Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nano Lett ; 24(18): 5429-5435, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38682885

RESUMEN

Realizing room-temperature, efficient, and reversible fluoride-ion redox is critical to commercializing the fluoride-ion battery, a promising post-lithium-ion battery technology. However, this is challenging due to the absence of usable electrolytes, which usually suffer from insufficient ionic conductivity and poor (electro)chemical stability. Herein we report a water-in-salt (WIS) electrolyte based on the tetramethylammonium fluoride salt, an organic salt consisting of hydrophobic cations and hydrophilic anions. The new WIS electrolyte exhibits an electrochemical stability window of 2.47 V (2.08-4.55 V vs Li+/Li) with a room-temperature ionic conductivity of 30.6 mS/cm and a fluoride-ion transference number of 0.479, enabling reversible (de)fluoridation redox of lead and copper fluoride electrodes. The relationship between the salt property, the solvation structure, and the ionic transport behavior is jointly revealed by computational simulations and spectroscopic analysis.

2.
J Am Chem Soc ; 146(6): 3844-3853, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38193701

RESUMEN

Developing electrochemical high-energy storage systems is of crucial importance toward a green and sustainable energy supply. A promising candidate is fluoride-ion batteries (FIBs), which can deliver a much higher volumetric energy density than lithium-ion batteries. However, typical metal fluoride cathodes with conversion-type reactions cause a low-rate capability. Recently, layered perovskite oxides and oxyfluorides, such as LaSrMnO4 and Sr3Fe2O5F2, have been reported to exhibit relatively high rate performance and cycle stability compared to typical metal fluoride cathodes with conversion-type reactions, but their discharge capacities (∼118 mA h/g) are lower than those of typical cathodes used in lithium-ion batteries. Here, we show that double-layered perovskite oxyfluoride La1.2Sr1.8Mn2O7-δF2 exhibits (de) intercalation of two fluoride ions to rock-salt slabs and further (de) intercalation of excess fluoride ions to the perovskite layer, leading to a reversible capacity of 200 mA h/g. The additional fluoride-ion intercalation leads to the formation of O-O bond in the structure for charge compensation (i.e., anion redox). These results highlight the layered perovskite oxyfluorides as a new class of active materials for the construction of high-performance FIBs.

3.
Small ; 20(37): e2401502, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38716798

RESUMEN

All-solid-state fluoride ion batteries (ASSFIBs) show remarkable potential as energy storage devices due to their low cost, superior safety, and high energy density. However, the poor ionic conductivity of F- conductor, large volume expansion, and the lack of a suitable anode inhibit their development. In this work, PbSnF4 solid electrolytes in different phases (ß- and γ-PbSnF4) are successfully synthesized and characterized. The ASSFIBs composed of ß-PbSnF4 electrolytes, a BiF3 cathode, and micrometer/nanometer size (µ-/n-) Sn anodes, exhibit substantial capacities. Compared to the µ-Sn anode, the n-Sn anode with nanostructure exhibits superior battery performance in the BiF3/ß-PbSnF4/Sn battery. The optimized battery delivers a high initial discharge capacity of 181.3 mAh g-1 at 8 mA g-1 and can be reversibly cycled at 40 mA g-1 with a high discharge capacity of over 100.0 mAh g-1 after 120 cycles at room temperature. Additionally, it displays high discharge capacities over 90.0 mAh g-1 with excellent cyclability over 100 cycles under -20 °C. Detailed characterization has confirmed that reducing Sn particle size and boosting external pressure are crucial for achieving good defluorination/fluorination behaviors in the Sn anode. These findings pave the way to designing ASSFIBs with high capacities and superior cyclability under different operating temperatures.

4.
Chemistry ; 30(18): e202303742, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38214487

RESUMEN

Excess fluoride ions in groundwater accumulate through the roots of crops, affecting photosynthesis and inhibiting their growth. Long-term bioaccumulation also threatens human health because it is poorly degradable and toxic. Currently, one of the biggest challenges is developing a unique material that can efficiently remove fluoride ions from the environment. The excellent properties of functionalized pillar[5]arene polymer-filled nanochannel membranes were explored to address this challenge. Constructing a multistage porous nanochannel membrane, consisting of microscale etched nanochannels and nanoscale pillar[5]arene cross-linked polymer voids. A fluoride removal rate of 0.0088 mmol ⋅ L-1 ⋅ min-1 was achieved. Notably, this rate surpassed the rates observed with other control ions by a factor of 6 to 8.8. Our research provides a new direction for developing water fluoride ion removal materials.

5.
Chemistry ; : e202401730, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145545

RESUMEN

The synthesis and reactivity of an air and water stable Bicyclic (alkyl)(amino)carbene (BICAAC) stabilized phosphenium cation (1) is reported. Air and water stable phosphenium cation are rare in the literature. Compound 1 is obtained by reaction of BICAAC with Ph2PCl in THF followed by anion exchange with LiOTf. The reduction and oxidation of 1 yielded corresponding α-radical phosphine species (2) and BICAAC stabilized phosphenium oxide (3) respectively. All compounds are well characterized by single crystal X-ray diffraction studies. The Lewis acidity of compounds 1 and 3 are determined by conducting fluoride ion affinity experiments using UV-Vis spectrophotometry and multinuclei NMR spectroscopy. Compounds 1 and 3 exhibited selective binding to fluoride anion but did not interact with other halides (Cl- and Br-). Quantum chemical calculations were performed to understand the structure and nature of bonding interactions in these compounds, as well as to comprehend the specific bonding affinity to fluoride over other halide ions.

6.
J Environ Sci (China) ; 139: 245-257, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105052

RESUMEN

Water fluoride pollution has caused non-negligible harm to the environment and humans, and thus it is crucial to find a suitable treatment technology. In this study, La-Fe@PTA adsorbent was synthesized for the defluoridation of mine water. The results showed that the optimum conditions for defluoridation by La-Fe@PTA were pH close to 7.0, the initial F- concentration of 10 mg/L, the dosage of 0.5 g/L and the adsorption time of 240 min. Compared with SO42‒, Cl‒, NO3‒, Ca2+ and Mg2+, CO32‒ and HCO3‒ presented severer inhibition on fluoride uptake by La-Fe@PTA. The adsorption process fits well with the pseudo-second-order kinetic model and Freundlich model, and the maximum adsorption capacity of Langmuir model was 95 mg/g. Fixed-bed adsorption results indicated that fluoride in practical fluorinated mine water could be effectively removed from 3.6 mg/L to less than 1.5 mg/L within 130 bed volume (BV) by using 1.5 g La-Fe@PTA. Furthermore, the adsorbent still had good adsorption capacity after regeneration, which confirms the great application potential of La-Fe@PTA as a fluoride ion adsorbent. The mechanism analysis showed that La-Fe@PTA adsorption of fluorine ions is a physicochemical reaction driven by electrostatic attraction and ion exchange.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Fluoruros , Agua , Adsorción , Cinética , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos
7.
Angew Chem Int Ed Engl ; 63(17): e202401084, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38452299

RESUMEN

"How strong is this Lewis acid?" is a question researchers often approach by calculating its fluoride ion affinity (FIA) with quantum chemistry. Here, we present FIA49k, an extensive FIA dataset with 48,986 data points calculated at the RI-DSD-BLYP-D3(BJ)/def2-QZVPP//PBEh-3c level of theory, including 13 different p-block atoms as the fluoride accepting site. The FIA49k dataset was used to train FIA-GNN, two message-passing graph neural networks, which predict gas and solution phase FIA values of molecules excluded from training with a mean absolute error of 14 kJ mol-1 (r2=0.93) from the SMILES string of the Lewis acid as the only input. The level of accuracy is notable, given the wide energetic range of 750 kJ mol-1 spanned by FIA49k. The model's value was demonstrated with four case studies, including predictions for molecules extracted from the Cambridge Structural Database and by reproducing results from catalysis research available in the literature. Weaknesses of the model are evaluated and interpreted chemically. FIA-GNN and the FIA49k dataset can be reached via a free web app (www.grebgroup.de/fia-gnn).

8.
Angew Chem Int Ed Engl ; 63(22): e202403356, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478925

RESUMEN

The quantification of Lewis acidity is of fundamental and applied importance in chemistry. However, if neutral and charged Lewis acids are compared, a coherent ranking has been elusive, and severe uncertainties were accepted. With this study, we present a systematic computational analysis of Lewis base affinities of 784 mono-, di- and tricationic Lewis acids and their comparison with 149 representative neutral Lewis acids. Evaluating vacuum fluoride ion affinities (FIA) reveals a charge-caused clustering that prohibits any meaningful ranking. Instead, solvation-corrected FIAsolv is identified as a metric that overcomes charge sensitivity in a balanced manner, allowing for a coherent evaluation of Lewis acidity across varying charge states. Analyzing the impact of molecular volume on solvation-induced FIA damping provides rationales for fundamental trends and guidelines for the choice or design of neutral and cationic Lewis acids in the condensed phase. Exploring alternative scales, explicit counteranion effects, and selected experimental case studies reaffirms the advantages of solvation-corrected FIAsolv as the most versatile and practical approach for the quantitative ranking of general (thermodynamic) Lewis acidity.

9.
Chemphyschem ; 24(24): e202300434, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37727899

RESUMEN

Ratiometric detection of analyte is highly deserving since the technique is free from background correction. This work reports the design and synthesis of a pyridine-end oligo p-phenylenevinylene (OPV) derivative, 1 and its application in ratiometric dual-mode (both colorimetric and fluorogenic) recognition of dual anions, bisulfate (LOD=12.5 ppb) followed by fluoride (LOD=18.2 ppb) by sequence-specific relay (SPR) technique. The colorless probe turns brown with addition of bisulfate and again becomes colorless with the sequential addition of fluoride ion. In addition to such naked-eye color change, interestingly the ratiometric spectroscopic signals are reversible and evidently, the probe is reusable for several cycles. Besides, in presence of bisulfate, the protonated probe molecules, owing to their larger amphiphilic characteristics, formed self-assembled nanostructures. In addition to colorimetric and fluorescent changes, 1 H NMR titration and systematic DFT study evidently establish the underneath proton transfer mechanisms. Such reusable OPV-based chemosensor particularly with the capability of naked-eye recognition of dual anions using the SPR technique is seminal and possibly the first report in the literature.

10.
Photochem Photobiol Sci ; 22(11): 2483-2497, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37747667

RESUMEN

The present paper reports on the synthesis and characterization of a new chemosensor for fluoride ions, a hydrazone derived from pyridoxal 5'-phosphate and benzothiazole. The structure of the chemosensor was confirmed using 1H and 13C NMR, FT-IR and mass spectroscopy. The conformational diversity of the chemosensor influencing the sensor activity was studied by the quantum chemistry methods on the B3LYP/6-311++G(d, p) (H, C, N, O, P, S) level, and the optimal structure of the chemosensor was chosen. The selective capability of detecting F- in the aqueous solution, which also contains Cl-, Br-, I-, NCS-, ClO4-, HSO4-, and NO3- was demonstrated. The detection limit (LOD) for fluoride ions was 0.22 µM as determined by the 3σ method. The turn-on effect in the presence of fluoride ions is based on the deprotonation of the chemosensor and its subsequent aggregation in DMSO. In addition, the chemosensor was used for the detection and estimation of F- in real samples using fluorescence spectroscopy.

11.
J Fluoresc ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38047988

RESUMEN

Fluoride is both necessary and potentially harmful in excessive amounts, making its detection crucial. Fluorescent probes provide a sensitive and selective means for this purpose. In this study, we developed and synthesized a fluorescent probe for LDT using phenothiazine derivatives and aryl vinyl nitrile. Initially non-fluorescent, the probe undergoes a Si-O bond breakage in the presence of fluoride ions, resulting in the formation of a larger conjugated system and subsequent fluorescence emission. The probe exhibits superior selectivity and sensitivity towards fluoride ions, with a detection limit of 0.35 µM. Moreover, cellular imaging experiments demonstrated the probe's effectiveness in recognizing fluoride ions within HepG2 cells.

12.
Int J Mol Sci ; 24(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37834267

RESUMEN

The most favorable targets for retrospectively determining human exposure to organophosphorus pesticides, insecticides, retardants, and other industrial organophosphates (OPs) are adducts of OPs with blood plasma butyrylcholinesterase (BChE) and human serum albumin (HSA). One of the methods for determining OP exposure is the reactivation of modified BChE using a concentrated solution of KF in an acidic medium. It is known that under the action of fluoride ion, OPs or their fluoroanhydrides can be released not only from BChE adducts but also from the adducts with albumin; however, the contribution of albumin to the total pool of released OPs after plasma treatment with KF has not yet been studied. The efficiency of OP release can be affected by many factors associated with the experimental technique, but first, the structure of the adduct must be taken into account. We report a comparative analysis of the structure and conformation of organophosphorus adducts on HSA and BChE using molecular modeling methods and the mechanism of OP release after fluoride ion exposure. The conformational analysis of the organophosphorus adducts on HSA and BChE was performed, and the interaction of fluoride ions with modified proteins was studied by molecular dynamics simulation. The geometric and energy characteristics of the studied adducts and their complexes with fluoride ion were calculated using molecular mechanics and semiempirical approaches. The structural features of modified HSA and BChE that can affect the efficiency of OP release after fluoride ion exposure were revealed. Using the proposed approach, the expediency of using KF for establishing exposure to different OPs, depending on their structure, can be assessed.


Asunto(s)
Butirilcolinesterasa , Exposición a Riesgos Ambientales , Organofosfatos , Plaguicidas , Albúmina Sérica Humana , Humanos , Butirilcolinesterasa/química , Fluoruros , Organofosfatos/química , Organofosfatos/toxicidad , Plaguicidas/química , Plaguicidas/toxicidad , Albúmina Sérica Humana/química , Simulación por Computador
13.
Shokuhin Eiseigaku Zasshi ; 64(4): 161-165, 2023.
Artículo en Japonés | MEDLINE | ID: mdl-37673606

RESUMEN

Five kinds of anions namely fluoride, chlorate, chlorite, nitrate and nitrite ions, and bromic acid were determined in various mineral waters (MWs), and the methods were validated. MWs are varying in the degree of hardness and contents of carbonate. When the five anions were measured based on the official method of tap water, the peak shape of fluoride ion in MWs with high degree of hardness was different from the standard solution, making it difficult to determine. The same phenomenon was also observed when bromic acid was measured. In order to achieve accurate determination, five-fold dilution with ultrapure water was carried out on the samples. With the additional step, the abnormal peak of both analytes was improved, and no difference in the retention times between standard and sample solutions was observed. The validation tests were performed using the developed methods with the additional diluting step, and the results of all target substances met the criteria of the guideline on analytical method validation for MW in Japan. Our results suggested that the methods we developed could be useful for the accurate determination of the anions and bromic acid in various MWs on the market.


Asunto(s)
Aguas Minerales , Fluoruros , Aniones , Cromatografía
14.
Angew Chem Int Ed Engl ; 62(30): e202301416, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37070794

RESUMEN

Mixed-anion compounds have attracted growing attentions, but their synthesis is challenging, making a rational search desirable. Here, we explored LaF3 -LaX3 (X=Cl, Br, I) system using ab initio structure searches based on evolutionary algorithms, and predicted LaF2 X and LaFX2 (X=Br, I), which are respectively isostructural with LaHBr2 and YH2 I, consisting of layered La-F blocks with single and double ordered honeycomb lattices, separated by van der Waals gaps. We successfully synthesized these compounds: LaF2 Br and LaFI2 crystallize in the predicted structure, while LaF2 I is similar to the predicted one but with different layer stacking. LaF2 I exhibits fluoride ion conductivity comparable to that of non-doped LaF3 , and has the potential to show better ionic conductivity upon appropriate doping, given the theoretically lower diffusion energy barrier and the presence of soft iodine anions. This study shows the structure prediction using evolutionary algorithms will accelerate the discovery of mixed-anion compounds in future, in particular those with an ordered anion arrangement.

15.
Small ; 18(5): e2104508, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34837307

RESUMEN

Solid-state fluoride-ion batteries (FIBs) circumvent multiple formidable bottlenecks of lithium-ion batteries, but their overall performance remains inferior due to the absence of appropriate solid electrolytes. Presently the conductivity of most solid electrolytes for FIBs is too low to enable room-temperature cycling, while the few sufficiently conductive ones only allow for very low discharge voltages because of the narrow electrochemical stability window (ESW). Here, high room-temperature conductivity and a decent ESW are simultaneously achieved by designing a solid electrolyte CsPb0.9 K0.1 F2.9 . Its room-temperature conductivity is 1.23 × 10-3  S cm-1 , comparable to the most conductive system reported so far (PbSnF4 , 5.44 × 10-4 -1.6 × 10-3  S cm-1 ), but the ESW is several times broader. With these appealing characteristics simultaneously achieved in the solid electrolyte, a cell with much higher voltages than other room-temperature-operable solid-state FIBs in literature is successfully constructed, and stably cycled at 25 °C for 4581 h without considerable capacity fade.

16.
J Fluoresc ; 32(3): 921-926, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35091911

RESUMEN

We developed a new chromogenic and fluorescent "off-on" 1, 8-naphthalimide-derivated chemosensor 1 based on an F--triggered desilylation reaction. It showed significant variations in UV/visible absorption (510 nm) and fluorescence emission wavelength (580 nm) for selective detection of fluorides in THF/H2O system (v/v, 50:50). Moreover, chemodosimeter 1-loaded test strips were successfully fabricated todetect fluorides efficiently.

17.
Mikrochim Acta ; 189(9): 346, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36001171

RESUMEN

A new coordination polymer (Ce-Fe-GMP) with excellent catalytic activity was prepared by a facile route, which was further applied to the detection of F- with high sensitivity and selectivity. The simple doping of Fe3+ into the coordination network can easily modulate the mixing ratio of Ce3+ and Ce4+ in the presence of H2O2, which can extremely improve the catalytic ability of Ce-Fe-GMP. Based on the synergistic effect, the Ce-Fe-GMP with dual-active sites shows better peroxidase activity than that of Ce-GMP. In addition, we found that F- can inhibit the peroxidase activity of Ce-Fe-GMP because of the coordination structure fragmentation and the regulation of Ce3+/Ce4+ ratio. Therefore, different concentrations of F- can be detected by the colorimetric reaction based on this mechanism. The absorption at 652 nm displays a good linear relationship versus the concentration of F- over the range 2.0 to 100.0 µM. Furthermore, F- in real mineral-mixed samples can be measured with satisfactory results. The colorimetric strategy based on the peroxidase activity of Ce-Fe-GMP is simple and low-cost, which shows the potential applications in the field of on-site environment measurement.


Asunto(s)
Cerio , Colorimetría , Cerio/química , Colorimetría/métodos , Colorantes/química , Fluoruros , Peróxido de Hidrógeno/química , Hierro , Nucleótidos , Peroxidasa/química , Peroxidasas , Polímeros
18.
Molecules ; 27(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011557

RESUMEN

Pyrene molecules containing NBN-doped polycyclic aromatic hydrocarbons (PAHs) have been synthesized by a simple and efficient intermolecular dehydration reaction between 1-pyrenylboronic acid and aromatic diamine. Pyrene-B (o-phenylenediamine) with a five-membered NBN ring and pyrene-B (1,8-diaminonaphthalene) with a six-membered NBN ring show differing luminescence. Pyrene-B (o-phenylenediamine) shows concentration-dependent luminescence and enhanced emission after grinding at solid state. Pyrene-B (1,8-diaminonaphthalene) exhibits a turn-on type luminescence upon fluoride ion addition at lower concentration, as well as concentration-dependent stability. Further potential applications of Pyrene-B (o-phenylenediamine) on artificial light-harvesting film were demonstrated by using commercial NiR dye as acceptor.

19.
Angew Chem Int Ed Engl ; 61(46): e202212073, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36135949

RESUMEN

The synthesis of tris(ortho-carboranyl)borane (BoCb3 ), a single site neutral Lewis superacid, in one pot from commercially available materials is achieved. The high fluoride ion affinity (FIA) confirms its classification as a Lewis superacid and the Gutmann-Beckett method as well as adducts with Lewis bases indicate stronger Lewis acidity over the widely used fluorinated aryl boranes. The electron withdrawing effect of ortho-carborane and lack of pi-delocalization of the LUMO rationalize the unusually high Lewis acidity. Catalytic studies indicate that BoCb3 is a superior catalyst for promoting C-F bond functionalization reactions than tris(pentafluorophenyl)borane [B(C6 F5 )3 ].

20.
Angew Chem Int Ed Engl ; 61(40): e202205745, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35951474

RESUMEN

Al(OC(CF3 )3 )(PhF) reacts with silanols present on partially dehydroxylated silica to form well-defined ≡SiOAl(OC(CF3 )3 )2 (O(Si≡)2 ) (1). 27 Al NMR and DFT calculations with a small cluster model to approximate the silica surface show that the aluminum in 1 adopts a distorted trigonal bipyramidal coordination geometry by coordinating to a nearby siloxane bridge and a fluorine from the alkoxide. Fluoride ion affinity (FIA) calculations follow experimental trends and show that 1 is a stronger Lewis acid than B(C6 F5 )3 and Al(OC(CF3 )3 )(PhF) but is weaker than Al(OC(CF3 )3 ) and i Pr3 Si+ . Cp2 Zr(CH3 )2 reacts with 1 to form [Cp2 ZrCH3 ][≡SiOAl(OC(CF3 )3 )2 (CH3 )] (3) by methide abstraction. This reactivity pattern is similar to reactions of organometallics with the proposed strong Lewis acid sites present on Al2 O3 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA