Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.395
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 87: 991-1014, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29596002

RESUMEN

Peptidoglycan is an essential component of the cell wall that protects bacteria from environmental stress. A carefully coordinated biosynthesis of peptidoglycan during cell elongation and division is required for cell viability. This biosynthesis involves sophisticated enzyme machineries that dynamically synthesize, remodel, and degrade peptidoglycan. However, when and where bacteria build peptidoglycan, and how this is coordinated with cell growth, have been long-standing questions in the field. The improvement of microscopy techniques has provided powerful approaches to study peptidoglycan biosynthesis with high spatiotemporal resolution. Recent development of molecular probes further accelerated the growth of the field, which has advanced our knowledge of peptidoglycan biosynthesis dynamics and mechanisms. Here, we review the technologies for imaging the bacterial cell wall and its biosynthesis activity. We focus on the applications of fluorescent d-amino acids, a newly developed type of probe, to visualize and study peptidoglycan synthesis and dynamics, and we provide direction for prospective research.


Asunto(s)
Bacterias/metabolismo , Pared Celular/metabolismo , Peptidoglicano/biosíntesis , Aminoácidos/química , Bacterias/ultraestructura , Pared Celular/ultraestructura , Colorantes Fluorescentes/química , Microscopía de Fuerza Atómica , Microscopía Electrónica , Microscopía Fluorescente
2.
Annu Rev Biochem ; 84: 765-90, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26034893

RESUMEN

Hydrogen peroxide (H2O2) is a prime member of the reactive oxygen species (ROS) family of molecules produced during normal cell function and in response to various stimuli, but if left unchecked, it can inflict oxidative damage on all types of biological macromolecules and lead to cell death. In this context, a major source of H2O2 for redox signaling purposes is the NADPH oxidase (Nox) family of enzymes, which were classically studied for their roles in phagocytic immune response but have now been found to exist in virtually all mammalian cell types in various isoforms with distinct tissue and subcellular localizations. Downstream of this tightly regulated ROS generation, site-specific, reversible covalent modification of proteins, particularly oxidation of cysteine thiols to sulfenic acids, represents a prominent posttranslational modification akin to phosphorylation as an emerging molecular mechanism for transforming an oxidant signal into a dynamic biological response. We review two complementary types of chemical tools that enable (a) specific detection of H2O2 generated at its sources and (b) mapping of sulfenic acid posttranslational modification targets that mediate its signaling functions, which can be used to study this important chemical signal in biological systems.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , NADPH Oxidasas/metabolismo , Transducción de Señal , Animales , Humanos , Oxidación-Reducción , Ácidos Sulfénicos/metabolismo
3.
J Comput Chem ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302059

RESUMEN

A proper understanding of excited state properties of indole derivatives can lead to rational design of efficient fluorescent probes. The optically active L a $$ {L}_a $$ and L b $$ {L}_b $$ excited states of a series of substituted indoles, where a substituent was placed on position four, were calculated using equation of motion coupled cluster and time dependent density functional theory. The results indicate that most substituted indoles have a brighter second excited state corresponding to experimental absorption maxima, but a few with electron withdrawing substituents absorb more on the first excited state. Absorption on the first excited state may increase their fluorescence quantum yield, making them better probes. Electronic structure methods were found to predict the energies of the systems with electron withdrawing substituents more accurately than those with electron donating substituents. The excited states of both states correlated well with electrophilicity, similar to the experimental trends for the absorption maxima. Overall, these computational studies indicate that theory can be used to predict excited state properties of substituted indoles, when the substituent is an electron withdrawing group.

4.
Chembiochem ; : e202400377, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073274

RESUMEN

We report a water-soluble fluorescence and colorimetric copper probe (LysoBC1); this system can also serve for lysosome labeling and for the dynamic tracking of Cu2+ in living cells. The sensing mechanism takes advantage of the synergic action by the following three components: i) a lysosome targeting unit, ii) the spirolactam ring-opening for the selective copper chelation and iii) the metal-mediated hydrolysis of the rhodamine moiety for fluorescence enhancement. In aqueous environment the molecule acts as a fluorescent reversible pH sensor and as colorimetric probe for Cu2+ at physiological pH; the hydrolysis of the copper targeting unit resulted in a 50-fold increase of the fluorescence intensity. Most importantly, in vitro cell analyses in undifferentiated (SH SY5Y) and differentiated (d-SH SY5Y) neuroblastoma cells, LysoBC1 is able to selectively accumulate into lysosome while the copper binding ability allowed us to monitor intracellular copper accumulation into lysosome.

5.
Chembiochem ; 25(15): e202400257, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38847484

RESUMEN

Nitroreductase (NTR) has long been a target of interest for its important role involved in the nitro compounds metabolism. Various probes have been reported for NTR analysis, but rarely able to distinguish the extracellular NTR from intracellular ones. Herein we reported a new NTR sensor, HCyS-NO2, which was a hemicyanine molecule with one nitro and two sulfo groups attached. The nitro group acted as the reporting group to respond NTR reduction. Direct linkage of nitro group into the hemicyanine π conjugate system facilitated the intramolecular electron transfer (IET) process and thus quenched the fluorescence of hemicyanine core. Upon reduction with NTR, the nitro group was rapidly converted into the hydroxylamino and then the amino group, eliminating IET process and thus restoring the fluorescence. The sulfo groups installed significantly increased the hydrophilicity of the molecule, and introduced negative charges at physiological pH, preventing the diffusion into bacteria. Both gram-negative and gram-positive bacteria were able to turn on the fluorescence of HCyS-NO2, without detectable diffusion into cells, providing a useful tool to probe the extracellular reduction process.


Asunto(s)
Colorantes Fluorescentes , Nitrorreductasas , Agua , Nitrorreductasas/metabolismo , Colorantes Fluorescentes/química , Agua/química , Carbocianinas/química , Solubilidad , Estructura Molecular
6.
Chembiochem ; 25(9): e202400094, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38488304

RESUMEN

Phosphorescent iridium(III) complexes are widely recognized for their unique properties in the excited triplet state, making them crucial for various applications including biological sensing and imaging. Most of these complexes display single phosphorescence emission from the lowest-lying triplet state after undergoing highly efficient intersystem crossing (ISC) and ultrafast internal conversion (IC) processes. However, in cases where these excited-state processes are restricted, the less common phenomenon of dual emission has been observed. This dual emission phenomenon presents an opportunity for developing biological probes and imaging agents with multiple emission bands of different wavelengths. Compared to intensity-based biosensing, where the existence and concentration of an analyte are indicated by the brightness of the probe, the emission profile response involves modifications in emission color. This enables quantification by utilizing the intensity ratio of different wavelengths, which is self-calibrating and unaffected by the probe concentration and excitation laser power. Moreover, dual-emissive probes have the potential to demonstrate distinct responses to multiple analytes at separate wavelengths, providing orthogonal detection capabilities. In this concept, we focus on iridium(III) complexes displaying fluorescence-phosphorescence or phosphorescence-phosphorescence dual emission, along with their applications as biological probes for sensing and imaging.


Asunto(s)
Complejos de Coordinación , Iridio , Iridio/química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Humanos , Técnicas Biosensibles/métodos , Imagen Óptica , Sustancias Luminiscentes/química , Sustancias Luminiscentes/síntesis química , Animales , Mediciones Luminiscentes , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química
7.
Chembiochem ; 25(19): e202400093, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695553

RESUMEN

Oxidative stress is a cellular disorder implicated in various severe diseases and redox biology and represents an important field of research for the last decades. One of the major consequences of oxidative stress is the carbonylation of proteins, which is also a reliable marker to assess protein oxidative modifications. Accumulation of carbonylated proteins has been associated with aging and age-related diseases and can ultimately causes cell death. Detection of these oxidative modifications is essential to understand and discover new treatments against oxidative stress. We describe the design and the synthetic pathway of new BODIPY fluorescent probes functionalized with hydrazide function for protein carbonyl labeling to improve existing methodologies such as 2D-Oxi electrophoresis. Hydrazide BODIPY analogues show very good fluorescent properties such as NIR emission up to 633 nm and quantum yield up to 0.88. These new probes were validated for the detection and quantification of carbonylated proteins with 2D-Oxi electrophoresis using mouse muscle protein extracts, as well as both flow cytometry and microscopy using oxidant stressed C2 C12 cells.


Asunto(s)
Compuestos de Boro , Colorantes Fluorescentes , Hidrazinas , Estrés Oxidativo , Carbonilación Proteica , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Compuestos de Boro/química , Compuestos de Boro/síntesis química , Animales , Ratones , Hidrazinas/química , Hidrazinas/síntesis química , Proteínas/análisis , Proteínas/metabolismo , Proteínas/química , Línea Celular
8.
Chembiochem ; 25(13): e202400415, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38749919

RESUMEN

Organelle selective fluorescent probes, especially those capable of concurrent detection of specific organelles, are of benefit to the research community in delineating the interplay between various organelles and the impact of such interaction in maintaining cellular homeostasis and its disruption in the diseased state. Although very useful, such probes are synthetically challenging to design due to the stringent lipophilicity requirement posed by different organelles, and hence, the lack of such probes being reported so far. This work details the synthesis, photophysical properties, and cellular imaging studies of two bora-diaza-indacene based fluorescent probes that can specifically and simultaneously visualise lipid droplets and endoplasmic reticulum; two organelles suggested having close interactions and implicated in stress-induced cellular dysfunction and disease progression.


Asunto(s)
Retículo Endoplásmico , Colorantes Fluorescentes , Gotas Lipídicas , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Humanos , Compuestos de Boro/química , Compuestos de Boro/síntesis química , Células HeLa , Estructura Molecular , Imagen Óptica
9.
Eur J Nucl Med Mol Imaging ; 51(12): 3532-3544, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38867107

RESUMEN

PURPOSE: Fluorescence imaging-guided surgery has been used in oncology. However, for tiny tumors, the current imaging probes are still difficult to achieve high-contrast imaging, leading to incomplete resection. In this study, we achieved precise surgical resection of tiny metastatic cancers by constructing an engineering erythrocyte membrane-camouflaged bioprobe (AR-M@HMSN@P). METHODS: AR-M@HMSN@P combined the properties of aggregation-induced emission luminogens (AIEgens) named PF3-PPh3 (P), with functional erythrocyte membrane modified by a modular peptide (AR). Interestingly, AR was composed of an asymmetric tripodal pentapeptide scaffold (GGKGG) with three appended modulars: KPSSPPEE (A6) peptide, RRRR (R4) peptide and cholesterol. To verify the specificity of the probe in vitro, SKOV3 cells with overexpression of CD44 were used as the positive group, and HLF cells with low expression of CD44 were devoted as the control group. The AR-M@HMSN@P fluorescence imaging was utilized to provide surgical guidance for the removal of micro-metastatic lesions. RESULTS: In vivo, the clearance of AR-M@HMSN@P by the immune system was reduced due to the natural properties inherited from erythrocytes. Meanwhile, the A6 peptide on AR-M@HMSN@P was able to specifically target CD44 on ovarian cancer cells, and the electrostatic attraction between the R4 peptide and the cell membrane enhanced the firmness of this targeting. Benefiting from these multiple effects, AR-M@HMSN@P achieved ultra-precise tumor imaging with a signal-to-noise ratio (SNR) of 15.2, making it possible to surgical resection of tumors < 1 mm by imaging guidance. CONCLUSION: We have successfully designed an engineered fluorescent imaging bioprobe (AR-M@HMSN@P), which can target CD44-overexpressing ovarian cancers for precise imaging and guide the resection of minor tumors. Notably, this work holds significant promise for developing biomimetic probes for clinical imaging-guided precision cancer surgery by exploiting their externally specified functional modifications.


Asunto(s)
Membrana Eritrocítica , Colorantes Fluorescentes , Neoplasias Ováricas , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/cirugía , Femenino , Humanos , Colorantes Fluorescentes/química , Membrana Eritrocítica/química , Línea Celular Tumoral , Animales , Medicina de Precisión/métodos , Imagen Óptica/métodos , Cirugía Asistida por Computador/métodos , Ratones , Receptores de Hialuranos/metabolismo
10.
Chemistry ; 30(28): e202400111, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38470944

RESUMEN

Regulation of pH plays an essential role in orchestrating the delicate cellular machinery responsible for life as we know it. Its abnormal values are indicative of aberrant cellular behavior and associated with pathologies including cancer progression or solid tumors. Here, we report a series of bent and linear aminobenzocoumarins decorated with different substituents. We investigate their photophysical properties and demonstrate that the probes display strong pH-responsive fluorescence "turn on" behavior in highly acidic environments, with enhancement up to 300-fold. In combination with their low cytotoxicity, this behavior enabled their application in bioimaging of acidic lysosomes in live human cells. We believe that these molecules serve as attractive lead structures for future rational design of novel biocompatible fluorescent pH probes.


Asunto(s)
Cumarinas , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Humanos , Concentración de Iones de Hidrógeno , Cumarinas/química , Lisosomas/metabolismo , Lisosomas/química , Células HeLa , Espectrometría de Fluorescencia
11.
Chemistry ; : e202402514, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231339

RESUMEN

Fluorofluorophores are a unique class of fluorophores that can be solubilized in perfluorocarbons (PFCs) and used to study biological systems. However, because of the low dielectric constant and high oxygen solubility in the fluorous phase, the brightness and photostability of the fluorofluorophores are significantly diminished. Here, we leveraged the tight ion pairing in the fluorous phase to improve the photophysical properties of a fluorous soluble pentamethine dye (FCy5) via counterion exchange. We found that larger, softer, fluorinated, aryl borate counterions promote the ideal polymethine state where charge delocalization across the polymethine chain increases the brightness (6-fold) and photostability (55-fold) of FCy5.

12.
Chemistry ; 30(52): e202401561, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38847762

RESUMEN

Gelatin polymers made from partially degraded collagen are important biomaterials, but their in-situ analysis suffers from uncontrollable covalent labelling and poor spatial-temporal imaging resolution. Herein, three tetrazolate-tagged tetraphenylethylene fluorophores (TPE-TAs) are introduced for practical fluorogenic labelling of gelatin in aqueous phase and hydrogels. These probes with aggregation-induced emission characteristics offer negligible background and elicit turn-on fluorescence by simply mixing with the gelatin in aqueous phase, giving a detection limit of 0.15 mg/L over a linear dynamic range up to 100 mg/L. This method does not work for collagens and causes minimal interference with gelatin properties. Mechanistic studies reveal a key role for multivalent electrostatic interactions between the abundant basic residues in gelatin (e. g., lysine, hydroxylysine, arginine) and anionic tetrazolate moieties of the lipophilic fluorophore synergistically in spatially rigid macromolecular encapsulation to achieve fluorogenic labelling. The AIE strategy by forming non-covalent fluorophore-gelatin complexes was developed for novel hydrogels that exhibited reversible fluorescence in response to dynamic microstructural changes in the hydrogel scaffold upon salting-in/out treatments, and enabled high spatial-temporal imaging of the fiber network in lyophilized samples. This work may open up avenues for in-situ imaging analysis and evaluation of gelatin-based biomaterials during processes such as in vivo degradation and mineralization.


Asunto(s)
Colorantes Fluorescentes , Gelatina , Hidrogeles , Gelatina/química , Hidrogeles/química , Colorantes Fluorescentes/química , Agua/química , Polímeros/química , Estilbenos/química , Materiales Biocompatibles/química , Tetrazoles/química
13.
Chemistry ; 30(35): e202401296, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641990

RESUMEN

To fill the need for environmentally sensitive fluorescent unnatural amino acids able to operate in the red region of the spectrum, we have designed and synthesized Alared, a red solvatochromic and fluorogenic amino acid derived from the Nile Red chromophore. The new unnatural amino acid can be easily integrated into bioactive peptides using classical solid-phase peptide synthesis. The fluorescence quantum yield and the emission maximum of Alared-labeled peptides vary in a broad range depending on the peptide's environment, making Alared a powerful reporter of biomolecular interactions. Due to its red-shifted absorption and emission spectra, Alared-labeled peptides could be followed in living cells with minimal interference from cellular autofluorescence. Using ratiometric fluorescence microscopy, we were able to track the fate of the Alared-labeled peptide agonists of the apelin G protein-coupled receptor upon receptor activation and internalization. Due to its color-shifting environmentally sensitive emission, Alared allowed for distinguishing the fractions of peptides that are specifically bound to the receptor or unspecifically bound to different cellular membranes.


Asunto(s)
Aminoácidos , Colorantes Fluorescentes , Microscopía Fluorescente , Péptidos , Colorantes Fluorescentes/química , Péptidos/química , Aminoácidos/química , Humanos , Microscopía Fluorescente/métodos , Oxazinas/química , Técnicas de Síntesis en Fase Sólida , Espectrometría de Fluorescencia
14.
Chemistry ; 30(1): e202303038, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37852935

RESUMEN

Photoacoustic imaging (PAI) is an emerging imaging technique that uses pulsed laser excitation with near-infrared (NIR) light to elicit local temperature increases through non-radiative relaxation events, ultimately leading to the production of ultrasound waves. The classical xanthene dye scaffold has found numerous applications in fluorescence imaging, however, xanthenes are rarely utilized for PAI since they do not typically display NIR absorbance. Herein, we report the ability of Nebraska Red (NR) xanthene dyes to produce photoacoustic (PA) signal and provide a rational design approach to reduce the hydrolysis rate of ester containing dyes, affording cell permeable probes. To demonstrate the utility of this approach, we construct the first cell permeable rhodamine-based, turn-on PAI imaging probe for hypochlorous acid (HOCl) with maximal absorbance within the range of commercial PA instrumentation. This probe, termed SNR700 -HOCl, is capable of detecting exogenous HOCl in mice. This work provides a new set of rhodamine-based PAI agents as well as a rational design approach to stabilize esterified versions of NR dyes with desirable properties for PAI. In the long term, the reagents described herein could be utilized to enable non-invasive imaging of HOCl in disease-relevant model systems.


Asunto(s)
Colorantes Fluorescentes , Técnicas Fotoacústicas , Animales , Ratones , Rodaminas , Ésteres , Técnicas Fotoacústicas/métodos , Xantenos , Imagen Óptica/métodos
15.
Chemistry ; 30(24): e202400229, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38369579

RESUMEN

Quaternary N-aryl-DABCO salts were introduced for the first time as a highly selective sensing platform for thiols and selenols. By employing this platform, a highly sensitive coumarin based "off-on" fluorescent probe was designed and synthesized. The probe possesses a good solubility in water, low background fluorescence, and, most importantly, demonstrates high selectivity to aryl thiols and selenols over their aliphatic counterparts and other common nucleophiles. A dramatic increase in fluorescence intensity is achieved through the selective cleavage of the quaternized DABCO-ring, yielding a piperazine derivatives with a high fluorescence quantum yield (~72 %). Moreover, stability of the probe to the most used reducing agents DTT and TCEP was demonstrated. The limits of detection for p-thiocresol and phenyl selenide were evaluated to be 22 nM and 6 nM, respectively.

16.
Chemistry ; 30(16): e202303331, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38206848

RESUMEN

Near-infrared (NIR) dyes are desirable for biological imaging applications including photoacoustic (PA) and fluorescence imaging. Nonetheless, current NIR dyes are often plagued by relatively large molecular weights, poor water solubility, and limited photostability. Herein, we provide the first examples of azaphosphinate dyes which display desirable properties such as low molecular weight, absorption/emission above 750 nm, and remarkable water solubility. In PA imaging, an azaphosphinate dye exhibited a 4.1-fold enhancement in intensity compared to commonly used standards, the ability to multiplex with existing dyes in whole blood, imaging depths of 2.75 cm in a tissue model, and contrast in mice. An improved derivative for fluorescence imaging displayed a >10-fold reduction in photobleaching in water compared to the FDA-approved indocyanine green dye and could be visualized in mice. This new dye class provides a robust scaffold for the development of photoacoustic or NIR fluorescence imaging agents.


Asunto(s)
Colorantes Fluorescentes , Verde de Indocianina , Animales , Ratones , Peso Molecular , Imagen Óptica/métodos , Agua
17.
Chemistry ; 30(37): e202400598, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38662806

RESUMEN

Developing imaging tools that can report on the presence of disease-relevant analytes in multicellular organisms can provide insight into fundamental disease mechanisms as well as provide diagnostic tools for the clinic. Photoacoustic imaging (PAI) is a light-in, sound-out imaging technique that allows for high resolution, deep-tissue imaging with applications in pre-clinical and point-of-care settings. The continued development of near-infrared (NIR) absorbing small-molecule dyes promises to improve the capabilities of this emerging imaging modality. For example, new dye scaffolds bearing chemoselective functionalities are enabling the detection and quantification of disease-relevant analytes through activity-based sensing (ABS) approaches. Recently described strategies to engineer NIR absorbing xanthenes have enabled development of analyte-responsive PAI probes using this classic dye scaffold. Herein, we present current strategies for red-shifting the spectral properties of xanthenes via bridging heteroatom or auxochrome modifications. Additionally, we explore how these strategies, coupled with chemoselective spiroring-opening approaches, have been employed to create ABS probes for in vivo detection of hypochlorous acid, nitric oxide, copper (II), human NAD(P)H: quinone oxidoreductase isozyme 1, and carbon monoxide. Given the versatility of the xanthene scaffold, we anticipate continued growth and development of analyte-responsive PAI imaging probes based on this dye class.


Asunto(s)
Técnicas Fotoacústicas , Xantenos , Técnicas Fotoacústicas/métodos , Xantenos/química , Humanos , Colorantes Fluorescentes/química , Monóxido de Carbono/análisis , Monóxido de Carbono/química , Óxido Nítrico/análisis , Óxido Nítrico/química , Cobre/química , Colorantes/química , Animales
18.
Chemphyschem ; : e202400554, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39176999

RESUMEN

Protein aggregates cause abnormal states and trigger various diseases, including neurodegenerative disorders. This study examined whether the xanthene dye derivative Rose Bengal could track a series of conformational changes in protein aggregates. Using lysozyme as a model protein, aggregated proteins were prepared by heating under acidic conditions. The absorption spectra, steady-state fluorescence spectra, fluorescence quantum yield, fluorescence lifetime, and phosphorescence lifetime of a solution containing Rose Bengal in the presence of aggregated lysozyme were measured to identify their spectroscopic characteristics. The absorption spectrum of Rose Bengal changed significantly during the formation of agglomerates in heated lysozyme. Additionally, the fluorescence intensity decreased during the initial stages of the aggregation process with an increase in heating time, followed by an increase in intensity along with a red-shift of the peak wavelength. The decrease in quantum yield with a fixed fluorescence lifetime supported the formation of a nonfluorescent ground-state complex between Rose Bengal and the aggregated lysozyme. Based on the characteristic changes in absorption and fluorescence properties observed during the aggregation process, Rose Bengal is considered an excellent indicator for the sensitive discernment of aggregated proteins.

19.
Bioorg Med Chem ; 103: 117673, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38518734

RESUMEN

Our understanding of sterol transport proteins (STPs) has increased exponentially in the last decades with advances in the cellular and structural biology of these important proteins. However, small molecule probes have only recently been developed for a few selected STPs. Here we describe the synthesis and evaluation of potential proteolysis-targeting chimeras (PROTACs) based on inhibitors of the STP Aster-A. Based on the reported Aster-A inhibitor autogramin-2, ten PROTACs were synthesized. Pomalidomide-based PROTACs functioned as fluorescent probes due to the intrinsic fluorescent properties of the aminophthalimide core, which in some cases was significantly enhanced upon Aster-A binding. Most PROTACs maintained excellent binary affinity to Aster-A, and one compound, NGF3, showed promising Aster-A degradation in cells. The tools developed here lay the foundation for optimizing Aster-A fluorescent probes and degraders and studying its activity and function in vitro and in cells.


Asunto(s)
Proteínas Portadoras , Colorantes Fluorescentes , Colorantes Fluorescentes/farmacología , Esteroles , Proteolisis
20.
J Fluoresc ; 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39368045

RESUMEN

A carbazole-based fluorescent probe YCN with AIE performance and a large Stokes shift (242 nm) shift was synthesized by attaching 4-acetonitrile pyridine to the 3-phenylaldehyde butylcarbazole. Its structure was characterized by 1H NMR, 13C NMR and MS. Probe YCN has high selectivity and sensitivity toward ONOO-. The addition of ONOO- to the probe YCN solution results in a noticeable color change from pale yellow to colorless under natural light, and a fluorescent color change from bright orange-yellow to bright yellow-green under a 365 nm UV lamp, which can be distinguished by the naked eye. The research results on the reaction mechanism showed that when YCN reacted with ONOO-, -C = C- was oxidized and broken into -CHO, and the ICT effect was significantly inhibited, resulting in changes in UV absorption and fluorescence emission phenomenon. The recognition mechanism was verified by 1H NMR, mass spectrometry (MS) and density function theory (DFT) calculations. The experiments of live cells imaging suggested that compound YCN can be used as a fluorescent probe for the detection of ONOO- in HeLa cells. This result indicates that YCN has potential application prospects in the biological aspects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA