Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.088
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Nutr ; 154(8): 2437-2447, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880174

RESUMEN

BACKGROUND: Consumption of whole grains is associated with a reduction in chronic diseases and offers benefits for cardiovascular health and metabolic regulation. The relationship between whole-grain corn and corn bran with the gut microbiota (GM) remains an area of growing interest, particularly regarding their influence on cardiometabolic health. OBJECTIVES: To investigate the effects of different corn flours on cardiometabolic outcomes and GM changes in adults with elevated low-density lipoprotein cholesterol (LDL cholesterol) concentrations. METHODS: In this crossover study, 36 adults with LDL cholesterol above 110 mg/dL consumed 48 g/d of 3 corn flour types for 4 wk: whole-grain corn meal, refined corn meal (RCM), and a blend of RCM and corn bran (RCM + B). We assessed the impact on cardiometabolic markers [LDL cholesterol, high-density lipoprotein cholesterol (HDL cholesterol), total cholesterol, and triglycerides)] and GM composition and estimated function. Statistical analyses included mixed-effects modeling and responder (>5% decrease in LDL cholesterol) analysis to evaluate changes in GM related to lipid profile improvements. RESULTS: Of the 3 corn flour types, only RCM + B significantly decreased LDL cholesterol over time (-10.4 ± 3.6 mg/dL, P = 0.005) and marginally decreased total cholesterol (-9.2 ± 3.9 mg/dL, P = 0.072) over time. There were no significant effects on HDL cholesterol or triglyceride concentrations. No significant changes were observed in GM alpha diversity, whereas beta diversity metrics indicated individual variability. Two genera, unclassified Lachnospiraceae and Agathobaculum (Padj ≤ 0.096), differed significantly by treatment, but only Agathobaculum remained significantly elevated in the whole-grain corn meal, compared to RCM and RCM + B, after adjustment for multiple comparisons. CONCLUSIONS: The type of corn flour, particularly RCM + B, notably influenced LDL cholesterol concentrations in adults with elevated LDL cholesterol. This study suggests that incorporating milled fractions (e.g., bran) of whole-grain corn with refined corn flour may be a viable alternative to supplementing manufactured grain products with isolated or synthetic fibers for improved metabolic health. This trial was registered at clinicaltrials.gov as NCT03967990.


Asunto(s)
LDL-Colesterol , Estudios Cruzados , Harina , Microbioma Gastrointestinal , Zea mays , Humanos , Masculino , Femenino , Persona de Mediana Edad , Microbioma Gastrointestinal/efectos de los fármacos , LDL-Colesterol/sangre , Adulto , Anciano , Hipercolesterolemia/dietoterapia , Hipercolesterolemia/sangre , Colesterol/sangre , Triglicéridos/sangre
2.
J Evol Biol ; 37(7): 748-757, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38654518

RESUMEN

Dispersal is an important facet of the life history of many organisms and is, therefore, subject to selective pressure but does not evolve in isolation. Across nature, there are examples of dispersal syndromes and life history strategies in which suites of traits coevolve and covary with dispersal in combinations that serve to maximize fitness in a given ecological context. The red rust flour beetle, Tribolium castaneum, is a model organism and globally significant post-harvest pest that relies on dispersal to reach new patches of ephemeral habitat. Dispersal behaviour in Tribolium has a strong genetic basis. However, a robust understanding of the relationship between dispersal and other life-history components, which could elucidate evolutionary processes and allow pest managers to control their spread and reduce the impact of infestation, is currently lacking. Here, we use highly replicated lines of T. castaneum previously artificially selected for divergent small-scale dispersal propensity to robustly test several important life history components: reproductive strategy, development time, and longevity. As predicted, we find that a suite of important changes as a result of our selection on dispersal: high dispersal propensity is associated with a lower number of longer mating attempts by males, lower investment in early life reproduction by females, slower development of later-laid offspring, and longer female life span. These findings indicate that correlated intraspecific variation in dispersal and related traits may represent alternative life history strategies in T. castaneum. We therefore suggest that pest management efforts to mitigate the species' agro-economic impact should consider the eco-evolutionary dynamics within multiple life histories. The benefits of doing so could be felt both through improved targeting of efforts to reduce spread and also in forecasting how the selection pressures applied through pest management are likely to affect pest evolution.


Asunto(s)
Distribución Animal , Tribolium , Animales , Tribolium/genética , Tribolium/fisiología , Masculino , Femenino , Selección Genética , Rasgos de la Historia de Vida , Longevidad , Reproducción , Evolución Biológica
3.
Protein Expr Purif ; 222: 106534, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38897399

RESUMEN

Tribolium castaneum, also known as the red flour beetle, is a polyphagous pest that seriously damages agricultural products, including stored and processed grains. Researchers have aimed to discover alternative pest control mechanisms that are less harmful to the ecosystem than those currently used. We conduct the purification and characterization of a protease inhibitor from C. plumieri seeds and an in vitro evaluation of its insecticidal potential against the insect pest T. castaneum. The trypsin inhibitor was isolated from C. plumieri seeds in a single-step DEAE-Sepharose column chromatography and had a molecular mass of 50 kDA. When analyzed for interaction with different proteolytic enzymes, the inhibitor exhibited specificity against trypsin and no activity against other serine proteases such as chymotrypsin and elastase-2. The isolated inhibitor was able to inhibit digestive enzymes of T. castaneum from extracts of the intestine of this insect. Therefore, we conclude that the new protease inhibitor, specific in tryptic inhibition, of protein nature from the seeds of C. plumieri was effective in inhibiting the digestive enzymes of T. castaneum and is a promising candidate in the ecological control of pests.


Asunto(s)
Tribolium , Inhibidores de Tripsina , Animales , Inhibidores de Tripsina/farmacología , Inhibidores de Tripsina/química , Inhibidores de Tripsina/aislamiento & purificación , Tribolium/enzimología , Tribolium/efectos de los fármacos , Proteínas de Insectos/química , Proteínas de Insectos/aislamiento & purificación , Proteínas de Insectos/antagonistas & inhibidores , Semillas/química , Insecticidas/farmacología , Insecticidas/química , Insecticidas/aislamiento & purificación , Proteínas de Plantas/farmacología , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/química
4.
Anal Bioanal Chem ; 416(13): 3173-3183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38568232

RESUMEN

A certified reference material (CRM, KRISS 108-01-002) for zearalenone in corn flour was developed to assure reliable and accurate measurements in testing laboratories. Commercially available corn flour underwent freeze-drying, pulverization, sieving, and homogenization. The final product was packed in amber bottles, approximately 14 g per unit, and preserved at -70 °C. 13C18-Zearalenone was used as an internal standard (IS) for the certification of zearalenone by isotope-dilution liquid chromatography-tandem mass spectrometry (ID-LC‒MS/MS) and for the analysis of α-zearalenol, ß-zearalenol, and zearalanone by LC‒MS/MS. The prepared CRM was sufficiently homogeneous, as the among-unit relative standard deviation for each mycotoxin ranged from 2.2 to 5.7 %. Additionally, the stability of the mycotoxins in the CRM was evaluated under different temperature conditions and scheduled test periods, including storage at -70°C, -20°C, and 4°C and room temperature for up to 12 months, 6 months, and 1 month, respectively. The content of each target mycotoxin in the CRM remained stable throughout the monitoring period at each temperature. Zearalenone content (153.6 ± 8.0 µg/kg) was assigned as the certified value. Meanwhile, the contents of α-zearalenol (1.30 ± 0.17 µg/kg), ß-zearalenol (4.75 ± 0.33 µg/kg), and zearalanone (2.09 ± 0.16 µg/kg) were provided as informative values.


Asunto(s)
Harina , Estándares de Referencia , Espectrometría de Masas en Tándem , Zea mays , Zearalenona , Zearalenona/análisis , Zea mays/química , Harina/análisis , Harina/normas , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Límite de Detección , Contaminación de Alimentos/análisis , Reproducibilidad de los Resultados
5.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39025805

RESUMEN

AIM: To investigate the possible contamination of raw flour and raw flour-based products, such as pancake/batter mixes, with Salmonella, generic Escherichia coli, and Shiga-toxin-producing E. coli (STEC). Samples included flours available for sale in the UK over a period of four months (January to April 2020). The Bread and Flour regulations, 1998 state the permitted ingredients in flour and bread but it does not specify the regular monitoring of the microbiological quality of flour and flour-based products. METHODS AND RESULTS: Samples of raw flour were collected by local authority sampling officers in accordance with current guidance on microbiological food sampling then transported to the laboratory for examination. Microbiological testing was performed to detect Salmonella spp., generic E. coli, and STEC characterized for the presence of STEC virulence genes: stx1, stx2, and subtypes, eae, ipah, aggR, lt, sth, and stp, using molecular methods Polymerase Chain Reaction (PCR). Of the 882 flours sampled, the incidence of Salmonella was 0.1% (a single positive sample that contained multiple ingredients such as flour, dried egg, and dried milk, milled in the UK), and 68 samples (7.7%) contained generic E. coli at a level of >20 CFU/g. Molecular characterization of flour samples revealed the presence of the Shiga-toxin (stx) gene in 10 samples (5 imported and 5 from the UK) (1.1%), from which STEC was isolated from 7 samples (0.8%). Salmonella and STEC isolates were sequenced to provide further characterization of genotypes and to compare to sequences of human clinical isolates held in the UKHSA archive. Using our interpretive criteria based on genetic similarity, none of the STEC flour isolates correlated with previously observed human cases, while the singular Salmonella serotype Newport isolate from the mixed ingredient product was similar to a human case in 2019, from the UK, of S. Newport. Although there have been no reported human cases of STEC matching the isolates from these flour samples, some of the same serotypes and stx subtypes detected are known to have caused illness in other contexts. CONCLUSION: Results indicate that while the incidence was low, there is a potential for the presence of Salmonella and STEC in flour, and a genetic link was demonstrated between a Salmonella isolate from a flour-based product and a human case of salmonellosis.


Asunto(s)
Harina , Microbiología de Alimentos , Salmonella , Escherichia coli Shiga-Toxigénica , Harina/microbiología , Harina/análisis , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/genética , Salmonella/genética , Salmonella/aislamiento & purificación , Reino Unido , Contaminación de Alimentos/análisis , Humanos
6.
Nutr Metab Cardiovasc Dis ; 34(5): 1110-1128, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38553358

RESUMEN

AIMS: A systematic review and meta-analysis of published randomized controlled trials was conducted to collate evidence from studies implementing ancient grains and investigate the impact of ancient grain consumption on health outcomes of patients with Diabetes Mellitus (DM). DATA SYNTHESIS: Twenty-nine randomized controlled trials were included, and 13 were meta-analyzed. Interventions ranged from 1 day to 24 weeks; most samples were affected by DM type 2 (n = 28 studies) and the ancient grains used were oats (n = 10 studies), brown rice (n = 6 studies), buckwheat (n = 4 studies), chia (n = 3 studies), Job's Tears (n = 2 studies), and barley, Khorasan and millet (n = 1 study). Thirteen studies that used oats, brown rice, and chia provided data for a quantitative synthesis. Four studies using oats showed a small to moderate beneficial effect on health outcomes including LDL-c (n = 717, MD: 0.30 mmol/l, 95% CI: 0.42 to -0.17, Z = 4.61, p < 0.05, I2 = 0%), and TC (n = 717, MD: 0.44 mmol/l, 95% CI: 0.63 to -0.24, Z = 4.40, p < 0.05, I2 = 0%). Pooled analyses of studies using chia and millet did not show significant effects on selected outcomes. CONCLUSIONS: For adults affected by DM type 2, the use of oats may improve lipidic profile. Further experimental designs are needed in interventional research to better understand the effects of ancient grains on diabetes health outcomes. PROSPERO REGISTRATION: CRD42023422386.


Asunto(s)
Diabetes Mellitus Tipo 2 , Grano Comestible , Adulto , Humanos , Diabetes Mellitus Tipo 2/dietoterapia , Lípidos , Ensayos Clínicos Controlados Aleatorios como Asunto
7.
Public Health Nutr ; 27(1): e159, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825723

RESUMEN

OBJECTIVE: To simulate the impact on calcium intake - effectiveness and safety - of fortifying wheat flour with 200, 400 and 500 mg of calcium per 100 g of flour. DESIGN: Secondary analysis of cross-sectional data collected through repeated 24 h dietary recalls using the Iowa State University Intake Modelling, Assessment and Planning Program. SETTING: Urban cities in the National Health and Nutrition Survey of Argentina (ENNyS 2018-2019). PARTICIPANTS: 21 358 participants, including children, adolescents and adults. RESULTS: Most individuals in all age groups reported consuming wheat flour. The prevalence of low calcium intake was above 80 % in individuals older than 9 years. Simulating the fortification of 500 mg of calcium per 100 g of wheat flour showed that the prevalence of low calcium intake could be reduced by more than 40 percentage points in girls and women aged 19 to less than 51 years and boys and men aged 4 to less than 71 years, while it remained above 65 % in older ages. The percentages above the upper intake level remained below 1·5 % in all age groups. CONCLUSIONS: Calcium flour fortification could be further explored to improve calcium intake. Subnational simulations could be performed to identify groups that might not be reached by this strategy that could be explored in Argentina. This analysis could be used to advocate for a strategy to fortify wheat flour.


Asunto(s)
Calcio de la Dieta , Harina , Alimentos Fortificados , Encuestas Nutricionales , Triticum , Humanos , Harina/análisis , Femenino , Calcio de la Dieta/administración & dosificación , Masculino , Adulto , Adolescente , Niño , Adulto Joven , Estudios Transversales , Preescolar , Persona de Mediana Edad , Anciano , Argentina , Dieta/estadística & datos numéricos , Dieta/métodos
8.
Int J Toxicol ; : 10915818241231249, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342963

RESUMEN

The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 28 soy-derived ingredients as used in cosmetic products. These ingredients are reported to primarily function as antioxidants, skin protectants, skin-conditioning agents, and hair-conditioning agents. The Panel considered the available data relating to the safety of these ingredients in cosmetic formulations, and concluded that 24 of the 28 soy-derived ingredients are safe in cosmetics in the present practices of use and concentration described in this safety assessment. The Panel also concluded that the available data are insufficient to make a determination that Glycine Max (Soybean) Callus Culture, Glycine Max (Soybean) Callus Culture Extract, Glycine Max (Soybean) Callus Extract, and Glycine Max (Soybean) Phytoplacenta Conditioned Media are safe under the intended conditions of use in cosmetic formulations.

9.
Bioprocess Biosyst Eng ; 47(9): 1595-1603, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38980386

RESUMEN

In this paper, the work has been done to develop a cost-effective methodology, for the isolation of the potential producer of bacterial nanocellulose. No report is available in the literature, on the use of gram flour and table sugar for the screening of nanocellulose-producing isolates. Since commercially used, Hestrin-Schramm medium is expensive for the isolation of nanocellulose-producing micro-organisms, the possibility of using gram flour-table sugar medium was investigated in this work. Qualitative screening of micro-organisms was done using cost-effective medium, i.e., gram flour-table sugar medium. Qualitative analysis of various nanocellulose-producing bacteria depicted that cellulose layer production occurred on both HS medium and gram flour-table sugar medium. The yield of nanocellulose was also better on air-liquid surface in case of gram flour-table sugar medium as compared to HS medium. 16S rRNA was used for molecular characterization of bacterial strain and the best nanocellulose producer was identified as Novacetimonas hansenii BMK-3_NC240423 (isolated from rotten banana). FTIR and FE-SEM studies of nanocellulose pellicle produced on HS medium and gram flour-table sugar medium demonstrated equivalent structural, morphological, and chemical properties. The cost of newly designed medium (0.01967 $/L) is nearly 90 times lower than the Hestrin-Schramm medium (1.748 $/L), which makes the screening of nanocellulose producers very cost-effective. A strategy of using gram flour extract-table sugar medium for the screening of nanocellulose-producing micro-organisms is a novel approach, which will drastically reduce the screening associated cost of cellulose-producing micro-organisms and also motivate the researchers/industries for comprehensive screening programme for getting high cellulose-producing microbes.


Asunto(s)
Celulosa , Celulosa/química , Acetobacteraceae/metabolismo , Análisis Costo-Beneficio , ARN Ribosómico 16S/genética , Musa/química
10.
Sensors (Basel) ; 24(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339641

RESUMEN

Edible insects have been recognised as an alternative food or feed ingredient due to their protein value for both humans and domestic animals. The objective of this study was to evaluate the ability of both near- (NIR) and mid-infrared (MIR) spectroscopy to identify and quantify the level of adulteration of cricket powder added into two plant proteins: chickpea and flaxseed meal flour. Cricket flour (CKF) was added to either commercial chickpea (CPF) or flaxseed meal flour (FxMF) at different ratios of 95:5% w/w, 90:10% w/w, 85:15% w/w, 80:20% w/w, 75:25% w/w, 70:30% w/w, 65:35% w/w, 60:40% w/w, or 50:50% w/w. The mixture samples were analysed using an attenuated total reflectance (ATR) MIR instrument and a Fourier transform (FT) NIR instrument. The partial least squares (PLS) cross-validation statistics based on the MIR spectra showed that the coefficient of determination (R2CV) and the standard error in cross-validation (SECV) were 0.94 and 6.68%, 0.91 and 8.04%, and 0.92 and 4.33% for the ALL, CPF vs. CKF, and FxMF vs. CKF mixtures, respectively. The results based on NIR showed that the cross-validation statistics R2CV and SECV were 0.95 and 3.16%, 0.98 and 1.74%, and 0.94 and 3.27% using all the samples analyzed together (ALL), the CPF vs. CKF mixture, and the FxMF vs. CKF mixture, respectively. The results of this study showed the effect of the matrix (type of flour) on the PLS-DA data in both the classification results and the PLS loadings used by the models. The different combination of flours (mixtures) showed differences in the absorbance values at specific wavenumbers in the NIR range that can be used to classify the presence of CKF. Research in this field is valuable in advancing the application of vibrational spectroscopy as routine tools in food analysis and quality control.


Asunto(s)
Críquet , Harina , Animales , Humanos , Harina/análisis , Polvos , Análisis Espectral/métodos , Análisis de los Alimentos , Análisis de los Mínimos Cuadrados , Espectroscopía Infrarroja por Transformada de Fourier/métodos
11.
Sensors (Basel) ; 24(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38257447

RESUMEN

This study focuses on an applicability of the device designed for monitoring dough fermentation. The device combines a complex system of thermodynamic sensors (TDSs) with an electronic nose (E-nose). The device's behavior was tested in experiments with dough samples. The configuration of the sensors in the thermodynamic system was explored and their response to various positions of the heat source was investigated. When the distance of the heat source and its intensity from two thermodynamic sensors changes, the output signal of the thermodynamic system changes as well. Thus, as the distance of the heat source decreases or the intensity increases, there is a higher change in the output signal of the system. The linear trend of this change reaches an R2 value of 0.936. Characteristics of the doughs prepared from traditional and non-traditional flours were successfully detected using the electronic nose. To validate findings, the results of the measurements were compared with signals from the rheofermentometer Rheo F4, and the correlation between the output signals was closely monitored. The data after statistical evaluation show that the measurements using thermodynamic sensors and electronic nose directly correlate the most with the measured values of the fermenting dough volume. Pearson's correlation coefficient for TDSs and rheofermentometer reaches up to 0.932. The E-nose signals also correlate well with dough volume development, up to 0.973. The data and their analysis provided by this study declare that the used system configuration and methods are fully usable for this type of food analysis and also could be usable in other types of food based on the controlled fermentation. The system configuration, based on the result, will be also used in future studies.

12.
Molecules ; 29(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543010

RESUMEN

Wheat flour is a common raw material in the food industry; however, Andean grains, such as quinoa and kiwicha, are gaining popularity due to their quality proteins, fiber, and bioactive compounds. A trend has been observed toward the enrichment of products with these Andean flours, with them even being used to develop gluten-free foods. However, evaluating interactions between raw materials during industrial processes can be complicated due to the diversity of inputs. This study focused on evaluating the technofunctional and rheological properties of wheat, quinoa and kiwicha flours using a simple lattice mixture design. Seven treatments were obtained, including pure flours and ternary mixtures. Analyses of particle size distribution, water absorption index, subjective water absorption capacity, soluble material index, swelling power, apparent density and physicochemical properties were performed. Additionally, color analysis, photomicrographs and Raman spectroscopy were carried out. The results indicate significant differences in properties such as particle size, water absorption and rheological properties between the flours and their mixtures. Variations in color and microstructure were observed, while Raman spectroscopy provided information on molecular composition. These findings contribute to the understanding of the behavior of Andean flours in baking and pastry making, facilitating their application in innovative food products.


Asunto(s)
Chenopodium quinoa , Harina , Harina/análisis , Chenopodium quinoa/química , Triticum/química , Reología , Agua
13.
Molecules ; 29(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338455

RESUMEN

The house cricket (Acheta domesticus L.) is one of four edible insect species introduced to the EU market as a novel food and alternative protein source. Innovative products, such as cricket flour, are increasingly appearing on supermarket shelves and can offer an alternative to traditional cereals, while providing the body with many valuable nutrients of comparable quality to those found in meat and fish. The aim of this study was to investigate the possibility of using cricket powder as a substitute for wheat flour in the production of bread. The physicochemical properties of cricket powder were evaluated in comparison to wheat flour. As a result of technological studies, bread compositions with 5%, 10% and 15% replacements of wheat flour by cricket powder were designed and their quality characteristics (physicochemical, sensory and microbiological) were evaluated. Cricket powder was characterised by a higher protein (63% vs. 13.5%) and fat (16.3% vs. 1.16%) content and a lower carbohydrate (9.8% vs. 66%) and fibre (7.8% vs. 9.5%) content as compared to wheat flour. The tested preparations had a similar pH (6.9 and 6.8, respectively, for cricket powder and flour) and fat absorption capacity (0.14 vs. 0.27 g oil/g powder, respectively, for cricket powder and flour) but different water holding capacities and completely different colour parameters. All breads had good microbiological quality after baking and during 7 days of storage. In instrumental tests, the 10 and 15% replacements of wheat flour by cricket powder affected the darker colour of the breads and caused a significant increase in the hardness of the breads. The research has shown that the optimal level of replacement, which does not significantly affect the physiochemical and sensory characteristics, is 5% cricket powder in the bread recipe. Considering the results obtained and the fact that insects provide a sufficient supply of energy and protein in the human diet, are a source of fibre, vitamins and micronutrients, and have a high content of monounsaturated and polyunsaturated fatty acids, the suitability of cricket powder for protein enrichment of bakery products is confirmed.


Asunto(s)
Críquet , Gryllidae , Animales , Humanos , Pan , Triticum/química , Polvos , Harina
14.
Molecules ; 29(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257357

RESUMEN

Eating practices are changing due to awareness about meat consumption associated with social, ethical, environmental, and nutritional issues. Plant-based meat analogs are alternatives to conventional meat products that attempt to mimic all the inherent characteristics of meat fully. Therefore, the search for raw materials that provide these characteristics is increasing. Chia seeds have excellent potential as a functional ingredient in these products since they are a source of proteins, lipids, and fibers. Allied with this, the full use of chia through the seed and its fractions highlights the numerous beneficial characteristics of the formulation regarding nutritional characteristics and techno-functionality. Therefore, this review aims to highlight the potential of chia seed and its fractions for applications in meat-like products. Chia seeds are protein sources. Chia oil is rich in polyunsaturated fatty acids, and its application in emulsions ensures the oil's nutritional quality and maintains its technological characteristics. Defatted chia flour has a high protein content and can be used to extract chia mucilage. Due to its high emulsification capacity, chia mucilage is an effective ingredient for meat products and, consequently, meat-like products. Therefore, this literature review demonstrates the strategic potential of using chia seeds and their fractions to develop meat analogs.


Asunto(s)
Sustitutos de la Carne , Extractos Vegetales , Salvia hispanica , Semillas , Carne , Harina
15.
Food Technol Biotechnol ; 62(2): 264-274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39045301

RESUMEN

Research background: Controlled sprouting promotes physiological and biochemical changes in whole grains, improves their nutritional value and offers technological advantages for breadmaking as an alternative to traditional whole grains. The aim of this study is to find sprouting conditions for the grains of Klein Valor wheat variety (Triticum aestivum L.) that would increase the nutritional value without significantly affecting the gluten proteins, which are essential in wholegrain baked goods. Experimental approach: The chemical and nutritional composition, enzymatic activity and pasting properties of the suspensions of unsprouted and sprouted whole-wheat flour were evaluated. Results and conclusions: This bioprocess allowed us to obtain sprouted whole-wheat flour with different degrees of modification in its chemical composition. Sprouting at 25 °C resulted in an observable increase in enzymatic activity and metabolic processes, particularly α-amylases, which significantly affect the starch matrix and the associated pasting properties. Additionally, there was a smaller but still notable effect on the structure of the cell walls and the protein matrix due to the activation of endoxylanases and proteases. In contrast, sprouting at 15 and 20 °C for 24 h allowed for better process control as it resulted in nutritional improvements such as a higher content of free amino acid groups, free phenolic compounds and antioxidant capacity, as well as a lower content of phytates. In addition, it provided techno-functional advantages due to the moderate activation of α-amylase and xylanase. A moderate decrease in peak viscosity of sprouted whole-wheat flour suspensions was observed compared to the control flour, while protein degradation was not significantly prolonged. Novelty and scientific contribution: Sprouted whole-wheat flour obtained under milder sprouting conditions with moderate enzymatic activity could be a promising and interesting ingredient for wholegrain baked goods with improved nutritional values and techno-functional properties. This approach could avoid the use of conventional flour improvers and thus have a positive impact on consumer acceptance and enable the labelling of the product with a clean label.

16.
J Sci Food Agric ; 104(3): 1732-1740, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37851761

RESUMEN

BACKGROUND: Mealworm (Tenebrio molitor) larvae are nutritious edible insects and exhibit the potential to act as protein substitutes in food products. In this study, we added mealworm powder as a substitute to medium-gluten wheat and whole wheat flours to enhance the quality of baked products. We compared the pasting, farinograph and extensograph properties of medium-gluten wheat and whole wheat flours replaced with different concentrations of mealworm powder to explore the interactions between flour and mealworm powder. RESULTS: Mealworm powder changed the pasting characteristics of medium-gluten wheat and whole wheat flours. After adding 20% mealworm powder, the pasting temperature of the medium-gluten wheat flour remained unchanged (approximately 89.9 °C), while the pasting temperature of whole wheat flour increased from 88.83 to 90.27 °C. Water absorption of medium-gluten and whole wheat flours exhibited a decreasing trend with increasing mealworm powder concentrations. Mealworm powder substitution resulted in stronger medium-gluten dough but exerted an opposite effect on the farinograph properties of whole wheat dough. Mealworm powder substitution decreased the stretching resistance of medium-gluten dough but increased that of whole wheat dough. With an increase in the concentration of mealworm powder, the specific volume of medium-gluten wheat steamed bread significantly increased from 1.69 mL g-1 (M0) to 3.31 mL g-1 (M10) whereas that of whole wheat steamed bread increased from 1.64 mL g-1 (M0) to 2.34 mL g-1 (M15). The addition of mealworm powder increased the protein, dietary fiber, lipid and sodium contents of steamed bread samples. CONCLUSIONS: This study provides a reference for the rheological properties of medium-gluten wheat and whole wheat flours substituted with mealworm powder and supports the addition of insects as a protein source in food products. © 2023 Society of Chemical Industry.


Asunto(s)
Glútenes , Tenebrio , Animales , Glútenes/química , Harina/análisis , Triticum/química , Polvos , Pan/análisis , Vapor , China
17.
J Sci Food Agric ; 104(1): 303-314, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582691

RESUMEN

BACKGROUND: In this study, different proportions of soybean flour and gluten flour were used as partial replacements for wheat flour for the fermentation of Pixian Douban-Meju (PXDB). The aim was to study the effects of soybean flour/gluten flour on the quality improvement of PXDB. RESULTS: In comparison with the control group (CT) (0% substitution of wheat flour), substitution of wheat flower with 12.5% soybean flour (the H2 group), 7.5% gluten flour (G2), and 10% gluten flour (G3) improved the amino acid nitrogen content by 3.8%, 5.6%, and 9.4% respectively. The mixtures of wheat flour and gluten flour (G2 or G3) increased the organic acid and free amino acid content. The results of two-dimensional gas chromatography mass spectrometry (GC × GC-MS) showed that the amount of key aroma substances increased about sixfold in comparison with the CT group (194.61 g.kg-1 ), achieving 1283.67, 1113.883, and 1160.19 g.kg-1 in the H2, G2, and G3 groups, respectively. There were also more aldehydes and pyrazines in all the substitution groups. Quantitative descriptive analysis indicated that the G3 sample presented the best organoleptic quality with a reddish-brown color and a more mellow aroma than the control sample. CONCLUSION: In conclusion, the fermentation of G3 resulted in higher quality PXDB-meju, showing that partial substitution of wheat flour with gluten improved the quality of PXDB. © 2023 Society of Chemical Industry.


Asunto(s)
Harina , Glútenes , Glútenes/química , Harina/análisis , Glycine max , Polvos , Triticum/química , Aminoácidos/química
18.
J Sci Food Agric ; 104(13): 8143-8149, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38837357

RESUMEN

BACKGROUND: Chestnut flour plays an important role in the production of bread, bakery products, and gluten-free foods. Most of the references in the literature focus on the drying process itself and not on the effects of the drying and milling processes. Moreover, the literature is lacking recommendations regarding optimal moisture content and milling speed, thus motivating the present study. The first aim is to understand the chestnut drying process through an in-depth evaluation of drying kinetics; the second aim is to assess the effects of three different moisture content (2%, 4% and 6%) and three different stone rotational speeds (120, 220 and 320 rpm) on operative milling parameters (flour yield, milling time, energy consumption, temperature increase, average power, specific milling energy), flour particle size distribution, and chestnut flours characteristics. RESULTS: The results show that moisture content and stone rotational speed have statistically-significant effects on milling operative parameters, flour particle size and chestnut flour composition. In particular, stone rotational speed affected almost all the tested variables (mill operative parameters, flour particle size distribution, and flour characteristics). Therefore, as the stone rotational speed increases, energy consumption, average power, specific energy, and damaged starch content significantly increase. CONCLUSION: These findings clearly show that moisture content and stone rotational speed are powerful tools that allow the exploiation of the milling process to modulate the characteristics of the obtained flours. In conclusion, two different approaches for chestnut milling were suggested depending on the type of flour to be produced. © 2024 Society of Chemical Industry.


Asunto(s)
Harina , Manipulación de Alimentos , Tamaño de la Partícula , Agua , Manipulación de Alimentos/métodos , Harina/análisis , Cinética , Agua/análisis , Agua/química , Nueces/química , Desecación/métodos , Fagaceae/química
19.
J Sci Food Agric ; 104(11): 6640-6648, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38523359

RESUMEN

BACKGROUND: Banana flour can provide a solution to people with gluten intolerance, as it is gluten-free. Native banana flour may have limited functionality in certain applications. In this study, banana flour was modified by ultrasonic (US) and annealing (ANN) treatments at four incubation time spans, namely 12, 24, 36 and 72 h, separately or combined sequentially (US-ANN) to enhance the physicochemical and digestive properties. RESULTS: US led to exposed granular surfaces and damaged non-starch components. Both treatments, at extended incubation time, increased crystallinity, resulting in a narrower starch gelatinization temperature range. The swelling power was significantly lower for ANN and US-ANN compared to US alone, providing a delay of gelatinization temperature. However, none of the treatments affected the gelatinization enthalpy. Furthermore, US increased peak viscosity, breakdown, final viscosity and setback whereas the opposite results were obtained for ANN and US-ANN. Additionally, US prior to ANN significantly increased the resistant starch (RS) content for annealing times over 24 h, especially for the US-ANN treatment for 72 h, which provided the highest RS content (49.3%) compared to ANN treatment for 72 h (44.0%) and native flour (36.3%). CONCLUSIONS: US prior to ANN treatment offers an alternative method to improve the functional and digestive properties of banana flour, extending the range of applications. © 2024 Society of Chemical Industry.


Asunto(s)
Digestión , Harina , Musa , Almidón , Musa/química , Harina/análisis , Viscosidad , Almidón/química , Manipulación de Alimentos/métodos , Ultrasonido/métodos , Humanos
20.
J Sci Food Agric ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113582

RESUMEN

BACKGROUND: The objective of this experiment was to investigate the role of endogenous proteins and lipids in the structural and physicochemical properties of starch in heat-moisture treatment (HMT) rice flour and to reveal their effect on starch digestibility under heat. RESULTS: The findings indicate that, in the absence of endogenous proteins and lipids acting as a physical barrier, especially proteins, the interaction between rice flour and endogenous proteins and lipids diminished. This reduction led to fewer starch-protein inclusion complexes and starch-lipid complexes, altering the granule aggregation structure of rice flour. It resulted in a decrease in particle size, an increase in agglomeration between starch granules, and more surface cracking on rice granules. Under HMT conditions with a moisture content of 30%, slight gelatinization of the starch granules occurred, contributing to an increased starch hydrolysis rate. In addition, the elevated thermal energy effect of HMT enhanced interactions between starch molecular chains. These resulted in a decrease in crystallinity, short-range ordering, and the content of double-helix structure within starch granules. These structural transformations led to higher pasting temperatures, improved hot and cold paste stability, and a decrease in peak viscosity, breakdown, setback, and enthalpy of pasting of the starch granules. CONCLUSION: The combined analysis of microstructure, physicochemical properties, and in vitro digestion characteristics has enabled us to further enhance our understanding of the interaction mechanisms between endogenous proteins, lipids, and starches during HMT. © 2024 Society of Chemical Industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA