Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Fish Shellfish Immunol ; 112: 179-190, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32800986

RESUMEN

Monogeneans parasitise mainly the outer structures of fish, such as the gills, fins, and skin, that is, tissues covered with a mucous layer. While attached by sclerotised structures to host's surface, monogeneans feed on its blood or epidermal cells and mucus. Besides being a rich source of nutrients, these tissues also contain humoral immune factors and immune cells, which are ready to launch defence mechanisms against the tegument or gastrointestinal tract of these invaders. The exploitation of hosts' resources by the Monogenea must, therefore, be accompanied by suppressive and immunomodulatory mechanisms which protect the parasites against attacks by host immune system. Elimination of hosts' cytotoxic molecules and evasion of host immune response is often mediated by proteins secreted by the parasites. The aim of this review is to summarise existing knowledge on fish immune responses against monogeneans. Results gleaned from experimental infections illustrate the various interactions between parasites and the innate and adaptive immune system of the fish. The involvement of monogenean molecules (mainly inhibitors of peptidases) in molecular communication with host immune system is discussed.


Asunto(s)
Peces/inmunología , Interacciones Huésped-Parásitos/inmunología , Sistema Inmunológico/fisiología , Inmunomodulación , Trematodos/fisiología , Animales , Peces/parasitología
2.
Fish Shellfish Immunol ; 44(1): 287-94, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25689492

RESUMEN

Advanced vaccine research approaches needs to explore on biodegradable nanoparticles (NPs) based vaccine carrier that can serve as antigen delivery systems as well as immuno-stimulatory action to induce both innate and adaptive immune response in fish. Immunogenicity of PLA and PLGA NPs encapsulating outer membrane protein (Omp) antigen of Aeromonas hydrophila were evaluated through intra-peritoneal injection in fish, Labeo rohita. Antigen loaded PLA-Omp (223.5 ± 13.19 nm) and PLGA-Omp (166.4 ± 21.23 nm) NPs were prepared using double emulsion method by efficiently encapsulating the antigen reaching the encapsulation efficiency 44 ± 4.58% and 59.33 ± 5.13% respectively. Our formulated PLA Omp and PLGA-Omp NPs were in nanometer range (<500 nm) and could be successfully endocyted in the body. Despite low antigen loading in PLA-Omp, it showed considerably slower antigen release in vitro than PLGA-Omp NPs. Other physical properties like zetapotential values and poly dispersity index (PDI) confirmed the stability as well as monodisperse nature of the formulated nanoparticles. The spherical and isolated nature of PLA-Omp and PLGA-Omp NPs were revealed by SEM analysis. Upon immunization of all antigenic formulations (PLA-Omp NP, PLGA-Omp NP, FIA-Omp, PLA NP, PLGA NP, PBS as control), significant higher bacterial agglutination titre and haemolytic activity were observed in case of PLA-Omp and PLGA-Omp immunized groups than rest groups at both 21 days and 42 days. The specific antibody response was significantly increased and persisted up to 42 days of post immunization by PLA-Omp, PLGA-Omp, FIA-Omp. PLA-Omp NPs showed better immune response (higher bacterial agglutination titre, haemolytic activity, specific antibody titre, higher percent survival upon A. hydrophila challenge) than PLGA-Omp in L. rohita confirming its better efficacy. Comparable antibody response of PLA-Omp and PLGA-Omp with FIA-Omp treated groups suggested that PLA and PLGA could be replacement for Freund's adjuvant (for stimulating antibody response) to overcome many side effects offering long lasting immunity. Our encouraging results suggest that PLA/PLGA nanoparticles based delivery system could be a novel antigen carrier for parenteral immunization in fish.


Asunto(s)
Antígenos Bacterianos/administración & dosificación , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Cyprinidae/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Ácido Láctico/administración & dosificación , Nanopartículas/administración & dosificación , Ácido Poliglicólico/administración & dosificación , Aeromonas hydrophila , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Cyprinidae/sangre , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Inmunización , Microscopía Electrónica de Rastreo , Nanopartículas/ultraestructura , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
3.
Biology (Basel) ; 11(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36138795

RESUMEN

Marine Gram-positive bacterial pathogens, including Renibacterium salmoninarum, Mycobacterium marinum, Nocardia seriolae, Lactococcus garvieae, and Streptococcus spp. cause economic losses in marine fish aquaculture worldwide. Comprehensive information on these pathogens and their dynamic interactions with their respective fish-host systems are critical to developing effective prophylactic measures and treatments. While much is known about bacterial virulence and fish immune response, it is necessary to synthesize the knowledge in terms of host-pathogen interactions as a centerpiece to establish a crucial connection between the intricate details of marine Gram-positive pathogens and their fish hosts. Therefore, this review provides a holistic view and discusses the different stages of the host-pathogen interactions of marine Gram-positive pathogens. Gram-positive pathogens can invade fish tissues, evade the fish defenses, proliferate in the host system, and modulate the fish immune response. Marine Gram-positive pathogens have a unique set of virulence factors that facilitate adhesion (e.g., adhesins, hemagglutination activity, sortase, and capsules), invasion (e.g., toxins, hemolysins/cytolysins, the type VII secretion system, and immune-suppressive proteins), evasion (e.g., free radical quenching, actin-based motility, and the inhibition of phagolysosomal fusion), and proliferation and survival (e.g., heme utilization and siderophore-mediated iron acquisition systems) in the fish host. After infection, the fish host initiates specific innate and adaptive immune responses according to the extracellular or intracellular mechanism of infection. Although efforts have continued to be made in understanding the complex interplay at the host-pathogen interface, integrated omics-based investigations targeting host-pathogen-marine environment interactions hold promise for future research.

4.
Environ Toxicol Pharmacol ; 90: 103818, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35074562

RESUMEN

The aim of this study was to reveal the effects of foodborne fluoxetine on morphological and condition profile, hematological profile, biochemical and oxidative stress indices on juvenile rainbow trout. The study was performed according to OECD Guideline No. 215. Fluoxetine was incorporated into Biomar 921 pellets at a dose of 0.047 mg/kg (environmental concentration), 0.577 mg/kg and 6.7 mg/kg. There was statistically significant change in hematological profile, including an increasing trend in neutrophil/lymphocyte ratio and a decreasing trend in the number of lymphocytes. Measurements of oxidative stress indicated decreased activity of the detoxifying enzyme glutathione-S-transferase in the liver and kidney. However, the measurement of GR, GPx, CAT, SOD activity, and TBARS showed no changes. Histopathological examination revealed damage to the proximal tubules of caudal kidney in exposed groups. This study confirms that fluoxetine has a significant effect on immune response.


Asunto(s)
Fluoxetina/toxicidad , Oncorhynchus mykiss/inmunología , Alimentación Animal , Animales , Antidepresivos de Segunda Generación/toxicidad , Recuento de Células Sanguíneas , Contaminación de Alimentos , Inmunidad/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Oncorhynchus mykiss/sangre , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
5.
Parasit Vectors ; 9: 473, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27576434

RESUMEN

BACKGROUND: A survey on endoparasitic helminths from freshwater fishes in the Pantanal Region (Mato Grosso do Sul, Brazil) revealed the occurrence of third-larval stage of the nematode Brevimulticaecum sp. (Heterocheilidae) in most organs of Gymnotus inaequilabiatus (Gymnotidae) also known by the local name tuvira. The aim of the present study was to examine Brevimulticaecum sp.-infected tuvira liver at the ultrastructural level and clarify the nature of granulomas and the cellular elements involved in the immune response to nematode larvae. METHODS: Thirty-eight adult specimens of tuvira from Porto Morrinho, were acquired in January and March 2016. Infected and uninfected liver tissues were fixed and prepared for histological and ultrastructure investigations. RESULTS: The prevalence of infection of tuvira liver by the nematode larvae was 95 %, with an intensity of infection ranging from 4 to 343 larvae (mean ± SD: 55.31 ± 73.94 larvae per liver). In livers with high numbers of nematode larvae, almost entire hepatic tissue was occupied by the parasites. Hepatocytes showed slight to mild degenerative changes and accumulation of pigments. Parasite larvae were surrounded by round to oval granulomas, the result of focal host tissue response to the infection. Each granuloma was typically formed by three concentric layers: an outer layer of fibrous connective tissue with thin elongated fibroblasts; a middle layer of mast cells entrapped in a thin fibroblast-connective mesh; and an inner layer of densely packed epithelioid cells, displaying numerous desmosomes between each other. Numerous macrophage aggregates occurred in the granulomas and in the parenchyma. CONCLUSIONS: Our results in tuvira showed that the larvae were efficiently sequestered within the granulomas, most of the inflammatory components were confined within the thickness of the granuloma, and the parenchyma was relatively free of immune cells and without fibrosis. Presumably this focal encapsulation of the parasites permits uninfected portions of liver to maintain its functions and allows the survival of the host.


Asunto(s)
Enfermedades de los Peces/parasitología , Gymnotiformes/parasitología , Hígado/parasitología , Nematodos/aislamiento & purificación , Infecciones por Nematodos/veterinaria , Animales , Brasil/epidemiología , Hígado/patología , Nematodos/clasificación , Nematodos/ultraestructura , Infecciones por Nematodos/epidemiología , Infecciones por Nematodos/parasitología , Infecciones por Nematodos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA