Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 766
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
CA Cancer J Clin ; 70(5): 404-423, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32767764

RESUMEN

Bladder cancer accounts for nearly 170,000 deaths worldwide annually. For over 4 decades, the systemic management of muscle-invasive and advanced bladder cancer has primarily consisted of platinum-based chemotherapy. Over the past 10 years, innovations in sequencing technologies have led to rapid genomic characterization of bladder cancer, deepening our understanding of bladder cancer pathogenesis and exposing potential therapeutic vulnerabilities. On the basis of its high mutational burden, immune checkpoint inhibitors were investigated in advanced bladder cancer, revealing durable responses in a subset of patients. These agents are now approved for several indications and highlight the changing treatment landscape of advanced bladder cancer. In addition, commonly expressed molecular targets were leveraged to develop targeted therapies, such as fibroblast growth factor receptor inhibitors and antibody-drug conjugates. The molecular characterization of bladder cancer and the development of novel therapies also have stimulated investigations into optimizing treatment approaches for muscle-invasive bladder cancer. Herein, the authors review the history of muscle-invasive and advanced bladder cancer management, highlight the important molecular characteristics of bladder cancer, describe the major advances in treatment, and offer future directions for therapeutic development.


Asunto(s)
Invasividad Neoplásica , Neoplasias de la Vejiga Urinaria/terapia , Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/uso terapéutico , Biomarcadores/análisis , Ensayos Clínicos como Asunto , Terapia Combinada , Cistectomía , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Músculo Liso/patología , Tratamientos Conservadores del Órgano , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/patología
2.
EMBO J ; 40(14): e107182, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34086370

RESUMEN

Integration of signalling downstream of individual receptor tyrosine kinases (RTKs) is crucial to fine-tune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration remains poorly elucidated. Combining quantitative phosphoproteomics and targeted assays, we generated a detailed picture of recycling-dependent fibroblast growth factor (FGF) signalling in breast cancer cells, with a focus on distinct FGF receptors (FGFRs). We discovered reciprocal priming between FGFRs and epidermal growth factor (EGF) receptor (EGFR) that is coordinated at recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFR-mediated proliferation but not cell invasion. In turn, FGFR signalling primes EGF-mediated outputs via EGFR threonine 693 phosphorylation. This reciprocal priming between distinct families of RTKs from recycling endosomes exemplifies a novel signalling integration hub where recycling endosomes orchestrate cellular behaviour. Therefore, targeting reciprocal priming over individual receptors may improve personalized therapies in breast and other cancers.


Asunto(s)
Endosomas/metabolismo , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Tirosina/metabolismo , Línea Celular Tumoral , Endocitosis/fisiología , Receptores ErbB/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Fosforilación/fisiología
3.
Drug Resist Updat ; 73: 101064, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387284

RESUMEN

AIMS: Pancreatic ductal adenocarcinoma (PDAC) is often intrinsically-resistant to standard-of-care chemotherapies such as gemcitabine. Acquired gemcitabine resistance (GemR) can arise from treatment of initially-sensitive tumors, and chemotherapy can increase tumor aggressiveness. We investigated the molecular mechanisms of chemoresistance and chemotherapy-driven tumor aggressiveness, which are understood incompletely. METHODS: Differential proteomic analysis was employed to investigate chemotherapy-driven chemoresistance drivers and responses of PDAC cells and patient-derived tumor xenografts (PDX) having different chemosensitivities. We also investigated the prognostic value of FGFR1 expression in the efficacy of selective pan-FGFR inhibitor (FGFRi)-gemcitabine combinations. RESULTS: Quantitative proteomic analysis of a highly-GemR cell line revealed fibroblast growth factor receptor 1 (FGFR1) as the highest-expressed receptor tyrosine kinase. FGFR1 knockdown or FGFRi co-treatment enhanced gemcitabine efficacy and decreased GemR marker expression, implicating FGFR1 in augmentation of GemR. FGFRi treatment reduced PDX tumor progression and prolonged survival significantly, even in highly-resistant tumors in which neither single-agent showed efficacy. Gemcitabine exacerbated aggressiveness of highly-GemR tumors, based upon proliferation and metastatic markers. Combining FGFRi with gemcitabine or gemcitabine+nab-paclitaxel reversed tumor aggressiveness and progression, and prolonged survival significantly. In multiple PDAC PDXs, FGFR1 expression correlated with intrinsic tumor gemcitabine sensitivity. CONCLUSION: FGFR1 drives chemoresistance and tumor aggressiveness, which FGFRi can reverse.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Proliferación Celular , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Resistencia a Antineoplásicos/genética , Gemcitabina , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteómica , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/uso terapéutico
4.
J Cell Mol Med ; 28(14): e18551, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054573

RESUMEN

Despite numerous investigations on the influence of fibroblast growth factor 23 (FGF23), α-Klotho and FGF receptor-1 (FGFR1) on osteoporosis (OP), there is no clear consensus. Mendelian randomization (MR) analysis was conducted on genome-wide association studies (GWASs)-based datasets to evaluate the causal relationship between FGF23, α-Klotho, FGFR1 and OP. The primary endpoint was the odds ratio (OR) of the inverse-variance weighted (IVW) approach. Furthermore, we stably transfected FGF23-mimic or siRNA-FGF23 into human bone marrow mesenchymal stem cells (hBMSCs) in culture and determined its cell proliferation and the effects on osteogenic differentiation. Using MR analysis, we demonstrated a strong correlation between serum FGF23 levels and Heel- and femoral neck-BMDs, with subsequent ORs of 0.919 (95% CI: 0.860-0.983, p = 0.014) and 0.751 (95% CI: 0.587-0.962; p = 0.023), respectively. The expression levels of FGF23 were significantly increased in femoral neck of patients with OP than in the control cohort (p < 0.0001). Based on our in vitro investigation, after overexpression of FGF23, compared to the control group, the BMSC's proliferation ability decreased, the expression level of key osteogenic differentiation genes (RUNX2, OCN and OSX) significantly reduced, mineralized nodules and ALP activity significantly decreased. After silencing FGF23, it showed a completely opposite trend. Augmented FGF23 levels are causally associated with increased risk of OP. Similarly, FGF23 overexpression strongly inhibits the osteogenic differentiation of hBMSCs, thereby potentially aggravating the pathological process of OP.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Células Madre Mesenquimatosas , Osteogénesis , Osteoporosis , Humanos , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Proliferación Celular/genética , Diferenciación Celular/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas Klotho/metabolismo , Femenino , Glucuronidasa/genética , Glucuronidasa/metabolismo , Densidad Ósea/genética , Masculino , Persona de Mediana Edad , Cuello Femoral/metabolismo , Cuello Femoral/patología
5.
J Biol Chem ; 299(1): 102729, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410439

RESUMEN

Fibroblast growth factor receptor 1 (FGFR1) is a receptor tyrosine kinase that plays a major role in developmental processes and metabolism. The dysregulation of FGFR1 through genetic aberrations leads to skeletal and metabolic diseases as well as cancer. For this reason, FGFR1 is a promising therapeutic target, yet a very challenging one due to potential on-target toxicity. More puzzling is that both agonistic and antagonistic FGFR1 antibodies are reported to exhibit similar toxicity profiles in vivo, namely weight loss. In this study, we aimed to assess and compare the mechanism of action of these molecules to better understand this apparent contradiction. By systematically comparing the binding of these antibodies and the activation or the inhibition of the major FGFR1 signaling events, we demonstrated that the molecules displayed similar properties and can behave either as an agonist or antagonist depending on the presence or the absence of the endogenous ligand. We further demonstrated that these findings translated in xenografts mice models. In addition, using time-resolved FRET and mass spectrometry analysis, we showed a functionally distinct FGFR1 active conformation in the presence of an antibody that preferentially activates the FGFR substrate 2 (FRS2)-dependent signaling pathway, demonstrating that modulating the geometry of a FGFR1 dimer can effectively change the signaling outputs and ultimately the activity of the molecule in preclinical studies. Altogether, our results highlighted how bivalent antibodies can exhibit both agonistic and antagonistic activities and have implications for targeting other receptor tyrosine kinases with antibodies.


Asunto(s)
Anticuerpos Monoclonales , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Transducción de Señal , Animales , Humanos , Ratones , Neoplasias , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/agonistas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Anticuerpos Monoclonales/farmacología
6.
Mol Cancer ; 23(1): 39, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38378518

RESUMEN

BACKGROUND: Focal adhesion signaling involving receptor tyrosine kinases (RTK) and integrins co-controls cancer cell survival and therapy resistance. However, co-dependencies between these receptors and therapeutically exploitable vulnerabilities remain largely elusive in HPV-negative head and neck squamous cell carcinoma (HNSCC). METHODS: The cytotoxic and radiochemosensitizing potential of targeting 10 RTK and ß1 integrin was determined in up to 20 3D matrix-grown HNSCC cell models followed by drug screening and patient-derived organoid validation. RNA sequencing and protein-based biochemical assays were performed for molecular characterization. Bioinformatically identified transcriptomic signatures were applied to patient cohorts. RESULTS: Fibroblast growth factor receptor (FGFR 1-4) targeting exhibited the strongest cytotoxic and radiosensitizing effects as monotherapy and combined with ß1 integrin inhibition, exceeding the efficacy of the other RTK studied. Pharmacological pan-FGFR inhibition elicited responses ranging from cytotoxicity/radiochemosensitization to resistance/radiation protection. RNA sequence analysis revealed a mesenchymal-to-epithelial transition (MET) in sensitive cell models, whereas resistant cell models exhibited a partial epithelial-to-mesenchymal transition (EMT). Accordingly, inhibition of EMT-associated kinases such as EGFR caused reduced adaptive resistance and enhanced (radio)sensitization to FGFR inhibition cell model- and organoid-dependently. Transferring the EMT-associated transcriptomic profiles to HNSCC patient cohorts not only demonstrated their prognostic value but also provided a conclusive validation of the presence of EGFR-related vulnerabilities that can be strategically exploited for therapeutic interventions. CONCLUSIONS: This study demonstrates that pan-FGFR inhibition elicits a beneficial radiochemosensitizing and a detrimental radioprotective potential in HNSCC cell models. Adaptive EMT-associated resistance appears to be of clinical importance, and we provide effective molecular approaches to exploit this therapeutically.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Integrina beta1/genética , Línea Celular Tumoral , Proteínas Tirosina Quinasas Receptoras/genética , Antineoplásicos/uso terapéutico , Receptores ErbB/metabolismo , Fenotipo , Transición Epitelial-Mesenquimal/genética
7.
J Hepatol ; 80(2): 322-334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37972659

RESUMEN

BACKGROUND & AIMS: There is a knowledge gap in understanding mechanisms of resistance to fibroblast growth factor receptor (FGFR) inhibitors (FGFRi) and a need for novel therapeutic strategies to overcome it. We investigated mechanisms of acquired resistance to FGFRi in patients with FGFR2-fusion-positive cholangiocarcinoma (CCA). METHODS: A retrospective analysis of patients who received FGFRi therapy and underwent tumor and/or cell-free DNA analysis, before and after treatment, was performed. Longitudinal circulating tumor DNA samples from a cohort of patients in the phase I trial of futibatinib (NCT02052778) were assessed. FGFR2-BICC1 fusion cell lines were developed and secondary acquired resistance mutations in the mitogen-activated protein kinase (MAPK) pathway were introduced to assess their effect on sensitivity to FGFRi in vitro. RESULTS: On retrospective analysis of 17 patients with repeat sequencing following FGFRi treatment, new FGFR2 mutations were detected in 11 (64.7%) and new alterations in MAPK pathway genes in nine (52.9%) patients, with seven (41.2%) patients developing new alterations in both the FGFR2 and MAPK pathways. In serially collected plasma samples, a patient treated with an irreversible FGFRi tested positive for previously undetected BRAF V600E, NRAS Q61K, NRAS G12C, NRAS G13D and KRAS G12K mutations upon progression. Introduction of a FGFR2-BICC1 fusion into biliary tract cells in vitro sensitized the cells to FGFRi, while concomitant KRAS G12D or BRAF V600E conferred resistance. MEK inhibition was synergistic with FGFRi in vitro. In an in vivo animal model, the combination had antitumor activity in FGFR2 fusions but was not able to overcome KRAS-mediated FGFRi resistance. CONCLUSIONS: These findings suggest convergent genomic evolution in the MAPK pathway may be a potential mechanism of acquired resistance to FGFRi. CLINICAL TRIAL NUMBER: NCT02052778. IMPACT AND IMPLICATIONS: We evaluated tumors and plasma from patients who previously received inhibitors of fibroblast growth factor receptor (FGFR), an important receptor that plays a role in cancer cell growth, especially in tumors with abnormalities in this gene, such as FGFR fusions, where the FGFR gene is fused to another gene, leading to activation of cancer cell growth. We found that patients treated with FGFR inhibitors may develop mutations in other genes such as KRAS, and this can confer resistance to FGFR inhibitors. These findings have several implications for patients with FGFR2 fusion-positive tumors and provide mechanistic insight into emerging MAPK pathway alterations which may serve as a therapeutic vulnerability in the setting of acquired resistance to FGFRi.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Animales , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/uso terapéutico , Estudios Retrospectivos , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Mutación , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Inhibidores de Proteínas Quinasas/efectos adversos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo
8.
FASEB J ; 37(2): e22773, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36629784

RESUMEN

Alzheimer's disease (AD) and Parkinson's disease (PD) are age-dependent neurodegenerative disorders. There is a profound neuronal loss in the basal forebrain cholinergic system in AD and severe dopaminergic deficiency within the nigrostriatal pathway in PD. Swedish APP (APPSWE ) and SNCAA53T mutations promote Aß generation and α-synuclein aggregation, respectively, and have been linked to the pathogenesis of AD and PD. However, the mechanisms underlying selective cholinergic and dopaminergic neurodegeneration in AD and PD are still unknown. We demonstrated that APPSWE mutation enhanced Aß generation and increased cell susceptibility to Aß oligomer in cholinergic SN56 cells, whereas SNCAA53T mutations promoted aggregates formation and potentiated mutant α-synuclein oligomer-induced cytotoxicity in MN9D cells. Furthermore, syndecan-3 (SDC3) and fibroblast growth factor receptor-like 1 (FGFRL1) genes were differentially expressed in SN56 and MN9D cells carrying APPSWE or SNCAA53T mutation. SDC3 and FGFRL1 proteins were preferentially expressed in the cholinergic nucleus and dopaminergic neurons of APPSWE and SNCAA53T mouse models, respectively. Finally, the knockdown of SDC3 and FGFRL1 attenuated oxidative stress-induced cell death in SN56-APPSWE and MN9D-SNCAA53T cells. The results demonstrate that SDC3 and FGFRL1 mediated the specific effects of APPSWE and SNCAA53T on cholinergic and dopaminergic neurodegeneration in AD and PD, respectively. Our study suggests that SDC3 and FGFRL1 could be potential targets to alleviate the selective neurodegeneration in AD and PD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Sindecano-3/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo
9.
FASEB J ; 37(4): e22840, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36943397

RESUMEN

Erdafitinib is a novel fibroblast growth factor receptor (FGFR) inhibitor that has shown great therapeutic promise for solid tumor patients with FGFR3 alterations, especially in urothelial carcinoma. However, the mechanisms of resistance to FGFR inhibitors remain poorly understood. In this study, we found Erdafitinib could kill cells by inducing incomplete autophagy and increasing intracellular reactive oxygen species levels. We have established an Erdafitinib-resistant cell line, RT-112-RS. whole transcriptome RNA sequencing (RNA-Seq) and Cytospace analysis performed on Erdafitinib-resistant RT-112-RS cells and parental RT-112 cells introduced P4HA2 as a linchpin to Erdafitinib resistance. The gain and loss of function study provided evidence for P4HA2 conferring such resistance in RT-112 cells. Furthermore, P4HA2 could stabilize the HIF-1α protein which then activated downstream target genes to reduce reactive oxygen species levels in bladder cancer. In turn, HIF-1α could directly bind to P4HA2 promoter, indicating a positive loop between P4HA2 and HIF-1α in bladder cancer. These results suggest a substantial role of P4HA2 in mediating acquired resistance to Erdafitinib and provide a potential target for bladder cancer treatment.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/patología , Línea Celular Tumoral , Pirazoles/farmacología , Especies Reactivas de Oxígeno , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
10.
Cell Commun Signal ; 22(1): 225, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605348

RESUMEN

The endothelial glycocalyx, located at the luminal surface of the endothelium, plays an important role in the regulation of leukocyte adhesion, vascular permeability, and vascular homeostasis. Endomucin (EMCN), a component of the endothelial glycocalyx, is a mucin-like transmembrane glycoprotein selectively expressed by venous and capillary endothelium. We have previously shown that knockdown of EMCN impairs retinal vascular development in vivo and vascular endothelial growth factor 165 isoform (VEGF165)-induced cell migration, proliferation, and tube formation by human retinal endothelial cells in vitro and that EMCN is essential for VEGF165-stimulated clathrin-mediated endocytosis and signaling of VEGF receptor 2 (VEGFR2). Clathrin-mediated endocytosis is an essential step in receptor signaling and is of paramount importance for a number of receptors for growth factors involved in angiogenesis. In this study, we further investigated the molecular mechanism underlying EMCN's involvement in the regulation of VEGF-induced endocytosis. In addition, we examined the specificity of EMCN's role in angiogenesis-related cell surface receptor tyrosine kinase endocytosis and signaling. We identified that EMCN interacts with AP2 complex, which is essential for clathrin-mediated endocytosis. Lack of EMCN did not affect clathrin recruitment to the AP2 complex following VEGF stimulation, but it is necessary for the interaction between VEGFR2 and the AP2 complex during endocytosis. EMCN does not inhibit VEGFR1 and FGFR1 internalization or their downstream activities since EMCN interacts with VEGFR2 but not VEGFR1 or FGFR1. Additionally, EMCN also regulates VEGF121-induced VEGFR2 phosphorylation and internalization.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Humanos , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Sialomucinas/metabolismo , Endocitosis , Clatrina/metabolismo
11.
Liver Int ; 44(9): 2208-2219, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38829010

RESUMEN

BACKGROUND: Over recent years, there has been a notable rise in the incidence of intrahepatic cholangiocarcinoma (iCCA), which presents a significant challenge in treatment due to its complex disease characteristics and prognosis. Notably, the identification of fibroblast growth factor receptor 2 (FGFR2) fusion/rearrangement, a potential oncogenic driver primarily observed in iCCA, raises questions about its impact on the prognostic outcomes of patients undergoing surgical intervention or other therapeutic approaches. METHODS: A comprehensive search from inception to July 2023 was conducted across PubMed, Embase, Web of Science, and the Cochrane Library databases. The objective was to identify relevant publications comparing the prognosis of FGFR2 alterations and no FGFR2 alterations groups among patients with iCCA undergoing surgical resection or other systemic therapies. The primary outcome indicators, specifically Overall Survival (OS) and Disease-Free Survival (DFS), were estimated using Hazard Ratios (HRs) with 95% confidence intervals (CIs), and statistical significance was defined as p < .05. Study quality was assessed using the Newcastle-Ottawa Quality Assessment Scale. Statistical analyses were performed using Review Manager 5.4 software and Stata, version 12.0. RESULTS: Six studies, involving 1314 patients (FGFR2 alterations group n = 173 and no FGFR2 alterations group n = 1141), were included in the meta-analysis. The analysis revealed that the FGFR2 alterations group exhibited a significantly better OS prognosis compared to the no FGFR2 alterations group, with a fixed-effects combined effect size HR = 1.31, 95%CI = 1.001-1.715, p = .049. Furthermore, meta-regression and subgroup analysis showed that the length of the follow-up period did not introduce heterogeneity into the results. This finding indicates the stability and reliability of the study outcomes. CONCLUSION: The current study provides compelling evidence that FGFR2 alterations are frequently associated with improved survival outcomes for patients with iCCA undergoing surgical resection or other systemic treatments. Additionally, the study suggests that FGFR2 holds promise as a safe and dependable therapeutic target for managing metastatic, locally advanced or unresectable iCCA. This study offers a novel perspective in the realm of targeted therapy for iCCA, presenting a new and innovative approach to its treatment.


Asunto(s)
Colangiocarcinoma , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Humanos , Neoplasias de los Conductos Biliares/cirugía , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/mortalidad , Colangiocarcinoma/cirugía , Colangiocarcinoma/genética , Colangiocarcinoma/mortalidad , Supervivencia sin Enfermedad , Pronóstico , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética
12.
Pharmacol Res ; 205: 107230, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788820

RESUMEN

Immune checkpoint inhibitors (ICIs) are essential for urothelial carcinoma (UC) treatment. Fibroblast growth factor receptor (FGFR) alterations, as common oncogenic drivers in UC, have been reported to drive T cell depletion of UC immune microenvironment via up-regulating FGFR signaling, which indicated FGFR alterations potentially result in reduced response to ICIs. In addition, the selective pan-FGFR inhibitor showed better clinical benefit in clinical trials, indicating FGFR has emerged as critical therapeutic target via inhibiting FGFR signaling. The present study aims to evaluate prognosis and response to ICIs between FGFR-altered UC patients and FGFR-wildtype UC patients via 1963 UC patients and offers new insights into personalized precision therapy and combination therapy for UC.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Receptores de Factores de Crecimiento de Fibroblastos , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Inmunoterapia/métodos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias Urológicas/tratamiento farmacológico , Neoplasias Urológicas/inmunología , Pronóstico , Femenino , Masculino , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/inmunología
13.
Pediatr Blood Cancer ; 71(3): e30836, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177074

RESUMEN

Alterations of the fibroblast growth factor (FGF) signalling pathway are increasingly recognized as frequent oncogenic drivers of paediatric brain tumours. We report on three patients treated with the selective FGFR1-4 inhibitor erdafitinib. Two patients were diagnosed with a posterior fossa ependymoma group A (PFA EPN) and one with a low-grade glioma (LGG), harbouring FGFR3/FGFR1 overexpression and an FGFR1 internal tandem duplication (ITD), respectively. While both EPN patients did not respond to erdafitinib treatment, the FGFR1-ITD-harbouring tumour showed a significant decrease in tumour volume and contrast enhancement throughout treatment. The tumour remained stable 6 months after treatment discontinuation.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Estudios de Factibilidad , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Transducción de Señal , Neoplasias Encefálicas/tratamiento farmacológico
14.
Future Oncol ; 20(5): 231-243, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37916514

RESUMEN

WHAT IS THIS SUMMARY ABOUT?: This is a plain language summary of two articles describing the results from a study called BLC2001. The study examined the effect of a medication called erdafitinib on participants with a type of cancer known as urothelial carcinoma that had either spread beyond the bladder or urinary tract into surrounding organs and/or nearby muscles (locally advanced) and was not removable by surgery (unresectable) or had spread to other parts of the body (metastatic). In this study, researchers wanted to learn if erdafitinib was safe and effective at stopping or reducing tumor growth in participants with locally advanced and unresectable or metastatic urothelial carcinoma with certain genetic alterations (changes in DNA sequence) in two related genes called fibroblast growth factor receptor 2 (FGFR2) and 3 (FGFR3). Treatment options for people with this disease are very limited; some may not have responded to other therapies, or their tumors continued to grow after they received other treatments. 212 participants took part in the study. 111 participants were treated with oral (by mouth) erdafitinib at different doses to find a recommended dose regimen. 101 additional participants then received the recommended starting dose of erdafitinib at 8 mg daily with possible increase to 9 mg daily, these participants make up the 8 mg regimen group. WHAT WERE THE RESULTS OF THE BLC2001 STUDY IN THE 8 MG REGIMEN GROUP?: Researchers found that tumors decreased in size or completely disappeared in 40% of participants. With approximately 1 year of follow-up, an estimated 55% of participants were still alive, and after 2 years, an estimated 31% of participants were still alive. Common side effects of erdafitinib included high phosphate levels in the blood (hyperphosphatemia), an inflamed and sore mouth, diarrhea, and dry mouth. WHAT DO THE RESULTS MEAN?: Participants had locally advanced and unresectable or metastatic urothelial carcinoma with certain FGFR gene alterations that had been treated with erdafitinib after previous chemotherapy and/or a type of medicine that uses the immune system to help the body fight cancer (immunotherapy). The BLC2001 study found that some participants treated with 8 mg erdafitinib had the benefit of a longer period without their cancer growing or spreading to other parts of the body. About 80% of participants achieved some level of disease control where their tumor shrank or remained stable.


Asunto(s)
Carcinoma de Células Transicionales , Quinoxalinas , Neoplasias de la Vejiga Urinaria , Humanos , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Estudios de Seguimiento , Pirazoles/uso terapéutico , Ensayos Clínicos Fase II como Asunto
15.
Acta Pharmacol Sin ; 45(5): 988-1001, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38279043

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease that is substantially associated with obesity-induced chronic inflammation. Macrophage activation and macrophage-medicated inflammation play crucial roles in the development and progression of NAFLD. Furthermore, fibroblast growth factor receptor 1 (FGFR1) has been shown to be essentially involved in macrophage activation. This study investigated the role of FGFR1 in the NAFLD pathogenesis and indicated that a high-fat diet (HFD) increased p-FGFR1 levels in the mouse liver, which is associated with increased macrophage infiltration. In addition, macrophage-specific FGFR1 knockout or administration of FGFR1 inhibitor markedly protected the liver from HFD-induced lipid accumulation, fibrosis, and inflammatory responses. The mechanistic study showed that macrophage-specific FGFR1 knockout alleviated HFD-induced liver inflammation by suppressing the activation of MAPKs and TNF signaling pathways and reduced fat deposition in hepatocytes, thereby inhibiting the activation of hepatic stellate cells. In conclusion, the results of this research revealed that FGFR1 could protect the liver of HFD-fed mice by inhibiting MAPKs/TNF-mediated inflammatory responses in macrophages. Therefore, FGFR1 can be employed as a target to prevent the development and progression of NAFLD.


Asunto(s)
Dieta Alta en Grasa , Macrófagos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Factor de Necrosis Tumoral alfa , Animales , Dieta Alta en Grasa/efectos adversos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Masculino , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Noqueados , Hígado/patología , Hígado/metabolismo , Transducción de Señal , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
16.
Int J Clin Oncol ; 29(10): 1516-1527, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39017806

RESUMEN

BACKGROUND: In the THOR trial (NCT03390504) Cohort 1, erdafitinib demonstrated significantly prolonged overall survival (OS) (median 12.1 versus 7.8 months) and reduced risk of death by 36% (hazard ratio 0.64, P = 0.005) compared with chemotherapy in metastatic urothelial carcinoma (mUC) patients with FGFR alterations who progressed after ≥ 1 prior treatments, including anti-PD-(L)1. There have been no reports of the Japanese subgroup results yet. METHODS: THOR Cohort 1 randomized patients to erdafitinib once daily or docetaxel/vinflunine once every 3 weeks. Primary endpoint was OS. Secondary endpoints included progression-free survival (PFS) and objective response rate (ORR). No specific statistical power was set for this Japanese subgroup analysis. RESULTS: Of 266 patients randomized, 27 (14 erdafitinib; 13 chemotherapy) were Japanese. Baseline characteristics were generally similar between treatments and to the overall population, except for more males, lower body weight, and more upper tract primary tumors among Japanese patients. Compared with chemotherapy, erdafitinib showed improved OS (median 25.4 versus 12.4 months), PFS (median 8.4 versus 2.9 months) and ORR (57.1% versus 15.4%). Any grade treatment-related adverse events (AEs) occurred in all patients from both arms but Grade 3/4 AEs and AEs leading to discontinuation were lower in the erdafitinib arm. No new safety signals were observed in the Japanese subgroup. CONCLUSION: In the Japanese subgroup, erdafitinib showed improved survival and response compared to chemotherapy, with no new safety concerns. These results support erdafitinib as a treatment option for Japanese mUC patients with FGFR alterations, and early FGFR testing after diagnosis of mUC should be considered.


Asunto(s)
Quinoxalinas , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Quinoxalinas/uso terapéutico , Anciano de 80 o más Años , Pirazoles/uso terapéutico , Neoplasias Urológicas/tratamiento farmacológico , Neoplasias Urológicas/patología , Receptores de Factores de Crecimiento de Fibroblastos , Japón , Supervivencia sin Progresión , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/secundario , Adulto , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Mutación , Pueblos del Este de Asia
17.
Endocr J ; 71(4): 335-343, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38556320

RESUMEN

Bone secrets the hormone, fibroblast growth factor 23 (FGF23), as an endocrine organ to regulate blood phosphate level. Phosphate is an essential mineral for the human body, and around 85% of phosphate is present in bone as a constituent of hydroxyapatite, Ca10(PO4)6(OH)2. Because hypophosphatemia induces rickets/osteomalacia, and hyperphosphatemia results in ectopic calcification, blood phosphate (inorganic form) level must be regulated in a narrow range (2.5 mg/dL to 4.5 me/dL in adults). However, as yet it is unknown how bone senses changes in blood phosphate level, and how bone regulates the production of FGF23. Our previous data indicated that high extracellular phosphate phosphorylates FGF receptor 1 (FGFR1) in an unliganded manner, and its downstream intracellular signaling pathway regulates the expression of GALNT3. Furthermore, the post-translational modification of FGF23 protein via a gene product of GALNT3 is the main regulatory mechanism of enhanced FGF23 production due to high dietary phosphate. Therefore, our research group proposes that FGFR1 works as a phosphate-sensing receptor at least in the regulation of FGF23 production and blood phosphate level, and phosphate behaves as a first messenger. Phosphate is involved in various effects, such as stimulation of parathyroid hormone (PTH) synthesis, vascular calcification, and renal dysfunction. Several of these responses to phosphate are considered as phosphate toxicity. However, it is not clear whether FGFR1 is involved in these responses to phosphate. The elucidation of phosphate-sensing mechanisms may lead to the identification of treatment strategies for patients with abnormal phosphate metabolism.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Fosfatos , Humanos , Fosfatos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal , Huesos/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Hiperfosfatemia/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
18.
Endocr J ; 71(7): 643-650, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38569854

RESUMEN

Achondroplasia (ACH) is a representative skeletal disorder characterized by rhizomelic shortened limbs and short stature. ACH is classified as belonging to the fibroblast growth factor receptor 3 (FGFR3) group. The downstream signal transduction of FGFR3 consists of STAT1 and RAS/RAF/MEK/ERK pathways. The mutant FGFR3 found in ACH is continuously phosphorylated and activates downstream signals, resulting in abnormal proliferation and differentiation of chondrocytes in the growth plate and cranial base synchondrosis. A patient registry has been developed and has contributed to revealing the natural history of ACH patients. Concerning the short stature, the adult height of ACH patients ranges between 126.7-135.2 cm for men and 119.9-125.5 cm for women in many countries. Along with severe short stature, foramen magnum stenosis and spinal canal stenosis are major complications: the former leads to sleep apnea, breathing disorders, myelopathy, hydrocephalus, and sudden death, and the latter causes pain in the extremities, numbness, muscle weakness, movement disorders, intermittent claudication, and bladder-rectal disorders. Growth hormone treatment is available for ACH only in Japan. However, the effect of the treatment on adult height is not satisfactory. Recently, the neutral endopeptidase-resistant CNP analogue vosoritide has been approved as a new drug for ACH. Additionally in development are a tyrosine kinase inhibitor, a soluble FGFR3, an antibody against FGFR3, meclizine, and the FGF2-aptamer. New drugs will bring a brighter future for patients with ACH.


Asunto(s)
Acondroplasia , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Acondroplasia/tratamiento farmacológico , Humanos , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Desarrollo de Medicamentos , Péptido Natriurético Tipo-C/análogos & derivados
19.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255923

RESUMEN

Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that are involved in the regulation of cell proliferation, survival, and development. FGFR alterations including amplifications, fusions, rearrangements, and mutations can result in the downstream activation of tyrosine kinases, leading to tumor development. Targeting these FGFR alterations has shown to be effective in treating cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid neoplasms, and there are currently four FGFR inhibitors approved by the Food and Drug Administration (FDA). There have been developments in multiple agents targeting the FGFR pathway, including selective FGFR inhibitors, ligand traps, monoclonal antibodies, and antibody-drug conjugates. However, most of these agents have variable and low responses, with some intolerable toxicities and acquired resistances. This review will summarize previous clinical experiences and current developments in agents targeting the FGFR pathway, and will also discuss future directions for FGFR-targeting agents.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Estados Unidos , Humanos , Receptores de Factores de Crecimiento de Fibroblastos/genética , Terapia Molecular Dirigida , Conductos Biliares Intrahepáticos , Tirosina
20.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674107

RESUMEN

The fibroblast growth factor receptor 2 (FGFR2) gene is one of the most extensively studied genes with many known mutations implicated in several human disorders, including oncogenic ones. Most FGFR2 disease-associated gene mutations are missense mutations that result in constitutive activation of the FGFR2 protein and downstream molecular pathways. Many tertiary structures of the FGFR2 kinase domain are publicly available in the wildtype and mutated forms and in the inactive and activated state of the receptor. The current literature suggests a molecular brake inhibiting the ATP-binding A loop from adopting the activated state. Mutations relieve this brake, triggering allosteric changes between active and inactive states. However, the existing analysis relies on static structures and fails to account for the intrinsic structural dynamics. In this study, we utilize experimentally resolved structures of the FGFR2 tyrosine kinase domain and machine learning to capture the intrinsic structural dynamics, correlate it with functional regions and disease types, and enrich it with predicted structures of variants with currently no experimentally resolved structures. Our findings demonstrate the value of machine learning-enabled characterizations of structure dynamics in revealing the impact of mutations on (dys)function and disorder in FGFR2.


Asunto(s)
Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Humanos , Mutación , Aprendizaje Automático , Mutación Missense , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA