degradation, analogous to PINK1-Parkin regulation during mitophagy. Our data provide insight into the cellular logic of ER-phagy, reveal parallels between organelle autophagies, and provide an entry point to the relatively unexplored process of degrading the ER network.


Asunto(s)
Autofagia/fisiología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Autofagia/genética , Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Células HCT116 , Células HEK293 , Células HeLa , Homeostasis , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo , Proteínas Ribosómicas/metabolismo , Respuesta de Proteína Desplegada/fisiología
7.
Cell ; 180(1): 135-149.e14, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31883797

RESUMEN

Autophagy is a conserved catabolic homeostasis process central for cellular and organismal health. During autophagy, small single-membrane phagophores rapidly expand into large double-membrane autophagosomes to encapsulate diverse cargoes for degradation. It is thought that autophagic membranes are mainly derived from preformed organelle membranes. Instead, here we delineate a pathway that expands the phagophore membrane by localized phospholipid synthesis. Specifically, we find that the conserved acyl-CoA synthetase Faa1 accumulates on nucleated phagophores and locally activates fatty acids (FAs) required for phagophore elongation and autophagy. Strikingly, using isotopic FA tracing, we directly show that Faa1 channels activated FAs into the synthesis of phospholipids and promotes their assembly into autophagic membranes. Indeed, the first committed steps of de novo phospholipid synthesis at the ER, which forms stable contacts with nascent autophagosomes, are essential for autophagy. Together, our work illuminates how cells spatially tune synthesis and flux of phospholipids for autophagosome biogenesis during autophagy.


Asunto(s)
Autofagia/fisiología , Ácidos Grasos/metabolismo , Fagosomas/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Membrana Celular/metabolismo , Coenzima A Ligasas/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Fagosomas/fisiología , Fosfolípidos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Cell ; 178(3): 521-535.e23, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31348885

RESUMEN

Intracellular accumulation of misfolded proteins causes toxic proteinopathies, diseases without targeted therapies. Mucin 1 kidney disease (MKD) results from a frameshift mutation in the MUC1 gene (MUC1-fs). Here, we show that MKD is a toxic proteinopathy. Intracellular MUC1-fs accumulation activated the ATF6 unfolded protein response (UPR) branch. We identified BRD4780, a small molecule that clears MUC1-fs from patient cells, from kidneys of knockin mice and from patient kidney organoids. MUC1-fs is trapped in TMED9 cargo receptor-containing vesicles of the early secretory pathway. BRD4780 binds TMED9, releases MUC1-fs, and re-routes it for lysosomal degradation, an effect phenocopied by TMED9 deletion. Our findings reveal BRD4780 as a promising lead for the treatment of MKD and other toxic proteinopathies. Generally, we elucidate a novel mechanism for the entrapment of misfolded proteins by cargo receptors and a strategy for their release and anterograde trafficking to the lysosome.


Asunto(s)
Benzamidas/metabolismo , Compuestos Bicíclicos con Puentes/farmacología , Heptanos/farmacología , Lisosomas/efectos de los fármacos , Proteínas de Transporte Vesicular/metabolismo , Factor de Transcripción Activador 6/metabolismo , Animales , Benzamidas/química , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/uso terapéutico , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Mutación del Sistema de Lectura , Heptanos/uso terapéutico , Humanos , Receptores de Imidazolina/antagonistas & inhibidores , Receptores de Imidazolina/genética , Receptores de Imidazolina/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Riñón/citología , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Lisosomas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mucina-1/química , Mucina-1/genética , Mucina-1/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Proteínas de Transporte Vesicular/química
9.
Cell ; 179(6): 1306-1318.e18, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31761535

RESUMEN

Cells have evolved complex mechanisms to maintain protein homeostasis, such as the UPRER, which are strongly associated with several diseases and the aging process. We performed a whole-genome CRISPR-based knockout (KO) screen to identify genes important for cells to survive ER-based protein misfolding stress. We identified the cell-surface hyaluronidase (HAase), Transmembrane Protein 2 (TMEM2), as a potent modulator of ER stress resistance. The breakdown of the glycosaminoglycan, hyaluronan (HA), by TMEM2 within the extracellular matrix (ECM) altered ER stress resistance independent of canonical UPRER pathways but dependent upon the cell-surface receptor, CD44, a putative HA receptor, and the MAPK cell-signaling components, ERK and p38. Last, and most surprisingly, ectopic expression of human TMEM2 in C. elegans protected animals from ER stress and increased both longevity and pathogen resistance independent of canonical UPRER activation but dependent on the ERK ortholog mpk-1 and the p38 ortholog pmk-1.


Asunto(s)
Caenorhabditis elegans/fisiología , Retículo Endoplásmico/metabolismo , Hialuronoglucosaminidasa/metabolismo , Longevidad/fisiología , Proteínas de la Membrana/metabolismo , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/inmunología , Línea Celular , Proliferación Celular , Resistencia a la Enfermedad , Estrés del Retículo Endoplásmico , Fibroblastos/metabolismo , Humanos , Inmunidad Innata , Modelos Biológicos , Peso Molecular , Transducción de Señal
10.
Annu Rev Cell Dev Biol ; 36: 115-139, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33021827

RESUMEN

Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.


Asunto(s)
Gotas Lipídicas/metabolismo , Proteínas/metabolismo , Animales , Autofagia , Humanos , Proteolisis , Proteoma/metabolismo , Ubiquitina/metabolismo
11.
Annu Rev Biochem ; 87: 751-782, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29394096

RESUMEN

Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin-proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Proteína que Contiene Valosina/metabolismo
12.
Cell ; 175(1): 254-265.e14, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30220460

RESUMEN

Endoplasmic reticulum (ER) membrane contact sites (MCSs) mark positions where endosomes undergo fission for cargo sorting. To define the role of ER at this unique MCS, we targeted a promiscuous biotin ligase to cargo-sorting domains on endosome buds. This strategy identified the ER membrane protein TMCC1, a member of a conserved protein family. TMCC1 concentrates at the ER-endosome MCSs that are spatially and temporally linked to endosome fission. When TMCC1 is depleted, endosome morphology is normal, buds still form, but ER-associated bud fission and subsequent cargo sorting to the Golgi are impaired. We find that the endosome-localized actin regulator Coronin 1C is required for ER-associated fission of actin-dependent cargo-sorting domains. Coronin 1C is recruited to endosome buds independently of TMCC1, while TMCC1/ER recruitment requires Coronin 1C. This link between TMCC1 and Coronin 1C suggests that the timing of TMCC1-dependent ER recruitment is tightly regulated to occur after cargo has been properly sequestered into the bud.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Células COS , Canales de Calcio , Chlorocebus aethiops , Retículo Endoplásmico/fisiología , Endosomas/fisiología , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Microfilamentos/fisiología , Microtúbulos/metabolismo , Transporte de Proteínas/fisiología
13.
Cell ; 174(3): 700-715.e18, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29937227

RESUMEN

The inner nuclear membrane (INM) encases the genome and is fused with the outer nuclear membrane (ONM) to form the nuclear envelope. The ONM is contiguous with the endoplasmic reticulum (ER), the main site of phospholipid synthesis. In contrast to the ER and ONM, evidence for a metabolic activity of the INM has been lacking. Here, we show that the INM is an adaptable membrane territory capable of lipid metabolism. S. cerevisiae cells target enzymes to the INM that can promote lipid storage. Lipid storage involves the synthesis of nuclear lipid droplets from the INM and is characterized by lipid exchange through Seipin-dependent membrane bridges. We identify the genetic circuit for nuclear lipid droplet synthesis and a role of these organelles in regulating this circuit by sequestration of a transcription factor. Our findings suggest a link between INM metabolism and genome regulation and have potential relevance for human lipodystrophy.


Asunto(s)
Gotas Lipídicas/metabolismo , Lípidos de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular , Diglicéridos/metabolismo , Retículo Endoplásmico , Gotas Lipídicas/fisiología , Metabolismo de los Lípidos/fisiología , Lípidos , Proteínas de la Membrana , Ácidos Fosfatidicos/metabolismo , Saccharomyces cerevisiae/metabolismo
14.
Cell ; 175(5): 1430-1442.e17, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30454650

RESUMEN

In eukaryotic cells, organelles and the cytoskeleton undergo highly dynamic yet organized interactions capable of orchestrating complex cellular functions. Visualizing these interactions requires noninvasive, long-duration imaging of the intracellular environment at high spatiotemporal resolution and low background. To achieve these normally opposing goals, we developed grazing incidence structured illumination microscopy (GI-SIM) that is capable of imaging dynamic events near the basal cell cortex at 97-nm resolution and 266 frames/s over thousands of time points. We employed multi-color GI-SIM to characterize the fast dynamic interactions of diverse organelles and the cytoskeleton, shedding new light on the complex behaviors of these structures. Precise measurements of microtubule growth or shrinkage events helped distinguish among models of microtubule dynamic instability. Analysis of endoplasmic reticulum (ER) interactions with other organelles or microtubules uncovered new ER remodeling mechanisms, such as hitchhiking of the ER on motile organelles. Finally, ER-mitochondria contact sites were found to promote both mitochondrial fission and fusion.


Asunto(s)
Retículo Endoplásmico/metabolismo , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Microscopía Fluorescente
15.
Cell ; 175(7): 1931-1945.e18, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550790

RESUMEN

Mosquito-borne flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), are a growing public health concern. Systems-level analysis of how flaviviruses hijack cellular processes through virus-host protein-protein interactions (PPIs) provides information about their replication and pathogenic mechanisms. We used affinity purification-mass spectrometry (AP-MS) to compare flavivirus-host interactions for two viruses (DENV and ZIKV) in two hosts (human and mosquito). Conserved virus-host PPIs revealed that the flavivirus NS5 protein suppresses interferon stimulated genes by inhibiting recruitment of the transcription complex PAF1C and that chemical modulation of SEC61 inhibits DENV and ZIKV replication in human and mosquito cells. Finally, we identified a ZIKV-specific interaction between NS4A and ANKLE2, a gene linked to hereditary microcephaly, and showed that ZIKV NS4A causes microcephaly in Drosophila in an ANKLE2-dependent manner. Thus, comparative flavivirus-host PPI mapping provides biological insights and, when coupled with in vivo models, can be used to unravel pathogenic mechanisms.


Asunto(s)
Virus del Dengue , Dengue , Proteínas de la Membrana , Proteínas Nucleares , Proteínas no Estructurales Virales , Infección por el Virus Zika , Virus Zika , Animales , Línea Celular Tumoral , Culicidae , Dengue/genética , Dengue/metabolismo , Dengue/patología , Virus del Dengue/genética , Virus del Dengue/metabolismo , Virus del Dengue/patogenicidad , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virus Zika/genética , Virus Zika/metabolismo , Virus Zika/patogenicidad , Infección por el Virus Zika/genética , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/patología
16.
Cell ; 175(6): 1492-1506.e19, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30449617

RESUMEN

Approximately half of human genes generate mRNAs with alternative 3' untranslated regions (3'UTRs). Through 3'UTR-mediated protein-protein interactions, alternative 3'UTRs enable multi-functionality of proteins with identical amino acid sequence. While studying how information on protein features is transferred from 3'UTRs to proteins, we discovered that the broadly expressed RNA-binding protein TIS11B forms a membraneless organelle, called TIS granule, that enriches membrane protein-encoding mRNAs with multiple AU-rich elements. TIS granules form a reticular meshwork intertwined with the endoplasmic reticulum (ER). The association between TIS granules and the ER creates a subcellular compartment-the TIGER domain-with a biophysically and biochemically distinct environment from the cytoplasm. This compartment promotes 3'UTR-mediated interaction of SET with membrane proteins, thus allowing increased surface expression and functional diversity of proteins, including CD47 and PD-L1. The TIGER domain is a subcellular compartment that enables formation of specific and functionally relevant protein-protein interactions that cannot be established outside.


Asunto(s)
Regiones no Traducidas 3' , Gránulos Citoplasmáticos/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Factor 1 de Respuesta al Butirato , Antígeno CD47/genética , Antígeno CD47/metabolismo , Gránulos Citoplasmáticos/genética , Drosophila melanogaster , Retículo Endoplásmico/genética , Células HEK293 , Humanos , Células MCF-7 , Ratones , Células 3T3 NIH , Proteínas Nucleares/genética , Dominios Proteicos , Proteínas de Unión al ARN/genética
17.
Annu Rev Cell Dev Biol ; 35: 543-566, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31283381

RESUMEN

Regulated synthesis and movement of proteins between cellular organelles are central to diverse forms of biological adaptation and plasticity. In neurons, the repertoire of channel, receptor, and adhesion proteins displayed on the cell surface directly impacts cellular development, morphology, excitability, and synapse function. The immensity of the neuronal surface membrane and its division into distinct functional domains present a challenging landscape over which proteins must navigate to reach their appropriate functional domains. This problem becomes more complex considering that neuronal protein synthesis is continuously refined in space and time by neural activity. Here we review our current understanding of how integral membrane and secreted proteins important for neuronal function travel from their sites of synthesis to their functional destinations. We discuss how unique adaptations to the function and distribution of neuronal secretory organelles may facilitate local protein trafficking at remote sites in neuronal dendrites to support diverse forms of synaptic plasticity.


Asunto(s)
Aparato de Golgi/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/metabolismo , Transporte de Proteínas/fisiología , Animales , Compartimento Celular/fisiología , Membrana Celular/metabolismo , Dendritas/metabolismo , Dendritas/fisiología , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología
18.
Annu Rev Cell Dev Biol ; 35: 85-109, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31590585

RESUMEN

Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.


Asunto(s)
Transporte Biológico , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Animales , Humanos , Lípidos/biosíntesis , Lípidos/química , Orgánulos/química , Orgánulos/metabolismo
19.
Immunity ; 56(5): 1115-1131.e9, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36917985

RESUMEN

Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.


Asunto(s)
Estrés del Retículo Endoplásmico , Mucosa Intestinal , Células Th17 , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Células Th17/citología , Células Th17/metabolismo , Diferenciación Celular , Humanos , Animales , Ratones , Ratones Transgénicos , Antibacterianos/farmacología
20.
Cell ; 169(6): 1051-1065.e18, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575669

RESUMEN

During eukaryotic evolution, ribosomes have considerably increased in size, forming a surface-exposed ribosomal RNA (rRNA) shell of unknown function, which may create an interface for yet uncharacterized interacting proteins. To investigate such protein interactions, we establish a ribosome affinity purification method that unexpectedly identifies hundreds of ribosome-associated proteins (RAPs) from categories including metabolism and cell cycle, as well as RNA- and protein-modifying enzymes that functionally diversify mammalian ribosomes. By further characterizing RAPs, we discover the presence of ufmylation, a metazoan-specific post-translational modification (PTM), on ribosomes and define its direct substrates. Moreover, we show that the metabolic enzyme, pyruvate kinase muscle (PKM), interacts with sub-pools of endoplasmic reticulum (ER)-associated ribosomes, exerting a non-canonical function as an RNA-binding protein in the translation of ER-destined mRNAs. Therefore, RAPs interconnect one of life's most ancient molecular machines with diverse cellular processes, providing an additional layer of regulatory potential to protein expression.


Asunto(s)
Ribosomas/química , Ribosomas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células Madre Embrionarias/metabolismo , Retículo Endoplásmico/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Ratones , Biosíntesis de Proteínas , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/metabolismo , Hormonas Tiroideas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión a Hormona Tiroide
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA