RESUMEN
The intestine is the largest peripheral lymphoid organ in animals, including humans, and interacts with a vast array of microorganisms called the gut microbiota. Comprehending the symbiotic relationship between the gut microbiota and our immune system is essential not only for the field of immunology but also for understanding the pathogenesis of various systemic diseases, including cancer, cardiometabolic disorders, and extraintestinal autoimmune conditions. Whereas microbe-derived antigens are crucial for activating the intestinal immune system, particularly T and B cells, as environmental cues, microbes and their metabolites play a critical role in directing the differentiation of these immune cells. Microbial metabolites are regarded as messengers from the gut microbiota, since bacteria have the ability to produce unique molecules that humans cannot, and many immune cells in the intestine express receptors for these molecules. This review highlights the distinct relationships between microbial metabolites and the differentiation and function of the immune system.
Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Microbioma Gastrointestinal/inmunología , Diferenciación Celular , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Bacterias/inmunología , Bacterias/metabolismoRESUMEN
Although many prokaryotes have glycolysis alternatives, it's considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Difosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatos de Inositol/genética , Fosfatos de Inositol/metabolismo , Glucólisis/genética , Respiración , Pirofosfatasas/metabolismo , Glucosa/metabolismoRESUMEN
Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.
Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Sialiltransferasas/genética , Animales , Homeostasis , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Moco/metabolismo , Sialiltransferasas/metabolismo , SimbiosisRESUMEN
Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.
Asunto(s)
Microambiente Celular/inmunología , Células Dendríticas/inmunología , Inmunidad Innata , Mitocondrias/inmunología , Especies Reactivas de Oxígeno/inmunología , Respuesta de Proteína Desplegada/inmunología , Animales , Microambiente Celular/genética , Ciclo del Ácido Cítrico/genética , Ciclo del Ácido Cítrico/inmunología , Células Dendríticas/patología , Hexoquinasa/genética , Hexoquinasa/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Ratones , Ratones Noqueados , Mitocondrias/genética , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Respuesta de Proteína Desplegada/genética , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/inmunologíaRESUMEN
Engineering microorganisms for production of fuels and chemicals often requires major re-programming of metabolism to ensure high flux toward the product of interest. This is challenging, as millions of years of evolution have resulted in establishment of tight regulation of metabolism for optimal growth in the organism's natural habitat. Here, we show through metabolic engineering that it is possible to alter the metabolism of Saccharomyces cerevisiae from traditional ethanol fermentation to a pure lipogenesis metabolism, resulting in high-level production of free fatty acids. Through metabolic engineering and process design, we altered subcellular metabolic trafficking, fine-tuned NADPH and ATP supply, and decreased carbon flux to biomass, enabling production of 33.4 g/L extracellular free fatty acids. We further demonstrate that lipogenesis metabolism can replace ethanol fermentation by deletion of pyruvate decarboxylase enzymes followed by adaptive laboratory evolution. Genome sequencing of evolved strains showed that pyruvate kinase mutations were essential for this phenotype.
Asunto(s)
Ácidos Grasos no Esterificados/biosíntesis , Ingeniería Metabólica , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Glucosa/metabolismo , Glucólisis , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Lipogénesis , NADP/metabolismo , Vía de Pentosa Fosfato/genética , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinson's disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.
Asunto(s)
Enfermedad de Parkinson/microbiología , Enfermedad de Parkinson/patología , Animales , Encéfalo/patología , Disbiosis/patología , Ácidos Grasos/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiopatología , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Ratones , Microglía/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , alfa-Sinucleína/metabolismoRESUMEN
Innate lymphoid cells (ILCs) play an important role in the control and maintenance of barrier immunity. However, chronic activation of ILCs results in immune-mediated pathology. Here, we show that tissue-resident type 2 ILCs (ILC2s) display a distinct metabolic signature upon chronic activation. In the context of allergen-driven airway inflammation, ILC2s increase their uptake of both external lipids and glucose. Externally acquired fatty acids are transiently stored in lipid droplets and converted into phospholipids to promote the proliferation of ILC2s. This metabolic program is imprinted by interleukin-33 (IL-33) and regulated by the genes Pparg and Dgat1, which are both controlled by glucose availability and mTOR signaling. Restricting dietary glucose by feeding mice a ketogenic diet largely ablated ILC2-mediated airway inflammation by impairing fatty acid metabolism and the formation of lipid droplets. Together, these results reveal that pathogenic ILC2 responses require lipid metabolism and identify ketogenic diet as a potent intervention strategy to treat airway inflammation.
Asunto(s)
Alérgenos/administración & dosificación , Asma/dietoterapia , Diacilglicerol O-Acetiltransferasa/inmunología , Dieta Cetogénica/métodos , Interleucina-33/inmunología , Gotas Lipídicas/metabolismo , Subgrupos de Linfocitos T/inmunología , Alternaria/química , Animales , Asma/inducido químicamente , Asma/inmunología , Asma/patología , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Citocinas/administración & dosificación , Diacilglicerol O-Acetiltransferasa/genética , Modelos Animales de Enfermedad , Ácidos Grasos/inmunología , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Glucosa/inmunología , Glucosa/metabolismo , Inmunidad Innata , Interleucina-33/administración & dosificación , Interleucina-33/genética , Interleucinas/administración & dosificación , Gotas Lipídicas/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/inmunología , Papaína/administración & dosificación , Fosfolípidos/inmunología , Fosfolípidos/metabolismo , Cultivo Primario de Células , Subgrupos de Linfocitos T/clasificación , Subgrupos de Linfocitos T/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/inmunología , Linfopoyetina del Estroma TímicoRESUMEN
Lipids play crucial roles in signal transduction, contribute to the structural integrity of cellular membranes, and regulate energy metabolism. Questions remain as to which lipid species maintain metabolic homeostasis and which disrupt essential cellular functions, leading to metabolic disorders. Here, we discuss recent advances in understanding lipid metabolism with a focus on catabolism, synthesis, and signaling. Technical advances, including functional genomics, metabolomics, lipidomics, lipid-protein interaction maps, and advances in mass spectrometry, have uncovered new ways to prioritize molecular mechanisms mediating lipid function. By reviewing what is known about the distinct effects of specific lipid species in physiological pathways, we provide a framework for understanding newly identified targets regulating lipid homeostasis with implications for ameliorating metabolic diseases.
Asunto(s)
Metabolismo de los Lípidos/fisiología , Enfermedades Metabólicas/metabolismo , Transducción de Señal/fisiología , Animales , Cromatina/metabolismo , Enfermedad , Metabolismo Energético/fisiología , Salud , Homeostasis/fisiología , Humanos , Inmunidad/fisiología , Lipidómica/métodos , Lípidos/fisiología , Enfermedades Metabólicas/fisiopatología , Metabolómica/métodos , Microbiota/fisiologíaRESUMEN
The phospholipid and free fatty acid (FFA) composition of neuronal membranes plays a crucial role in learning and memory, but the mechanisms through which neuronal activity affects the brain's lipid landscape remain largely unexplored. The levels of saturated FFAs, particularly of myristic acid (C14:0), strongly increase during neuronal stimulation and memory acquisition, suggesting the involvement of phospholipase A1 (PLA1) activity in synaptic plasticity. Here, we show that genetic ablation of the PLA1 isoform DDHD2 in mice dramatically reduces saturated FFA responses to memory acquisition across the brain. Furthermore, DDHD2 loss also decreases memory performance in reward-based learning and spatial memory models prior to the development of neuromuscular deficits that mirror human spastic paraplegia. Via pulldown-mass spectrometry analyses, we find that DDHD2 binds to the key synaptic protein STXBP1. Using STXBP1/2 knockout neurosecretory cells and a haploinsufficient STXBP1+/- mouse model of human early infantile encephalopathy associated with intellectual disability and motor dysfunction, we show that STXBP1 controls targeting of DDHD2 to the plasma membrane and generation of saturated FFAs in the brain. These findings suggest key roles for DDHD2 and STXBP1 in lipid metabolism and in the processes of synaptic plasticity, learning, and memory.
Asunto(s)
Ácidos Grasos no Esterificados , Memoria a Largo Plazo , Proteínas Munc18 , Fosfolipasas , Animales , Ratones , Encéfalo/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Memoria/fisiología , Proteínas Munc18/genética , Fosfolipasas/genéticaRESUMEN
Microbes colonize all body surfaces at birth and participate in the development of the immune system. In newborn mammals, the intestinal microbiota is first shaped by the dietary and immunological components of milk and then changes upon the introduction of solid food during weaning. Here, we explored the reactivity of the mouse intestinal immune system during the first weeks after birth and into adulthood. At weaning, the intestinal microbiota induced a vigorous immune response-a "weaning reaction"-that was programmed in time. Inhibition of the weaning reaction led to pathological imprinting and increased susceptibility to colitis, allergic inflammation, and cancer later in life. Prevention of this pathological imprinting was associated with the generation of RORγt+ regulatory T cells, which required bacterial and dietary metabolites-short-chain fatty acids and retinoic acid. Thus, the weaning reaction to microbiota is required for immune ontogeny, the perturbation of which leads to increased susceptibility to immunopathologies later in life.
Asunto(s)
Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Linfocitos T Reguladores/inmunología , Destete , Animales , Animales Recién Nacidos/inmunología , Animales Recién Nacidos/microbiología , Ácidos Grasos Volátiles/metabolismo , Ratones , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Tretinoina/metabolismoRESUMEN
Interactions with the microbiota influence many aspects of immunity, including immune cell development, differentiation, and function. Here, we examined the impact of the microbiota on CD8+ T cell memory. Antigen-activated CD8+ T cells transferred into germ-free mice failed to transition into long-lived memory cells and had transcriptional impairments in core genes associated with oxidative metabolism. The microbiota-derived short-chain fatty acid (SCFA) butyrate promoted cellular metabolism, enhanced memory potential of activated CD8+ T cells, and SCFAs were required for optimal recall responses upon antigen re-encounter. Mechanistic experiments revealed that butyrate uncoupled the tricarboxylic acid cycle from glycolytic input in CD8+ T cells, which allowed preferential fueling of oxidative phosphorylation through sustained glutamine utilization and fatty acid catabolism. Our findings reveal a role for the microbiota in promoting CD8+ T cell long-term survival as memory cells and suggest that microbial metabolites guide the metabolic rewiring of activated CD8+ T cells to enable this transition.
Asunto(s)
Butiratos/metabolismo , Linfocitos T CD8-positivos/inmunología , Ácidos Grasos Volátiles/metabolismo , Memoria Inmunológica , Microbiota/inmunología , Traslado Adoptivo , Animales , Antígenos/inmunología , Diferenciación Celular , Células Cultivadas , Glucólisis , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-ReducciónRESUMEN
Lipid droplets (LDs) provide a reservoir for triacylglycerol storage and are a central hub for fatty acid trafficking and signaling in cells. Lipolysis promotes mitochondrial biogenesis and oxidative metabolism via a SIRT1/PGC-1α/PPARα-dependent pathway through an unknown mechanism. Herein, we identify that monounsaturated fatty acids (MUFAs) allosterically activate SIRT1 toward select peptide-substrates such as PGC-1α. MUFAs enhance PGC-1α/PPARα signaling and promote oxidative metabolism in cells and animal models in a SIRT1-dependent manner. Moreover, we characterize the LD protein perilipin 5 (PLIN5), which is known to enhance mitochondrial biogenesis and function, to be a fatty-acid-binding protein that preferentially binds LD-derived monounsaturated fatty acids and traffics them to the nucleus following cAMP/PKA-mediated lipolytic stimulation. Thus, these studies identify the first-known endogenous allosteric modulators of SIRT1 and characterize a LD-nuclear signaling axis that underlies the known metabolic benefits of MUFAs and PLIN5.
Asunto(s)
Ácidos Grasos Monoinsaturados/metabolismo , Gotas Lipídicas/química , Perilipina-5/metabolismo , Sirtuina 1/metabolismo , Regulación Alostérica , Animales , Transporte Biológico , Línea Celular , Células Cultivadas , Dieta , Ácidos Grasos/metabolismo , Lipasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Aceite de Oliva , Perilipina-5/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transcripción GenéticaRESUMEN
Fatty acids are metabolized and synthesized as energy substrates during biological responses. Long- and medium-chain fatty acids derived mainly from dietary triglycerides, and short-chain fatty acids (SCFAs) produced by gut microbial fermentation of the otherwise indigestible dietary fiber, constitute the major sources of free fatty acids (FFAs) in the metabolic network. Recently, increasing evidence indicates that FFAs serve not only as energy sources but also as natural ligands for a group of orphan G protein-coupled receptors (GPCRs) termed free fatty acid receptors (FFARs), essentially intertwining metabolism and immunity in multiple ways, such as via inflammation regulation and secretion of peptide hormones. To date, several FFARs that are activated by the FFAs of various chain lengths have been identified and characterized. In particular, FFAR1 (GPR40) and FFAR4 (GPR120) are activated by long-chain saturated and unsaturated fatty acids, while FFAR3 (GPR41) and FFAR2 (GPR43) are activated by SCFAs, mainly acetate, butyrate, and propionate. In this review, we discuss the recent reports on the key physiological functions of the FFAR-mediated signaling transduction pathways in the regulation of metabolism and immune responses. We also attempt to reveal future research opportunities for developing therapeutics for metabolic and immune disorders.
Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Humanos , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/fisiología , Receptores Acoplados a Proteínas G/fisiologíaRESUMEN
Hirschsprung disease (HSCR), one of several neurocristopathies in children, is characterized by nerve loss in the large intestine and is mainly treated by surgery, which causes severe complications. Enteric neural crest-derived cell (ENCC) transplantation is a potential therapeutic strategy; however, so far with poor efficacy. Here, we assessed whether and how fecal microbiota transplantation (FMT) could improve ENCC transplantation in a rat model of hypoganglionosis; a condition similar to HSCR, with less intestinal innervation. We found that the hypoganglionosis intestinal microenvironment negatively influenced the ENCC functional phenotype in vitro and in vivo. Combining 16S rDNA sequencing and targeted mass spectrometry revealed microbial dysbiosis and reduced short-chain fatty acid (SCFA) production in the hypoganglionic gut. FMT increased the abundance of Bacteroides and Clostridium, SCFA production, and improved outcomes following ENCC transplantation. SCFAs alone stimulated ENCC proliferation, migration, and supported ENCC transplantation. Transcriptome-wide mRNA sequencing identified MAPK signaling as the top differentially regulated pathway in response to SCFA exposure, and inhibition of MEK1/2 signaling abrogated the SCFA-mediated effects on ENCC. This study demonstrates that FMT improves cell therapy for hypoganglionosis via short-chain fatty acid metabolism-induced MEK1/2 signaling.
Asunto(s)
Trasplante de Microbiota Fecal , Enfermedad de Hirschsprung , Ratas , Animales , Enfermedad de Hirschsprung/terapia , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/metabolismo , Transducción de Señal , Ácidos Grasos Volátiles/metabolismo , Tratamiento Basado en Trasplante de Células y TejidosRESUMEN
Accumulating evidence indicates that gut microbiota dysbiosis is associated with increased blood-brain barrier (BBB) permeability and contributes to Alzheimer's disease (AD) pathogenesis. In contrast, the influence of gut microbiota on the blood-cerebrospinal fluid (CSF) barrier has not yet been studied. Here, we report that mice lacking gut microbiota display increased blood-CSF barrier permeability associated with disorganized tight junctions (TJs), which can be rescued by recolonization with gut microbiota or supplementation with short-chain fatty acids (SCFAs). Our data reveal that gut microbiota is important not only for the establishment but also for the maintenance of a tight barrier. Also, we report that the vagus nerve plays an important role in this process and that SCFAs can independently tighten the barrier. Administration of SCFAs in AppNL-G-F mice improved the subcellular localization of TJs at the blood-CSF barrier, reduced the ß-amyloid (Aß) burden, and affected microglial phenotype. Altogether, our results suggest that modulating the microbiota and administering SCFAs might have therapeutic potential in AD via blood-CSF barrier tightening and maintaining microglial activity and Aß clearance.
Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Microbiota , Ratones , Animales , Barrera Hematoencefálica/patología , Microbioma Gastrointestinal/fisiología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Ácidos Grasos VolátilesRESUMEN
Reprogramming of lipid metabolism is emerging as a hallmark of cancer, yet involvement of specific fatty acids (FA) species and related enzymes in tumorigenesis remains unclear. While previous studies have focused on involvement of long-chain fatty acids (LCFAs) including palmitate in cancer, little attention has been paid to the role of very long-chain fatty acids (VLCFAs). Here, we show that depletion of acetyl-CoA carboxylase (ACC1), a critical enzyme involved in the biosynthesis of fatty acids, inhibits both de novo synthesis and elongation of VLCFAs in human cancer cells. ACC1 depletion markedly reduces cellular VLCFA but only marginally influences LCFA levels, including palmitate that can be nutritionally available. Therefore, tumor growth is specifically susceptible to regulation of VLCFAs. We further demonstrate that VLCFA deficiency results in a significant decrease in ceramides as well as downstream glucosylceramides and sphingomyelins, which impairs mitochondrial morphology and renders cancer cells sensitive to oxidative stress and cell death. Taken together, our study highlights that VLCFAs are selectively required for cancer cell survival and reveals a potential strategy to suppress tumor growth.
Asunto(s)
Neoplasias , Estearatos , Humanos , Estearatos/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Palmitatos/metabolismo , Neoplasias/genética , Neoplasias/metabolismoRESUMEN
Nutritional supplementation with probiotics can prevent pathologic bone loss. Here we examined the impact of supplementation with Lactobacillus rhamnosus GG (LGG) on bone homeostasis in eugonadic young mice. Micro-computed tomography revealed that LGG increased trabecular bone volume in mice, which was due to increased bone formation. Butyrate produced in the gut following LGG ingestion, or butyrate fed directly to germ-free mice, induced the expansion of intestinal and bone marrow (BM) regulatory T (Treg) cells. Interaction of BM CD8+ T cells with Treg cells resulted in increased secretion of Wnt10b, a bone anabolic Wnt ligand. Mechanistically, Treg cells promoted the assembly of a NFAT1-SMAD3 transcription complex in CD8+ cells, which drove expression of Wnt10b. Reducing Treg cell numbers, or reconstitution of TCRß-/- mice with CD8+ T cells from Wnt10b-/- mice, prevented butyrate-induced bone formation and bone mass acquisition. Thus, butyrate concentrations regulate bone anabolism via Treg cell-mediated regulation of CD8+ T cell Wnt10b production.
Asunto(s)
Butiratos/farmacología , Osteogénesis/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Proteínas Wnt/metabolismo , Animales , Butiratos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Comunicación Celular , Proliferación Celular/efectos de los fármacos , Femenino , Lacticaseibacillus rhamnosus/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Probióticos/administración & dosificación , Probióticos/metabolismo , Linfocitos T Reguladores/citología , Proteínas Wnt/genéticaRESUMEN
Cells require a constant supply of fatty acids to survive and proliferate. Fatty acids incorporate into membrane and storage glycerolipids through a series of endoplasmic reticulum (ER) enzymes, but how these enzymes are regulated is not well understood. Here, using a combination of CRISPR-based genetic screens and unbiased lipidomics, we identified calcineurin B homologous protein 1 (CHP1) as a major regulator of ER glycerolipid synthesis. Loss of CHP1 severely reduces fatty acid incorporation and storage in mammalian cells and invertebrates. Mechanistically, CHP1 binds and activates GPAT4, which catalyzes the initial rate-limiting step in glycerolipid synthesis. GPAT4 activity requires CHP1 to be N-myristoylated, forming a key molecular interface between the two proteins. Interestingly, upon CHP1 loss, the peroxisomal enzyme, GNPAT, partially compensates for the loss of ER lipid synthesis, enabling cell proliferation. Thus, our work identifies a conserved regulator of glycerolipid metabolism and reveals plasticity in lipid synthesis of proliferating cells.
Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/enzimología , Glicéridos/biosíntesis , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Lipogénesis , Células 3T3 , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/genética , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Glicerol-3-Fosfato O-Aciltransferasa/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células Jurkat , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Ratones , Ácido Palmítico/toxicidad , Unión ProteicaRESUMEN
Diet and the gut microbiota have a profound influence on physiology and health, however, mechanisms are still emerging. Here we outline several pathways that gut microbiota products, particularly short-chain fatty acids (SCFAs), use to maintain gut and immune homeostasis. Dietary fibre is fermented by the gut microbiota in the colon, and large quantities of SCFAs such as acetate, propionate, and butyrate are produced. Dietary fibre and SCFAs enhance epithelial integrity and thereby limit systemic endotoxemia. Moreover, SCFAs inhibit histone deacetylases (HDAC), and thereby affect gene transcription. SCFAs also bind to 'metabolite-sensing' G-protein coupled receptors (GPCRs) such as GPR43, which promotes immune homeostasis. The enormous amounts of SCFAs produced in the colon are sufficient to lower pH, which affects the function of proton sensors such as GPR65 expressed on the gut epithelium and immune cells. GPR65 is an anti-inflammatory Gαs-coupled receptor, which leads to the inhibition of inflammatory cytokines. The importance of GPR65 in inflammatory diseases is underscored by genetics associated with the missense variant I231L (rs3742704), which is associated with human inflammatory bowel disease, atopic dermatitis, and asthma. There is enormous scope to manipulate these pathways using specialized diets that release very high amounts of specific SCFAs in the gut, and we believe that therapies that rely on chemically modified foods is a promising approach. Such an approach includes high SCFA-producing diets, which we have shown to decrease numerous inflammatory western diseases in mouse models. These diets operate at many levels - increased gut integrity, changes to the gut microbiome, and promotion of immune homeostasis, which represents a new and highly promising way to prevent or treat human disease.
Asunto(s)
Acetatos , Ácidos Grasos Volátiles , Animales , Ratones , Humanos , Ácidos Grasos Volátiles/metabolismo , Butiratos/metabolismo , Fibras de la Dieta , InmunomodulaciónRESUMEN
Protein lipidation plays critical roles in regulating protein function and localization. However, the chemical diversity and specificity of fatty acyl group utilization have not been investigated using untargeted approaches, and it is unclear to what extent structures and biosynthetic origins of S-acyl moieties differ from N- and O-fatty acylation. Here, we show that fatty acylation patterns in Caenorhabditis elegans differ markedly between different amino acid residues. Hydroxylamine capture revealed predominant cysteine S-acylation with 15-methylhexadecanoic acid (isoC17:0), a monomethyl branched-chain fatty acid (mmBCFA) derived from endogenous leucine catabolism. In contrast, enzymatic protein hydrolysis showed that N-terminal glycine was acylated almost exclusively with straight-chain myristic acid, whereas lysine was acylated preferentially with two different mmBCFAs and serine was acylated promiscuously with a broad range of fatty acids, including eicosapentaenoic acid. Global profiling of fatty acylated proteins using a set of click chemistry-capable alkyne probes for branched- and straight-chain fatty acids uncovered 1,013 S-acylated proteins and 510 hydroxylamine-resistant N- or O-acylated proteins. Subsets of S-acylated proteins were labeled almost exclusively by either a branched-chain or a straight-chain probe, demonstrating acylation specificity at the protein level. Acylation specificity was confirmed for selected examples, including the S-acyltransferase DHHC-10. Last, homology searches for the identified acylated proteins revealed a high degree of conservation of acylation site patterns across metazoa. Our results show that protein fatty acylation patterns integrate distinct branches of lipid metabolism in a residue- and protein-specific manner, providing a basis for mechanistic studies at both the amino acid and protein levels.