Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468662

RESUMEN

The two main blood flow patterns, namely, pulsatile shear (PS) prevalent in straight segments of arteries and oscillatory shear (OS) observed at branch points, are associated with atheroprotective (healthy) and atheroprone (unhealthy) vascular phenotypes, respectively. The effects of blood flow-induced shear stress on endothelial cells (ECs) and vascular health have generally been studied using human umbilical vein endothelial cells (HUVECs). While there are a few studies comparing the differential roles of PS and OS across different types of ECs at a single time point, there is a paucity of studies comparing the temporal responses between different EC types. In the current study, we measured OS and PS transcriptomic responses in human aortic endothelial cells (HAECs) over 24 h and compared these temporal responses of HAECs with our previous findings on HUVECs. The measurements were made at 1, 4, and 24 h in order to capture the responses at early, mid, and late time points after shearing. The results indicate that the responses of HAECs and HUVECs are qualitatively similar for endothelial function-relevant genes and several important pathways with a few exceptions, thus demonstrating that HUVECs can be used as a model to investigate the effects of shear on arterial ECs, with consideration of the differences. Our findings show that HAECs exhibit an earlier response or faster kinetics as compared to HUVECs. The comparative analysis of HAECs and HUVECs presented here offers insights into the mechanisms of common and disparate shear stress responses across these two major endothelial cell types.


Asunto(s)
Ciclo Celular/genética , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Redes y Vías Metabólicas/genética , Proteoma/genética , Estrés Mecánico , Factores de Transcripción/genética , Aorta/citología , Aorta/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Línea Celular , Proliferación Celular , Células Endoteliales/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Modelos Biológicos , Especificidad de Órganos , Fenotipo , Proteoma/metabolismo , Transducción de Señal , Biología de Sistemas/métodos , Factores de Transcripción/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 315(3): H492-H501, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29775407

RESUMEN

Blood velocity measured in the middle cerebral artery (MCAV) increases with finite kinetics during moderate-intensity exercise, and the amplitude and dynamics of the response provide invaluable insights into the controlling mechanisms. The MCAV response after exercise onset is well fit to an exponential model in young individuals but remains to be characterized in their older counterparts. The responsiveness of vasomotor control degrades with advancing age, especially in skeletal muscle. We tested the hypothesis that older subjects would evince a slower and reduced MCAV response to exercise. Twenty-nine healthy young (25 ± 1 yr old) and older (69 ± 1 yr old) adults each performed a rapid transition from rest to moderate-intensity exercise on a recumbent stepper. Resting MCAV was lower in older than young subjects (47 ± 2 vs. 64 ± 3 cm/s, P < 0.001), and amplitude from rest to steady-state exercise was lower in older than young subjects (12 ± 2 vs. 18 ± 3 cm/s, P = 0.04), even after subjects were matched for work rate. As hypothesized, the time constant was significantly longer (slower) in the older than young subjects (51 ± 10 vs. 31 ± 4 s, P = 0.03), driven primarily by older women. Neither age-related differences in fitness, end-tidal CO2, nor blood pressure could account for this effect. Thus, MCAV kinetic analyses revealed a marked impairment in the cerebrovascular response to exercise in older individuals. Kinetic analysis offers a novel approach to evaluate the efficacy of therapeutic interventions for improving cerebrovascular function in elderly and patient populations. NEW & NOTEWORTHY Understanding the dynamic cerebrovascular response to exercise has provided insights into sex-related cerebrovascular control mechanisms throughout the aging process. We report novel differences in the kinetics response of cerebrovascular blood velocity after the onset of moderate-intensity exercise. The exponential increase in brain blood flow from rest to exercise revealed that 1) the kinetics profile of the older group was blunted compared with their young counterparts and 2) the older women demonstrated a slowed response.


Asunto(s)
Envejecimiento/fisiología , Ejercicio Físico , Hemodinámica , Arteria Cerebral Media/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Circulación Cerebrovascular , Femenino , Humanos , Masculino , Arteria Cerebral Media/crecimiento & desarrollo , Factores Sexuales
3.
Ecol Appl ; 27(4): 1338-1350, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28263426

RESUMEN

Modeling riparian plant dynamics along rivers is complicated by the fact that plants have different edaphic and hydrologic requirements at different life stages. With intensifying human demands for water and continued human alteration of rivers, there is a growing need for predicting responses of vegetation to flow alteration, including responses related to climate change and river flow management. We developed a coupled structured population model that combines stage-specific responses of plant guilds with specific attributes of river hydrologic regime. The model uses information on the vital rates of guilds as they relate to different hydrologic conditions (flood, drought, and baseflow), but deliberately omits biotic interactions from the structure (interaction neutral). Our intent was to (1) consolidate key vital rates concerning plant population dynamics and to incorporate these data into a quantitative framework, (2) determine whether complex plant stand dynamics, including biotic interactions, can be predicted from basic vital rates and river hydrology, and (3) project how altered flow regimes might affect riparian communities. We illustrated the approach using five flow-response guilds that encompass much of the river floodplain community: hydroriparian tree, xeroriparian shrub, hydroriparian shrub, mesoriparian meadow, and desert shrub. We also developed novel network-based tools for predicting community-wide effects of climate-driven shifts and deliberately altered flow regimes. The model recovered known patterns of hydroriparian tree vs. xeroriparian shrub dominance, including the relative proportion of these two guilds as a function of river flow modification. By simulating flow alteration scenarios ranging from increased drought to shifts in flood timing, the model predicted that mature hydroriparian forest should be most abundant near the observed natural flow regime. Multiguild sensitivity analysis identified substantial network connectivity (many connected nodes) and biotic linkage (strong pairwise connections between nodes) under natural flow regime conditions. Both connectivity and linkage were substantially reduced under drought and other flow-alteration scenarios, suggesting that community structure is destabilized under such conditions. This structured population modeling approach provides a useful tool for understanding the community-wide effects of altered flow regimes due to climate change and management actions that influence river flow regime.


Asunto(s)
Cambio Climático , Sequías , Fenómenos Fisiológicos de las Plantas , Ríos , Movimientos del Agua , Biota , Colorado , Hidrología , Modelos Biológicos , Dinámica Poblacional
4.
Development ; 140(16): 3403-12, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863480

RESUMEN

Blood flow plays crucial roles in vascular development, remodeling and homeostasis, but the molecular pathways required for transducing flow signals are not well understood. In zebrafish embryos, arterial expression of activin receptor-like kinase 1 (alk1), which encodes a TGFß family type I receptor, is dependent on blood flow, and loss of alk1 mimics lack of blood flow in terms of dysregulation of a subset of flow-responsive arterial genes and increased arterial endothelial cell number. These data suggest that blood flow activates Alk1 signaling to promote a flow-responsive gene expression program that limits nascent arterial caliber. Here, we demonstrate that restoration of endothelial alk1 expression to flow-deprived arteries fails to rescue Alk1 activity or normalize arterial endothelial cell gene expression or number, implying that blood flow may play an additional role in Alk1 signaling independent of alk1 induction. To this end, we define cardiac-derived Bmp10 as the crucial ligand for endothelial Alk1 in embryonic vascular development, and provide evidence that circulating Bmp10 acts through endothelial Alk1 to limit endothelial cell number in and thereby stabilize the caliber of nascent arteries. Thus, blood flow promotes Alk1 activity by concomitantly inducing alk1 expression and distributing Bmp10, thereby reinforcing this signaling pathway, which functions to limit arterial caliber at the onset of flow. Because mutations in ALK1 cause arteriovenous malformations (AVMs), our findings suggest that an impaired flow response initiates AVM development.


Asunto(s)
Receptores de Activinas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Arterias Carótidas/enzimología , Embrión no Mamífero/irrigación sanguínea , Endotelio Vascular/enzimología , Receptores de Activinas/genética , Animales , Malformaciones Arteriovenosas/enzimología , Malformaciones Arteriovenosas/patología , Proteínas Morfogenéticas Óseas/genética , Recuento de Células , Embrión no Mamífero/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Activación Enzimática , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Miocardio/enzimología , Miocardio/patología , Fosforilación , Transporte de Proteínas , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
J Cereb Blood Flow Metab ; 41(7): 1579-1591, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33203296

RESUMEN

Local cerebral blood flow (CBF) responses to neuronal activity are essential for cognition and impaired CBF responses occur in Alzheimer's disease (AD). In this study, regional CBF (rCBF) responses to the KATP channel opener diazoxide were investigated in 3xTgAD, WT and mutant Presenilin 1(PS1M146V) mice from three age groups using Laser-Doppler flowmetry. The rCBF response was reduced early in young 3xTgAD mice and almost absent in old 3xTgAD mice, up to 30%-40% reduction with altered CBF velocity and mean arterial pressure versus WT mice. The impaired rCBF response in 3xTgAD mice was associated with progression of AD pathology, characterized by deposition of intracellular and vascular amyloid-ß (Aß) oligomers, senile plaques and tau pathology. The nitric oxide synthase (NOS) inhibitor Nω-nitro-L-arginine abolished rCBF response to diazoxide suggesting NO was involved in the mediation of vasorelaxation. Levels of phosphor-eNOS (Ser1177) diminished in 3xTgAD brains with age, while the rCBF response to the NO donor sodium nitroprusside remained. In PS1M146V mice, the rCBF response to dizoxide reduced and high molecular weight Abeta oligomers were increased indicating PS1M146V contributed to the dysregulation of rCBF response in AD mice. Our study revealed an Aß oligomer-associated compromise of cerebrovascular function in rCBF response to diazoxide in AD mice with PS1M146V mutation.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Diazóxido/farmacología , Canales KATP/metabolismo , Mutación , Presenilina-1/genética , Factores de Edad , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA