Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 357: 114595, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059616

RESUMEN

Immunosenescence corresponds to the progressive decline of immune functions with increasing age. Although it is critical to understand what modulates such a decline, the ecological and physiological drivers of immunosenescence remain poorly understood in the wild. Among them, the level of glucocorticoids (GCs) during early life are good candidates to modulate immunosenescence patterns because these hormones can have long-term consequences on individual physiology. Indeed, GCs act as regulators of energy allocation to ensure allostasis, are part of the stress response triggered by unpredictable events and have immunosuppressive effects when chronically elevated. We used longitudinal data collected over two decades in two populations of roe deer (Capreolus capreolus) to test whether higher baseline GC levels measured within the first year of life were associated with a more pronounced immunosenescence and parasite susceptibility. We first assessed immunosenescence trajectories in these populations facing contrasting environmental conditions. Then, we found that juvenile GC levels can modulate lymphocyte trajectory. Lymphocyte depletion was accelerated late in life when GCs were elevated early in life. Although the exact mechanism remains to be elucidated, it could involve a role of GCs on thymic characteristics. In addition, elevated GC levels in juveniles were associated with a higher abundance of lung parasites during adulthood for individuals born during bad years, suggesting short-term negative effects of GCs on juvenile immunity, having in turn long-lasting consequences on adult parasite load, depending on juvenile environmental conditions. These findings offer promising research directions in assessing the carry-over consequences of GCs on life-history traits in the wild.


Asunto(s)
Ciervos , Glucocorticoides , Animales , Ciervos/fisiología , Recuento de Linfocitos , Inmunosenescencia , Femenino , Envejecimiento , Masculino , Linfocitos/metabolismo , Linfocitos/inmunología
2.
Gen Comp Endocrinol ; 330: 114141, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272446

RESUMEN

Living in variable and unpredictable environments, organisms face recurrent stressful situations. The endocrine stress response, which includes the secretion of glucocorticoids, helps organisms to cope with these perturbations. Although short-term elevations of glucocorticoid levels are often associated with immediate beneficial consequences for individuals, long-term glucocorticoid elevation can compromise key physiological functions such as immunity. While laboratory works highlighted the immunosuppressive effect of long-term elevated glucocorticoids, it remains largely unknown, especially in wild animals, whether this relationship is modulated by individual and environmental characteristics. In this study, we explored the co-variation between integrated cortisol levels, assessed non-invasively using faecal cortisol metabolites (FCMs), and 12 constitutive indices of innate, inflammatory, and adaptive immune functions, in wild roe deer living in three populations with previously known contrasting environmental conditions. Using longitudinal data on 564 individuals, we further investigated whether age and spatio-temporal variations in the quantity and quality of food resources modulate the relationship between FCMs and immunity. Negative covariation with glucocorticoids was evident only for innate and inflammatory markers of immunity, while adaptive immunity appeared to be positively or not linked to glucocorticoids. In addition, the negative covariations were generally stronger in individuals facing harsh environmental constraints and in old individuals. Therefore, our results highlight the importance of measuring multiple immune markers of immunity in individuals from contrasted environments to unravel the complex relationships between glucocorticoids and immunity in wild animals. Our results also help explain conflicting results found in the literature and could improve our understanding of the link between elevated glucocorticoid levels and disease spread, and its consequences on population dynamics.


Asunto(s)
Ciervos , Animales , Ciervos/metabolismo , Animales Salvajes/metabolismo , Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Inmunidad Adaptativa
3.
Microbiology (Reading) ; 168(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35960548

RESUMEN

Sex, age, diet, stress and social environment have all been shown to influence the gut microbiota. In several mammals, including humans, increased stress is related to decreasing gut microbial diversity and may differentially impact specific taxa. Recent evidence from gorillas shows faecal glucocorticoid metabolite concentration (FGMC) did not significantly explain gut microbial diversity, but it was significantly associated with the abundance of the family Anaerolineaceae. These patterns have yet to be examined in other primates, like bonobos (Pan paniscus). We compared FGMC to 16S rRNA amplicons for 202 bonobo faecal samples collected across 5 months to evaluate the impact of stress, measured with FGMC, on the gut microbiota. Alpha diversity measures (Chao's and Shannon's indexes) were not significantly related to FGMC. FGMC explained 0.80 % of the variation in beta diversity for Jensen-Shannon and 1.2% for weighted UniFrac but was not significant for unweighted UniFrac. We found that genus SHD-231, a member of the family Anaerolinaceae had a significant positive relationship with FGMC. These results suggest that bonobos are relatively similar to gorillas in alpha diversity and family Anaerolinaceae responses to FGMC, but different from gorillas in beta diversity. Members of the family Anaerolinaceae may be differentially affected by FGMC across great apes. FGMC appears to be context dependent and may be species-specific for alpha and beta diversity but this study provides an example of consistent change in two African apes. Thus, the relationship between physiological stress and the gut microbiome may be difficult to predict, even among closely related species.


Asunto(s)
Microbioma Gastrointestinal , Pan paniscus , Animales , Heces , Microbioma Gastrointestinal/fisiología , Glucocorticoides , Gorilla gorilla/fisiología , Humanos , Mamíferos/genética , Pan paniscus/genética , ARN Ribosómico 16S/genética
4.
Horm Behav ; 140: 105127, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121301

RESUMEN

Free-living animals cope with environmental stressors through physiological and behavioural responses. According to the unidimensional model, these responses are integrated within a coping style: proactive individuals (bold, active-explorative and social) have a lower hypothalamic-pituitary-adrenal (HPA) axis reactivity than reactive ones (shy, less active-explorative, less social). These associations may change when individuals are exposed to human-induced rapid environmental change (HIREC), such as the introduction of invasive alien species (IAS). Here, we studied Eurasian red squirrels to investigate the relationship between personality traits and one integrated measure of HPA axis activity, both in areas uncolonized (natural populations) and colonized by an IAS, the Eastern grey squirrel (invaded populations). We expected an association between physiological and behavioural responses, and that activity, exploration and social tendency would covary, forming a behavioural syndrome in natural populations, while competition with the IAS was predicted to disrupt these associations. We used faecal glucocorticoid metabolites (FGMs) as an integrated measure of adrenocortical activity, and measured the levels of four personality traits (exploration, activity, activity-exploration and social tendency) with an open field test and a mirror image stimulation test. We found no correlation between FGMs and personality traits, neither in natural nor invaded populations. However, we found correlations among personality traits in areas without interspecific competition, indicating a behavioural syndrome, which was disrupted in invaded populations. This is one of the few studies showing that an IAS, acting as an environmental stressor, alters a native species' behavioural syndrome, but does not influence its coping style.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Especies Introducidas , Adaptación Psicológica , Animales , Sistema Hipófiso-Suprarrenal , Sciuridae
5.
J Exp Biol ; 224(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34032270

RESUMEN

Relatively little effort has been directed towards elucidating the role of physiological stress pathways in mediating avian responses to global heating. For free-ranging southern pied babblers, Turdoides bicolor, daily maximum air temperatures (Tmax) between ∼35 and ∼40°C result in reduced foraging efficiency, loss of body mass and compromised breeding success. We tested the hypothesis that very hot days are experienced as stressors by quantifying relationships between Tmax and faecal glucocorticoid metabolite (fGCM) levels in naturally excreted droppings. On days when Tmax<38°C, fGCM levels were independent of Tmax (mean±s.d. 140.25±56.92 ng g-1 dry mass). At Tmax>38°C, however, fGCM levels increased linearly with Tmax and averaged 190.79±70.13 ng g-1 dry mass. The effects of Tmax on fGCM levels did not carry over to the following morning, suggesting that very hot days are experienced as acute stressors.


Asunto(s)
Passeriformes , Animales , Regulación de la Temperatura Corporal , Glucocorticoides , Calor , Estrés Fisiológico , Temperatura
6.
J Anim Ecol ; 90(11): 2637-2650, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34258771

RESUMEN

The ability of dispersing individuals to adjust their behaviour to changing conditions is instrumental in overcoming challenges and reducing dispersal costs, consequently increasing overall dispersal success. Understanding how dispersers' behaviour and physiology change during the dispersal process, and how they differ from resident individuals, can shed light on the mechanisms by which dispersers increase survival and maximise reproduction. By analysing individual behaviour and concentrations of faecal glucocorticoid metabolites (fGCM), a stress-associated biomarker, we sought to identify the proximate causes behind differences in survival and reproduction between dispersing and resident meerkats Suricata suricatta. We used data collected on 67 dispersing and 108 resident females to investigate (a) which individual, social and environmental factors are correlated to foraging and vigilance, and whether the role of such factors differs among dispersal phases, and between dispersers and residents; (b) how time allocated to either foraging or vigilance correlated to survival in dispersers and residents and (c) the link between aggression and change in fGCM concentration, and their relationship with reproductive rates in dispersing groups and resident groups with either long-established or newly established dominant females. Time allocated to foraging increased across dispersal phases, whereas time allocated to vigilance decreased. Time allocated to foraging and vigilance correlated positively and negatively, respectively, with dispersers' group size. We did not find a group size effect for residents. High proportions of time allocated to foraging correlated with high survival, and more so in dispersers, suggesting that maintaining good physical condition may reduce mortality during dispersal. Furthermore, while subordinate individuals rarely reproduced in resident groups, the conception rate of subordinates in newly formed dispersing groups was equal to that of their dominant individuals. Mirroring conception rates, in resident groups, fGCM concentrations were lower in subordinates than in dominants, whereas in disperser groups, fGCM concentrations did not differ between subordinates and dominants. Our results, which highlight the relationship between behavioural and physiological factors and demographic rates, provide insights into some of the mechanisms that individuals of a cooperative species can use to increase overall dispersal success.


Asunto(s)
Herpestidae , Agresión , Animales , Femenino , Glucocorticoides , Reproducción
7.
Gen Comp Endocrinol ; 308: 113783, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33862051

RESUMEN

Over the last century, wild tiger (Panthera tigris) numbers have declined from over 100 000 individuals to fewer than 4 000, with animals now confined to less than 5% of their historic range due to habitat loss, persecution, inadequate management, and poaching. In contrast, 15 000-20 000 tigers are estimated to be housed in captivity, experiencing conditions vastly different than their wild counterparts. A total of 280 tigers are currently held at 44 different facilities within South Africa, including zoos, semi-captive 're-wilded' populations, and pets; these animals provide a unique opportunity to measure the impact of extrinsic factors, found in exotic habitats, on the adrenocortical activity of tigers. By monitoring and comparing stress-related faecal glucocorticoid metabolite (fGCM) concentrations of tigers housed at different locations, and free ranging tigers in natural tiger reserves, this project aimed to get a better understanding of the impact of extrinsic factors on adrenocortical function as a measure of stress. The results of this study showed no significant difference in fGCM concentrations between captive, re-wilded, and free-ranging tigers with the exception of one site. Furthermore, factors such as sex and season were not significant drivers of fGCM concentrations. One study group had elevated fGCM concentrations, showing population variation in the stress response. This indicates that populations are able to cope with exotic environments, however, as population-specific differences in the stress response exist, we suggest management protocols be created for each population. This study offered the unique opportunity to see how well tigers are faring outside of their native range and if having re-wilded tigers in exotic locations is a potential welfare-acceptable management option for tiger conservation globally.


Asunto(s)
Tigres , Animales , Conservación de los Recursos Naturales/métodos , Ecosistema , Glucocorticoides , Sudáfrica , Tigres/fisiología
8.
Gen Comp Endocrinol ; 310: 113833, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089705

RESUMEN

Faecal glucocorticoid (GC) and triiodothyronine (T3) metabolites and their interactions are increasingly used to monitor perceived stress and nutritional challenges in free-ranging animals. However, a number of extrinsic and intrinsic factors including hormone-inert dietary materials, inorganic matters etc. are known to affect reliable hormone metabolite quantifications. In this study, the impacts of inorganic matter (IOM) on faecal GC (fGCMs) and T3 (fT3Ms) metabolite measure were addressed in wild tiger (n = 193 from Terai Arc landscape, India) and captive lion (n = 120 from Sakkarbaug Zoological Garden, Gujarat, India) and possible corrective measures were evaluated. The wild tiger samples contained highly variable IOM content (9-98%, mostly with > 40% IOM) compared to captive Asiatic lion (17-57%, majority with < 40% IOM). Significant correlations were observed between IOM content and tiger fGCM (r = -0.46, p = 0.000), fT3M (r = -0.58, p = 0.000) and lion fT3M measures (r = -0.43, p = 0.003). Two corrective measures viz. removing samples with ≥ 80% IOM and subsequently expressing concentrations as per gram of organic dry matter (instead of total dry matter) reduced IOM influence on tiger fGCM, fT3M and lion fT3M, without affecting lion fGCM measures. The corrective measures changed the interpretations of fT3M data of field-collected tiger samples with no significant changes in fGCM (both tiger and lion) and fT3M (lion) data. As faecal IOM content is common in many wild species, the results emphasize the need to reduce IOM-driven hormone data variation for ecologically relevant interpretations towards species conservation.


Asunto(s)
Glucocorticoides , Tigres , Animales , Gatos , Heces , India , Triyodotironina
9.
Gen Comp Endocrinol ; 276: 60-68, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30836104

RESUMEN

Using faecal matter to monitor stress levels in animals non-invasively is a powerful technique for elucidating the effects of biotic and abiotic stressors on free-living animals. To validate the use of droppings for measuring stress in southern pied babblers (Turdoides bicolor) we performed an ACTH challenge on captive individuals and determined the effect of temporary separation from their social group on their faecal glucocorticoid metabolite (fGCM) concentration. Additionally, we compared fGCM concentrations of captive babblers to those of wild conspecifics and examined the effects of dominance rank on fGCM concentration. We found droppings to be a suitable matrix for measuring physiological stress in babblers and that individual separation from the group caused an increase in fGCM levels. In addition, babblers temporarily held in captivity had substantially higher fGCM concentrations than wild individuals, indicating that babblers kept in captivity experience high levels of stress. In wild, free-living individuals, dominant males showed the highest levels of stress, suggesting that being the dominant male of a highly territorial social group is stressful. Non-invasive sampling allows field-based researchers to reduce disturbance related to monitoring adrenocortical function, thereby avoiding artificially increasing circulating corticosterone concentration as it is not necessary to physically restrain study animals.


Asunto(s)
Passeriformes/fisiología , Estrés Fisiológico , Clima Tropical , Hormona Adrenocorticotrópica/farmacología , Animales , Corticosterona/sangre , Heces/química , Femenino , Glucocorticoides/metabolismo , Técnicas para Inmunoenzimas , Masculino , Metaboloma , Passeriformes/sangre
10.
Microbiology (Reading) ; 164(1): 40-44, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29205130

RESUMEN

Exposure to stressors can negatively impact the mammalian gastrointestinal microbiome (GIM). Here, we used 454 pyrosequencing of 16S rRNA bacterial gene amplicons to evaluate the impact of physiological stress, as evidenced by faecal glucocorticoid metabolites (FGCM; ng/g), on the GIM composition of free-ranging western lowland gorillas (Gorilla gorilla gorilla). Although we found no relationship between GIM alpha diversity (H) and FGCM levels, we observed a significant relationship between the relative abundances of particular bacterial taxa and FGCM levels. Specifically, members of the family Anaerolineaceae (ρ=0.4, FDR q=0.01), genus Clostridium cluster XIVb (ρ=0.35, FDR q=0.02) and genus Oscillibacter (ρ=0.35, FDR q=0.02) were positively correlated with FGCM levels. Thus, while exposure to stressors appears to be associated with minor changes in the gorilla GIM, the consequences of these changes are unknown. Our results may have implications for conservation biology as well as for our overall understanding of factors influencing the non-human primate GIM.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal/fisiología , Gorilla gorilla/microbiología , Estrés Fisiológico , Animales , Bacterias/genética , ADN Bacteriano , Heces/química , Heces/microbiología , Glucocorticoides/análisis , Gorilla gorilla/fisiología , Modelos Estadísticos , ARN Ribosómico 16S , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA