Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.697
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(26): 5705-5718.e13, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38091993

RESUMEN

Multiple sclerosis (MS) is a demyelinating disease of the CNS. Epstein-Barr virus (EBV) contributes to the MS pathogenesis because high levels of EBV EBNA386-405-specific antibodies cross react with the CNS-derived GlialCAM370-389. However, it is unclear why only some individuals with such high autoreactive antibody titers develop MS. Here, we show that autoreactive cells are eliminated by distinct immune responses, which are determined by genetic variations of the host, as well as of the infecting EBV and human cytomegalovirus (HCMV). We demonstrate that potent cytotoxic NKG2C+ and NKG2D+ natural killer (NK) cells and distinct EBV-specific T cell responses kill autoreactive GlialCAM370-389-specific cells. Furthermore, immune evasion of these autoreactive cells was induced by EBV-variant-specific upregulation of the immunomodulatory HLA-E. These defined virus and host genetic pre-dispositions are associated with an up to 260-fold increased risk of MS. Our findings thus allow the early identification of patients at risk for MS and suggest additional therapeutic options against MS.


Asunto(s)
Autoinmunidad , Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Humanos , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/genética , Antígenos de Histocompatibilidad Clase I , Esclerosis Múltiple/inmunología , Células Asesinas Naturales/inmunología
2.
Cell ; 184(3): 643-654.e13, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482082

RESUMEN

Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP. EBNA1 tyrosine 518 (Y518) is essential for crosslinking to oriP and functionally required for episome maintenance and generation of EBV-transformed lymphoblastoid cell lines (LCLs). Mechanistically, Y518 is required for replication fork termination at oriP in vivo and for formation of SDS-resistant complexes in vitro. EBNA1-DNA crosslinking corresponds to single-strand endonuclease activity specific to DNA structures enriched at replication-termination sites, such as 4-way junctions. These findings reveal that EBNA1 forms tyrosine-dependent DNA-protein crosslinks and single-strand cleavage at oriP required for replication termination and viral episome maintenance.


Asunto(s)
Ciclo Celular , Reactivos de Enlaces Cruzados/química , ADN Viral/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Plásmidos/metabolismo , Origen de Réplica , Replicación Viral/fisiología , Secuencia de Aminoácidos , Linfocitos B/metabolismo , Línea Celular , Aductos de ADN/metabolismo , Replicación del ADN , Endonucleasas/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/química , Antígenos Nucleares del Virus de Epstein-Barr/genética , Humanos , Mutación/genética , Unión Proteica , Recombinación Genética/genética , Tirosina/metabolismo
3.
Immunity ; 57(3): 559-573.e6, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38479361

RESUMEN

Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with B cell lymphomas. EBV glycoprotein 42 (gp42) binds HLA class II and activates membrane fusion with B cells. We isolated gp42-specific monoclonal antibodies (mAbs), A10 and 4C12, which use distinct mechanisms to neutralize virus infection. mAb A10 was more potent than the only known neutralizing gp42 mAb, F-2-1, in neutralizing EBV infection and blocking binding to HLA class II. mAb 4C12 was similar to mAb A10 in inhibiting glycoprotein-mediated B cell fusion but did not block receptor binding, and it was less effective in neutralizing infection. Crystallographic structures of gH/gL/gp42/A10 and gp42/4C12 complexes revealed two distinct sites of vulnerability on gp42 for receptor binding and B cell fusion. Passive transfer of mAb A10 into humanized mice conferred nearly 100% protection from viremia and EBV lymphomas after EBV challenge. These findings identify vulnerable sites on EBV that may facilitate therapeutics and vaccines.


Asunto(s)
Bencenoacetamidas , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Piperidonas , Animales , Ratones , Proteínas Virales/metabolismo , Glicoproteínas/metabolismo , Anticuerpos Antivirales
4.
Immunity ; 55(1): 174-184.e5, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35021055

RESUMEN

Human immune responses to viral infections are highly variable, but the genetic factors that contribute to this variability are not well characterized. We used VirScan, a high-throughput epitope scanning technology, to analyze pan-viral antibody reactivity profiles of twins and SNP-genotyped individuals. Using these data, we determined the heritability and genomic loci associated with antibody epitope selection, response breadth, and control of Epstein-Barr virus (EBV) viral load. 107 EBV peptide reactivities were heritable and at least two Epstein-Barr nuclear antigen 2 (EBNA-2) reactivities were associated with variants in the MHC class II locus. We identified an EBV serosignature that predicted viral load in peripheral blood mononuclear cells and was associated with variants in the MHC class I locus. Our study illustrates the utility of epitope profiling to investigate the genetics of pathogen immunity, reports heritable features of the antibody response to viruses, and identifies specific HLA loci important for EBV epitope selection.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Epítopos/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Genotipo , Herpesvirus Humano 4/fisiología , Epítopos Inmunodominantes/metabolismo , Proteínas Virales/metabolismo , Adolescente , Adulto , Anciano , Estudios de Cohortes , Mapeo Epitopo , Epítopos/genética , Infecciones por Virus de Epstein-Barr/inmunología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Femenino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Inmunidad Humoral , Epítopos Inmunodominantes/genética , Masculino , Persona de Mediana Edad , Péptidos/genética , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Estudios Seroepidemiológicos , Carga Viral , Proteínas Virales/genética , Adulto Joven
5.
Immunity ; 55(11): 2135-2148.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36306784

RESUMEN

Epstein-Barr virus (EBV) is nearly ubiquitous in adults. EBV causes infectious mononucleosis and is associated with B cell lymphomas, epithelial cell malignancies, and multiple sclerosis. The EBV gH/gL glycoprotein complex facilitates fusion of virus membrane with host cells and is a target of neutralizing antibodies. Here, we examined the sites of vulnerability for virus neutralization and fusion inhibition within EBV gH/gL. We developed a panel of human monoclonal antibodies (mAbs) that targeted five distinct antigenic sites on EBV gH/gL and prevented infection of epithelial and B cells. Structural analyses using X-ray crystallography and electron microscopy revealed multiple sites of vulnerability and defined the antigenic landscape of EBV gH/gL. One mAb provided near-complete protection against viremia and lymphoma in a humanized mouse EBV challenge model. Our findings provide structural and antigenic knowledge of the viral fusion machinery, yield a potential therapeutic antibody to prevent EBV disease, and emphasize gH/gL as a target for herpesvirus vaccines and therapeutics.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Cricetinae , Ratones , Animales , Humanos , Proteínas del Envoltorio Viral , Cricetulus , Glicoproteínas de Membrana , Células CHO
6.
Immunity ; 54(7): 1405-1416.e7, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34216564

RESUMEN

Epstein-Barr virus (EBV) encodes a G protein-coupled receptor (GPCR) termed BILF1 that is essential for EBV-mediated immunosuppression and oncogenesis. BILF1 couples with inhibitory G protein (Gi), the major intracellular signaling effector for human chemokine receptors, and exhibits constitutive signaling activity; the ligand(s) for BILF1 are unknown. We studied the origins of BILF1's constitutive activity through structure determination of BILF1 bound to the inhibitory G protein (Gi) heterotrimer. The 3.2-Å resolution cryo-electron microscopy structure revealed an extracellular loop within BILF1 that blocked the typical chemokine binding site, suggesting ligand-autonomous receptor activation. Rather, amino acid substitutions within BILF1 transmembrane regions at hallmark ligand-activated class A GPCR "microswitches" stabilized a constitutively active BILF1 conformation for Gi coupling in a ligand-independent fashion. Thus, the constitutive activity of BILF1 promotes immunosuppression and virulence independent of ligand availability, with implications for the function of GPCRs encoded by related viruses and for therapeutic targeting of EBV.


Asunto(s)
Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/inmunología , Factores Inmunológicos/inmunología , Receptores Acoplados a Proteínas G/inmunología , Proteínas Virales/inmunología , Animales , Sitios de Unión/inmunología , Línea Celular , Quimiocinas/inmunología , Microscopía por Crioelectrón/métodos , Infecciones por Virus de Epstein-Barr/virología , Células HEK293 , Humanos , Unión Proteica/inmunología , Células Sf9 , Transducción de Señal/inmunología
7.
Immunity ; 50(5): 1305-1316.e6, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30979688

RESUMEN

Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with epithelial-cell cancers and B cell lymphomas. An effective EBV vaccine is not available. We found that antibodies to the EBV glycoprotein gH/gL complex were the principal components in human plasma that neutralized infection of epithelial cells and that antibodies to gH/gL and gp42 contributed to B cell neutralization. Immunization of mice and nonhuman primates with nanoparticle vaccines that displayed components of the viral-fusion machinery EBV gH/gL or gH/gL/gp42 elicited antibodies that potently neutralized both epithelial-cell and B cell infection. Immune serum from nonhuman primates inhibited EBV-glycoprotein-mediated fusion of epithelial cells and B cells and targeted an epitope critical for virus-cell fusion. Therefore, unlike the leading EBV gp350 vaccine candidate, which only protects B cells from infection, these EBV nanoparticle vaccines elicit antibodies that inhibit the virus-fusion apparatus and provide cell-type-independent protection from virus infection.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Células Epiteliales/inmunología , Infecciones por Virus de Epstein-Barr/prevención & control , Herpesvirus Humano 4/inmunología , Glicoproteínas de Membrana/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Linfocitos B/virología , Células CHO , Fusión Celular , Línea Celular Tumoral , Cricetulus , Células Epiteliales/virología , Infecciones por Virus de Epstein-Barr/inmunología , Femenino , Células HEK293 , Células HeLa , Humanos , Sueros Inmunes/administración & dosificación , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos BALB C , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Acoplamiento Viral
8.
Proc Natl Acad Sci U S A ; 121(16): e2314426121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38574017

RESUMEN

Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.


Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Animales , Ratones , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Aflatoxina B1/toxicidad , Ligandos , Linfoma de Burkitt/metabolismo , Quimiocinas , Carcinogénesis
9.
Proc Natl Acad Sci U S A ; 121(3): e2315857121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190525

RESUMEN

Epstein-Barr virus (EBV) infection has long been associated with multiple sclerosis (MS), but the role of EBV in the pathogenesis of MS is not clear. Our hypothesis is that a major fraction of the expanded clones of T lymphocytes in the cerebrospinal fluid (CSF) are specific for autologous EBV-infected B cells. We obtained blood and CSF samples from eight relapsing-remitting patients in the process of diagnosis. We stimulated cells from the blood with autologous EBV-infected lymphoblastoid cell lines (LCL), EBV, varicella zoster virus, influenza, and candida and sorted the responding cells with flow cytometry after 6 d. We sequenced the RNA for T cell receptors (TCR) from CSF, unselected blood cells, and the antigen-specific cells. We used the TCR Vß CDR3 sequences from the antigen-specific cells to assign antigen specificity to the sequences from the CSF and blood. LCL-specific cells comprised 13.0 ± 4.3% (mean ± SD) of the total reads present in CSF and 13.3 ± 7.5% of the reads present in blood. The next most abundant antigen specificity was flu, which was 4.7 ± 1.7% of the reads in the CSF and 9.3 ± 6.6% in the blood. The prominence of LCL-specific reads was even more marked in the top 1% most abundant CSF clones with statistically significant 47% mean overlap with LCL. We conclude that LCL-specific sequences form a major portion of the TCR repertoire in both CSF and blood and that expanded clones specific for LCL are present in MS CSF. This has important implications for the pathogenesis of MS.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Gripe Humana , Esclerosis Múltiple , Humanos , Linfocitos T , Herpesvirus Humano 4 , Receptores de Antígenos de Linfocitos T
10.
Semin Immunol ; 60: 101652, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-36162228

RESUMEN

The two γ-herpesviruses Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are each associated with more than 1% of all tumors in humans. While EBV establishes persistent infection in nearly all adult individuals, KSHV benefits from this widespread EBV prevalence for its own persistence. Interestingly, EBV infection expands early differentiated NKG2A+KIR- NK cells that protect against lytic EBV infection, while KSHV co-infection drives accumulation of poorly functional CD56-CD16+ NK cells. Thus persistent γ-herpesvirus infections are sculptors of human NK cell repertoires and the respectively stimulated NK cell subsets should be considered for immunotherapies of EBV and KSHV associated malignancies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por Herpesviridae , Herpesvirus Humano 8 , Neoplasias , Adulto , Humanos , Herpesvirus Humano 4/fisiología , Herpesvirus Humano 8/fisiología , Células Asesinas Naturales
11.
J Biol Chem ; 300(5): 107226, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537697

RESUMEN

Epstein-Barr virus (EBV) is a human tumor virus associated with a variety of malignancies, including nasopharyngeal carcinoma, gastric cancers, and B-cell lymphomas. N6-methyladenosine (m6A) modifications modulate a wide range of cellular processes and participate in the regulation of virus-host cell interactions. Here, we discovered that EBV infection downregulates toll-like receptor 9 (TLR9) m6A modification levels and thus inhibits TLR9 expression. TLR9 has multiple m6A modification sites. Knockdown of METTL3, an m6A "writer", decreases TLR9 protein expression by inhibiting its mRNA stability. Mechanistically, Epstein-Barr nuclear antigen 1 increases METTL3 protein degradation via K48-linked ubiquitin-proteasome pathway. Additionally, YTHDF1 was identified as an m6A "reader" of TLR9, enhancing TLR9 expression by promoting mRNA translation in an m6A -dependent manner, which suggests that EBV inhibits TLR9 translation by "hijacking" host m6A modification mechanism. Using the METTL3 inhibitor STM2457 inhibits TLR9-induced B cell proliferation and immunoglobulin secretion, and opposes TLR9-induced immune responses to assist tumor cell immune escape. In clinical lymphoma samples, the expression of METTL3, YTHDF1, and TLR9 was highly correlated with immune cells infiltration. This study reveals a novel mechanism that EBV represses the important innate immunity molecule TLR9 through modulating the host m6A modification system.


Asunto(s)
Adenosina , Herpesvirus Humano 4 , Metiltransferasas , Proteínas de Unión al ARN , Receptor Toll-Like 9 , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Linfocitos B/metabolismo , Linfocitos B/inmunología , Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/inmunología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Evasión Inmune , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Línea Celular Tumoral
12.
Am J Hum Genet ; 109(6): 1105-1116, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35550063

RESUMEN

Glioma is a highly fatal cancer with prognostically significant molecular subtypes and few known risk factors. Multiple studies have implicated infections in glioma susceptibility, but evidence remains inconsistent. Genetic variants in the human leukocyte antigen (HLA) region modulate host response to infection and have been linked to glioma risk. In this study, we leveraged genetic predictors of antibody response to 12 viral antigens to investigate the relationship with glioma risk and survival. Genetic reactivity scores (GRSs) for each antigen were derived from genome-wide-significant (p < 5 × 10-8) variants associated with immunoglobulin G antibody response in the UK Biobank cohort. We conducted parallel analyses of glioma risk and survival for each GRS and HLA alleles imputed at two-field resolution by using data from 3,418 glioma-affected individuals subtyped by somatic mutations and 8,156 controls. Genetic reactivity scores to Epstein-Barr virus (EBV) ZEBRA and EBNA antigens and Merkel cell polyomavirus (MCV) VP1 antigen were associated with glioma risk and survival (Bonferroni-corrected p < 0.01). GRSZEBRA and GRSMCV were associated in opposite directions with risk of IDH wild-type gliomas (ORZEBRA = 0.91, p = 0.0099/ORMCV = 1.11, p = 0.0054). GRSEBNA was associated with both increased risk for IDH mutated gliomas (OR = 1.09, p = 0.040) and improved survival (HR = 0.86, p = 0.010). HLA-DQA1∗03:01 was significantly associated with decreased risk of glioma overall (OR = 0.85, p = 3.96 × 10-4) after multiple testing adjustment. This systematic investigation of the role of genetic determinants of viral antigen reactivity in glioma risk and survival provides insight into complex immunogenomic mechanisms of glioma pathogenesis. These results may inform applications of antiviral-based therapies in glioma treatment.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Glioma , Esclerosis Múltiple , Antígenos Virales , Infecciones por Virus de Epstein-Barr/complicaciones , Glioma/complicaciones , Glioma/genética , Herpesvirus Humano 4/genética , Humanos , Inmunogenética , Esclerosis Múltiple/genética
14.
J Virol ; : e0057224, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860782

RESUMEN

Treatment options for Epstein-Barr virus (EBV)-cancers are limited, underscoring the need for new therapeutic approaches. We have previously shown that EBV-transformed cells and cancers lack homologous recombination (HR) repair, a prominent error-free pathway that repairs double-stranded DNA breaks; instead, EBV-transformed cells demonstrate genome-wide scars of the error-prone microhomology-mediated end joining (MMEJ) repair pathway. This suggests that EBV-cancers are vulnerable to synthetic lethal therapeutic approaches that target MMEJ repair. Indeed, we have previously found that targeting PARP, an enzyme that contributes to MMEJ, results in the death of EBV-lymphoma cells. With the emergence of clinical resistance to PARP inhibitors and the recent discovery of inhibitors of Polymerase theta (POLθ), the polymerase essential for MMEJ, we investigated the role of POLθ in EBV-lymphoma cells. We report that EBV-transformed cell lines, EBV-lymphoma cell lines, and EBV-lymphomas in AIDS patients demonstrate greater abundance of POLθ, driven by the EBV protein EBNA1, compared to EBV-uninfected primary lymphocytes and EBV-negative lymphomas from AIDS patients (a group that also abundantly expresses POLθ). We also find POLθ enriched at cellular DNA replication forks and exposure to the POLθ inhibitor Novobiocin impedes replication fork progress, impairs MMEJ-mediated repair of DNA double-stranded breaks, and kills EBV-lymphoma cells. Notably, cell killing is not due to Novobiocin-induced activation of the lytic/replicative phase of EBV. These findings support a role for POLθ not just in DNA repair but also DNA replication and as a therapeutic target in EBV-lymphomas and potentially other EBV-cancers as EBNA1 is expressed in all EBV-cancers.IMPORTANCEEpstein-Barr virus (EBV) contributes to ~2% of the global cancer burden. With a recent estimate of >200,000 deaths a year, identifying molecular vulnerabilities will be key to the management of these frequently aggressive and treatment-resistant cancers. Building on our earlier work demonstrating reliance of EBV-cancers on microhomology-mediated end-joining repair, we now report that EBV lymphomas and transformed B cell lines abundantly express the MMEJ enzyme POLθ that likely protects cellular replication forks and repairs replication-related cellular DNA breaks. Importantly also, we show that a newly identified POLθ inhibitor kills EBV-cancer cells, revealing a novel strategy to block DNA replication and repair of these aggressive cancers.

15.
J Virol ; : e0054824, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864622

RESUMEN

Most mature B-cell malignancies originate from the malignant transformation of germinal center (GC) B cells. The GC reaction appears to have a role in malignant transformation, in which a major player of the GC reaction is BCL6, a key regulator of this process. We now demonstrate that BCL6 protein levels were dramatically decreased in Epstein-Barr virus (EBV)-positive lymphoblastoid cell lines and Burkitt's lymphoma cell lines. Notably, BCL6 degradation was significantly enhanced in the presence of both EBNA3C and FBXO11. Furthermore, the amino-terminal domain of EBNA3C, which contains residues 50-100, interacts directly with FBXO11. The expression of EBNA3C and FBXO11 resulted in a significant induction of cell proliferation. Furthermore, BCL6 protein expression levels were regulated by EBNA3C via the Skp Cullin Fbox (SCF)FBXO11 complex, which mediated its ubiquitylation, and knockdown of FBXO11 suppressed the transformation of lymphoblastoid cell lines. These data provide new insights into the function of EBNA3C in B-cell transformation during GC reaction and raise the possibility of developing new targeted therapies against EBV-associated cancers. IMPORTANCE: The novel revelation in our study involves the suppression of BCL6 expression by the essential Epstein-Barr virus (EBV) antigen EBNA3C, shedding new light on our current comprehension of how EBV contributes to lymphomagenesis by impeding the germinal center reaction. It is crucial to note that while several EBV latent proteins are expressed in infected cells, the collaborative mechanisms among these proteins in regulating B-cell development or inducing B-cell lymphoma require additional investigation. Nonetheless, our findings carry significance for the development of emerging strategies aimed at addressing EBV-associated cancers.

16.
J Virol ; 98(2): e0177623, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38197630

RESUMEN

Epstein-Barr virus (EBV) has a lifelong latency period after initial infection. Rarely, however, when the EBV immediate early gene BZLF1 is expressed by a specific stimulus, the virus switches to the lytic cycle to produce progeny viruses. We found that EBV infection reduced levels of various ceramide species in gastric cancer cells. As ceramide is a bioactive lipid implicated in the infection of various viruses, we assessed the effect of ceramide on the EBV lytic cycle. Treatment with C6-ceramide (C6-Cer) induced an increase in the endogenous ceramide pool and increased production of the viral product as well as BZLF1 expression. Treatment with the ceramidase inhibitor ceranib-2 induced EBV lytic replication with an increase in the endogenous ceramide pool. The glucosylceramide synthase inhibitor Genz-123346 inhibited C6-Cer-induced lytic replication. C6-Cer induced extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB phosphorylation, c-JUN expression, and accumulation of the autophagosome marker LC3B. Treatment with MEK1/2 inhibitor U0126, siERK1&2, or siCREB suppressed C6-Cer-induced EBV lytic replication and autophagy initiation. In contrast, siJUN transfection had no impact on BZLF1 expression. The use of 3-methyladenine (3-MA), an inhibitor targeting class III phosphoinositide 3-kinases (PI3Ks) to inhibit autophagy initiation, resulted in reduced beclin-1 expression, along with suppressed C6-Cer-induced BZLF1 expression and LC3B accumulation. Chloroquine, an inhibitor of autophagosome-lysosome fusion, increased BZLF1 protein intensity and LC3B accumulation. However, siLC3B transfection had minimal effect on BZLF1 expression. The results suggest the significance of ceramide-related sphingolipid metabolism in controlling EBV latency, highlighting the potential use of drugs targeting sphingolipid metabolism for treating EBV-positive gastric cancer.IMPORTANCEEpstein-Barr virus remains dormant in the host cell but occasionally switches to the lytic cycle when stimulated. However, the exact molecular mechanism of this lytic induction is not well understood. In this study, we demonstrate that Epstein-Barr virus infection leads to a reduction in ceramide levels. Additionally, the restoration of ceramide levels triggers lytic replication of Epstein-Barr virus with increase in phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB. Our study suggests that the Epstein-Barr virus can inhibit lytic replication and remain latent through reduction of host cell ceramide levels. This study reports the regulation of lytic replication by ceramide in Epstein-Barr virus-positive gastric cancer.


Asunto(s)
Carcinoma , Ceramidas , Infecciones por Virus de Epstein-Barr , Neoplasias Gástricas , Humanos , Carcinoma/virología , Línea Celular Tumoral , Ceramidas/farmacología , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Proteína Quinasa 3 Activada por Mitógenos , Neoplasias Gástricas/virología , Transactivadores/metabolismo , Activación Viral
17.
FASEB J ; 38(1): e23345, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038978

RESUMEN

The tripartite interaction motif (TRIM) family of proteins is known for their antiviral activity through different mechanisms, such as interfering with viral components, regulating immune responses, and participating in autophagy-mediated defense pathways. In this study, we investigated the role of tripartite interaction motif 26 (TRIM26), which is encoded by a major histocompatibility complex (MHC) gene, in regulating Epstein-Barr virus (EBV) infection of nasopharyngeal epithelial cells. We found that TRIM26 expression was induced upon EBV infection and that it indirectly targeted EphA2, a crucial epithelial receptor for EBV entry. Our results showed that TRIM26 interacted with heat shock protein 90-beta (HSP-90ß) and promoted its polyubiquitination, which led to its degradation via the proteasome pathway. This, in turn, affected EphA2 integrity and suppressed EBV infection. These findings suggest that TRIM26 could be a valuable target for developing therapeutic interventions against EBV infection and its associated pathogenesis.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Humanos , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiología , Células Epiteliales/metabolismo , Ubiquitinación , Dominios Proteicos , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
Rev Med Virol ; 34(4): e2561, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38877989

RESUMEN

Hodgkin lymphoma is histologically characterised by the presence of Hodgkin (H) and Reed-Sternberg (RS) cells originating from germinal centre B-cells rearranged in the IgV gene. The formation of multinucleated RS cells is a product of telomere organisation in a process initiated by telomere aggregate accumulation in mononuclear H cells and may be mediated by latent membrane protein 1 (LMP-1) expression. LMP-1 is the main oncoprotein of EBV and supports several tumourigenic processes. LMP-1 may rescue proapoptotic B-cells through downregulation of B-cell receptor (BCR) components, mimicking and inducing multiple distinct B-cell signalling pathways to promote proliferation and survival, such as Janus kinase-signal transducer and activator of transcription (JAK-STAT), nuclear factor-kappa b (NF-кB), and cellular MYC (c-MYC), and inducing telomere instability mainly through Telomere repeat binding factor 2 (TRF2) downregulation to promote the formation of multinucleated RS cells. This review presents recent discoveries regarding the influence of LMP-1 on the surviving cellular signalling, genomic instability and mecanical formation of HRS cells.


Asunto(s)
Herpesvirus Humano 4 , Enfermedad de Hodgkin , Proteínas de la Matriz Viral , Enfermedad de Hodgkin/virología , Enfermedad de Hodgkin/patología , Enfermedad de Hodgkin/metabolismo , Humanos , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/genética , Herpesvirus Humano 4/genética , Transducción de Señal , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/patología , Inestabilidad Genómica , Células de Reed-Sternberg/metabolismo , Células de Reed-Sternberg/patología , Células de Reed-Sternberg/virología
19.
Brain ; 147(1): 177-185, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37930324

RESUMEN

Recent research indicates that multiple sclerosis is preceded by a prodromal phase with elevated levels of serum neurofilament light chain (sNfL), a marker of axonal injury. The effect of environmental risk factors on the extent of axonal injury during this prodrome is unknown. Human herpesvirus 6A (HHV-6A) is associated with an increased risk of developing multiple sclerosis. The objective of this study was to determine if HHV-6A serostatus is associated with the level of sNfL in the multiple sclerosis prodrome, which would support a causative role of HHV-6A. A nested case-control study was performed by crosslinking multiple sclerosis registries with Swedish biobanks. Individuals with biobank samples collected before the clinical onset of multiple sclerosis were included as cases. Controls without multiple sclerosis were randomly selected, matched for biobank, sex, sampling date and age. Serostatus of HHV-6A and Epstein-Barr virus was analysed with a bead-based multiplex assay. The concentration of sNfL was analysed with single molecule array technology. The association between HHV-6A serology and sNfL was assessed by stratified t-tests and linear regressions, adjusted for Epstein-Barr virus serostatus and sampling age. Within-pair ratios of HHV-6A seroreactivity and sNfL were calculated for each case and its matched control. To assess the temporal relationship between HHV-6A antibodies and sNfL, these ratios were plotted against the time to the clinical onset of multiple sclerosis and compared using locally estimated scatterplot smoothing regressions with 95% confidence intervals (CI). Samples from 519 matched case-control pairs were included. In cases, seropositivity of HHV-6A was significantly associated with the level of sNfL (+11%, 95% CI 0.2-24%, P = 0.045) and most pronounced in the younger half of the cases (+24%, 95% CI 6-45%, P = 0.007). No such associations were observed among the controls. Increasing seroreactivity against HHV-6A was detectable before the rise of sNfL (significant within-pair ratios from 13.6 years versus 6.6 years before the clinical onset of multiple sclerosis). In this study, we describe the association between HHV-6A antibodies and the degree of axonal injury in the multiple sclerosis prodrome. The findings indicate that elevated HHV-6A antibodies both precede and are associated with a higher degree of axonal injury, supporting the hypothesis that HHV-6A infection may contribute to multiple sclerosis development in a proportion of cases.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 6 , Esclerosis Múltiple , Humanos , Anticuerpos , Biomarcadores , Estudios de Casos y Controles , Herpesvirus Humano 4 , Masculino , Femenino
20.
Proc Natl Acad Sci U S A ; 119(30): e2200512119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35857872

RESUMEN

Epstein-Barr virus (EBV) is a human tumor virus which preferentially infects resting human B cells. Upon infection in vitro, EBV activates and immortalizes these cells. The viral latent protein EBV nuclear antigen 2 (EBNA2) is essential for B cell activation and immortalization; it targets and binds the cellular and ubiquitously expressed DNA-binding protein CBF1, thereby transactivating a plethora of viral and cellular genes. In addition, EBNA2 uses its N-terminal dimerization (END) domain to bind early B cell factor 1 (EBF1), a pioneer transcription factor specifying the B cell lineage. We found that EBNA2 exploits EBF1 to support key metabolic processes and to foster cell cycle progression of infected B cells in their first cell cycles upon activation. The α1-helix within the END domain was found to promote EBF1 binding. EBV mutants lacking the α1-helix in EBNA2 can infect and activate B cells efficiently, but activated cells fail to complete the early S phase of their initial cell cycle. Expression of MYC, target genes of MYC and E2F, as well as multiple metabolic processes linked to cell cycle progression are impaired in EBVΔα1-infected B cells. Our findings indicate that EBF1 controls B cell activation via EBNA2 and, thus, has a critical role in regulating the cell cycle of EBV-infected B cells. This is a function of EBF1 going beyond its well-known contribution to B cell lineage specification.


Asunto(s)
Linfocitos B , Infecciones por Virus de Epstein-Barr , Antígenos Nucleares del Virus de Epstein-Barr , Regulación de la Expresión Génica , Herpesvirus Humano 4 , Proteínas Proto-Oncogénicas c-myc , Transactivadores , Proteínas Virales , Linfocitos B/inmunología , Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , Fase S , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA