Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.444
Filtrar
Más filtros

Intervalo de año de publicación
1.
FASEB J ; 38(1): e23341, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031982

RESUMEN

Binge drinking (BD) is an especially pro-oxidant pattern of alcohol consumption, particularly widespread in the adolescent population. In the kidneys, it affects the glomerular filtration rate (GFR), leading to high blood pressure. BD exposure also disrupts folic acid (FA) homeostasis and its antioxidant properties. The aim of this study is to test a FA supplementation as an effective therapy against the oxidative, nitrosative, and apoptotic damage as well as the renal function alteration occurred after BD in adolescence. Four groups of adolescent rats were used: control, BD (exposed to intraperitoneal alcohol), control FA-supplemented group and BD FA-supplemented group. Dietary FA content in control groups was 2 ppm, and 8 ppm in supplemented groups. BD provoked an oxidative imbalance in the kidneys by dysregulating antioxidant enzymes and increasing the enzyme NADPH oxidase 4 (NOX4), which led to an increase in caspase-9. BD also altered the renal nitrosative status affecting the expression of the three nitric oxide (NO) synthase (NOS) isoforms, leading to a decrease in NO levels. Functionally, BD produced a hydric-electrolytic imbalance, a low GFR and an increase in blood pressure. FA supplementation to BD adolescent rats improved the oxidative, nitrosative, and apoptotic balance, recovering the hydric-electrolytic equilibrium and blood pressure. However, neither NO levels nor GFR were recovered, showing in this study for the first time that NO availability in the kidneys plays a crucial role in GFR regulation that the antioxidant effects of FA cannot repair.


Asunto(s)
Antioxidantes , Consumo Excesivo de Bebidas Alcohólicas , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Óxido Nítrico/metabolismo , Presión Sanguínea , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Tasa de Filtración Glomerular , Riñón/metabolismo , Suplementos Dietéticos , Etanol/farmacología , Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Estrés Oxidativo
2.
FASEB J ; 38(1): e23346, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095297

RESUMEN

Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation. To address this controversy, we prepared culture medium with different forms of folate, folic acid (FA), and 5-methyltetrahydrofolate (5mTHF), at concentrations of 5 µM, 500 nM, 50 nM, and folate free, respectively. Mouse embryonic fibroblasts (MEFs) were treated with different folates continuously for three passages, and cell proliferation and F-actin were monitored. We determined that compared to 5mTHF, FA showed stronger effects on promoting cell proliferation and F-actin formation. We also found that FOLR1 protein level was positively regulated by folate concentration and the non-canonical Wnt/planar cell polarity (PCP) pathway signaling was significantly enriched among different folate conditions in RNA-sequencing analyses. We demonstrated for the first time that FOLR1 could promote the transcription of Vangl2, one of PCP core genes. The transcription of Vangl2 was down-regulated under folate-deficient condition, which resulted in a decrease in PCP activity and F-actin formation. In summary, we identified a distinct advantage of FA in cell proliferation and F-actin formation over 5mTHF, as well as demonstrating that FOLR1 could promote transcription of Vangl2 and provide a new mechanism by which folate deficiency can contribute to the etiology of NTDs.


Asunto(s)
Deficiencia de Ácido Fólico , Defectos del Tubo Neural , Animales , Ratones , Ácido Fólico/metabolismo , Actinas/metabolismo , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Polaridad Celular/genética , Fibroblastos/metabolismo , Vía de Señalización Wnt , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Deficiencia de Ácido Fólico/metabolismo
3.
FASEB J ; 38(7): e23583, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38551634

RESUMEN

We have recently demonstrated that Jumonji domain-containing protein D3 (JMJD3), a histone demethylase of histone H3 on lysine 27 (H3K27me3), is protective against renal fibrosis, but its role in acute kidney injury (AKI) remains unexplored. Here, we report that JMJD3 activity is required for renal protection and regeneration in murine models of AKI induced by ischemia/reperfusion (I/R) and folic acid (FA). Injury to the kidney upregulated JMJD3 expression and induced expression of H3K27me3, which was coincident with renal dysfunction, renal tubular cell injury/apoptosis, and proliferation. Blocking JMJD3 activity by GSKJ4 led to worsening renal dysfunction and pathological changes by aggravating tubular epithelial cell injury and apoptosis in both murine models of AKI. JMJD3 inhibition by GSKJ4 also reduced renal tubular cell proliferation and suppressed expression of cyclin E and phosphorylation of CDK2, but increased p21 expression in the injured kidney. Furthermore, inactivation of JMJD3 enhanced I/R- or FA-induced expression of TGF-ß1, vimentin, and Snail, phosphorylation of Smad3, STAT3, and NF-κB, and increased renal infiltration by F4/80 (+) macrophages. Finally, GSKJ4 treatment caused further downregulation of Klotho, BMP-7, Smad7, and E-cadherin, all of which are associated with renal protection and have anti-fibrotic effects. Therefore, these data provide strong evidence that JMJD3 activation contributes to renal tubular epithelial cell survival and regeneration after AKI.


Asunto(s)
Lesión Renal Aguda , Histonas , Animales , Ratones , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Proliferación Celular , Histonas/metabolismo , Riñón/metabolismo , Fosforilación
4.
Mol Ther ; 32(4): 1048-1060, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38369752

RESUMEN

The endosome cleavable linkers have been widely employed by antibody-drug conjugates and small molecule-drug conjugates (SMDCs) to control the accurate release of payloads. An effective linker should provide stability in systemic circulation but efficient payload release at its targeted tumor sites. This conflicting requirement always leads to linker design with increasing structural complexity. Balance of the effectiveness and structural complexity presents a linker design challenge. Here, we explored the possibility of mono-amino acid as so far the simplest cleavable linker (X-linker) for SMDC-based auristatin delivery. Within a diverse set of X-linkers, the SMDCs differed widely in bioactivity, with one (Asn-linker) having significantly improved potency (IC50 = 0.1 nM) and fast response to endosomal cathepsin B cleavage. Notably, this SMDC, once grafted with effector protein fragment crystallizable (Fc), demonstrated a profound in vivo therapeutic effect in aspects of targetability, circulation half-life (t1/2 = 73 h), stability, and anti-tumor efficacy. On the basis of these results, we believe that this mono-amino acid linker, together with the new SMDC-Fc scaffold, has significant potential in targeted delivery application.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Preparaciones Farmacéuticas , Aminoácidos , Inmunoconjugados/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral
5.
J Cell Mol Med ; 28(11): e18389, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864691

RESUMEN

Chemotherapy resistance remains a significant challenge in treating ovarian cancer effectively. This study addresses this issue by utilizing a dual drug-loaded nanomicelle system comprising albendazole (ABZ) and paclitaxel (PTX), encapsulated in a novel carrier matrix of D-tocopheryl polyethylene glycol 1000 succinate vitamin E (TPGS), soluplus and folic acid. Our objective was to develop and optimize this nanoparticulate delivery system using solvent evaporation techniques to enhance the therapeutic efficacy against ovarian cancer. The formulation process involved pre-formulation, formulation, optimization, and comprehensive characterization of the micelles. Optimization was conducted through a 32 factorial design, focusing on the effects of polymer ratios on particle size, zeta potential, polydispersity index (PDI) and entrapment efficiency (%EE). The optimal formulation demonstrated improved dilution stability, as indicated by a critical micelle concentration (CMC) of 0.0015 mg/mL for the TPGS-folic acid conjugate (TPGS-FOL). Extensive characterization included differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR). The release profile exhibited an initial burst followed by sustained release over 90 h. The cytotoxic potential of the formulated micelles was superior to that of the drugs alone, as assessed by MTT assays on SKOV3 ovarian cell lines. Additionally, in vivo studies confirmed the presence of both drugs in plasma and tumour tissues, suggesting effective targeting and penetration. In conclusion, the developed TPGS-Fol-based nanomicelles for co-delivering ABZ and PTX show promising results in overcoming drug resistance, enhancing solubility, sustaining drug release, and improving therapeutic outcomes in ovarian cancer treatment.


Asunto(s)
Albendazol , Micelas , Neoplasias Ováricas , Paclitaxel , Femenino , Paclitaxel/farmacología , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Paclitaxel/química , Albendazol/química , Albendazol/farmacología , Albendazol/administración & dosificación , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Humanos , Animales , Línea Celular Tumoral , Portadores de Fármacos/química , Polietilenglicoles/química , Vitamina E/química , Ácido Fólico/química , Ratones , Liberación de Fármacos , Tamaño de la Partícula , Polivinilos/química , Polímeros/química , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Am J Physiol Renal Physiol ; 326(1): F105-F117, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881875

RESUMEN

Folic acid (FA)-induced acute kidney injury (FA-AKI) is an increasingly prevalent rodent disease model involving the injection of a high dose of FA that culminates in renal FA crystal deposition and injury. However, the literature characterizing the FA-AKI model is sparse and dated in part due to the absence of a well-described methodology for the visualization and quantification of renal FA crystals. Using widely available materials and tools, we developed a straightforward and crystal-preserving histological protocol that can be coupled with automated imaging for renal FA crystal visualization and generated an automated macro for downstream crystal content quantification. The applicability of the method was demonstrated by characterizing the model in male and female C57BL6/JRj mice after 3 and 30 h of FA treatment. Kidneys from both sexes and timepoints showed a bimodal distribution of FA crystal deposition in the cortical and medullary regions while, compared with males, females exhibited higher renal FA crystal content at the 30-h timepoint accompanied by greater kidney weight and higher plasma urea. Despite comparable plasma phosphate concentrations, FA-AKI resulted in a substantially more elevated plasma intact fibroblast growth factor 23 (FGF23) in females, reflected by a similar pattern in osseous Fgf23 mRNA expression. Therefore, the presented method constitutes a valuable tool for the quantification of renal FA crystals, which can aid the mechanistic characterization of the FA-AKI model and serves as a means to control for confounding changes in FA crystallization when using the model for investigating early and prophylactic AKI therapeutic interventions.NEW & NOTEWORTHY Here, we describe a novel method for the visualization and quantification of renal folic acid (FA) crystals in the rodent FA-induced acute kidney injury (FA-AKI) model. The protocol involves a straightforward histological approach followed by fully automated imaging and quantification steps. Applicability was confirmed by showing that the FA-AKI model is sex-dependent. The method can serve as a tool to aid in characterizing FA-AKI and to control for studies investigating prophylactic therapeutic avenues using FA-AKI.


Asunto(s)
Lesión Renal Aguda , Ácido Fólico , Masculino , Femenino , Ratones , Animales , Lesión Renal Aguda/patología , Riñón/patología , Nitrógeno de la Urea Sanguínea , Ratones Endogámicos C57BL
7.
Am J Physiol Endocrinol Metab ; 326(4): E482-E492, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324257

RESUMEN

Vitamin D (VD) is a fat-soluble sterol that possesses a wide range of physiological functions. The present study aimed to evaluate the effects of VD on folate metabolism in zebrafish and further investigated the underlying mechanism. Wild-type (WT) zebrafish were fed with a diet containing 0 IU/kg VD3 or 800 IU/kg VD3 for 3 wk. Meanwhile, cyp2r1 mutant zebrafish with impaired VD metabolism was used as another model of VD deficiency. Our results showed that VD deficiency in zebrafish suppressed the gene expression of folate transporters, including reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) in the intestine. Moreover, VD influenced the gene expression of several enzymes related to cellular folate metabolism in the intestine and liver of zebrafish. Importantly, VD-deficient zebrafish contained a remarkably lower level of folate content in the liver. Notably, VD was incapable of altering folate metabolism in zebrafish when gut microbiota was depleted by antibiotic treatment. Further studies proved that gut commensals from VD-deficient fish displayed a lower capacity to produce folate than those from WT fish. Our study revealed the potential correlation between VD and folate metabolism in zebrafish, and gut microbiota played a key role in VD-regulated folate metabolism in zebrafish.NEW & NOTEWORTHY Our study has identified that VD influences intestinal uptake and transport of folate in zebrafish while also altering hepatic folate metabolism and storage. Interestingly, the regulatory effects of VD on folate transport and metabolism diminished after the gut flora was interrupted by antibiotic treatment, suggesting that the regulatory effects of VD on folate metabolism in zebrafish are most likely dependent on the intestinal flora.


Asunto(s)
Deficiencia de Vitamina D , Vitamina D , Animales , Pez Cebra , Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Vitaminas , Proteína Portadora de Folato Reducido/genética , Proteína Portadora de Folato Reducido/metabolismo , Antibacterianos
8.
Mol Med ; 30(1): 3, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172668

RESUMEN

BACKGROUND: Lesch-Nyhan disease (LND) is a severe neurological disorder caused by the genetic deficiency of hypoxanthine-guanine phosphoribosyltransferase (HGprt), an enzyme involved in the salvage synthesis of purines. To compensate this deficiency, there is an acceleration of the de novo purine biosynthetic pathway. Most studies have failed to find any consistent abnormalities of purine nucleotides in cultured cells obtained from the patients. Recently, it has been shown that 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP), an intermediate of the de novo pathway, accumulates in LND fibroblasts maintained with RPMI containing physiological levels (25 nM) of folic acid (FA), which strongly differs from FA levels of regular cell culture media (2200 nM). However, RPMI and other standard media contain non-physiological levels of many nutrients, having a great impact in cell metabolism that does not precisely recapitulate the in vivo behavior of cells. METHODS: We prepared a new culture medium containing physiological levels of all nutrients, including vitamins (Plasmax-PV), to study the potential alterations of LND fibroblasts that may have been masked by the usage of non-physiological media. We quantified ZMP accumulation under different culture conditions and evaluated the activity of two known ZMP-target proteins (AMPK and ADSL), the mRNA expression of the folate carrier SLC19A1, possible mitochondrial alterations and functional consequences in LND fibroblasts. RESULTS: LND fibroblasts maintained with Plasmax-PV show metabolic adaptations such a higher glycolytic capacity, increased expression of the folate carrier SCL19A1, and functional alterations such a decreased mitochondrial potential and reduced cell migration compared to controls. These alterations can be reverted with high levels of folic acid, suggesting that folic acid supplements might be a potential treatment for LND. CONCLUSIONS: A complete physiological cell culture medium reveals new alterations in Lesch-Nyhan disease. This work emphasizes the importance of using physiological cell culture conditions when studying a metabolic disorder.


Asunto(s)
Síndrome de Lesch-Nyhan , Humanos , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Ácido Fólico
9.
Chembiochem ; 25(14): e202400254, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38757240

RESUMEN

In this work, a highly sensitive and selective method for detecting folic acid (FA) was developed using D-penicillamine (DPA) stabilized Ag/Cu alloy nanoclusters (DPA@Ag/Cu NCs). The yellow emission of DPA@Ag/Cu NCs was found to be quenched upon the addition of FA to the system. The fluorescence intensity quenching value demonstrated a linear relationship with FA concentrations ranging from 0.01 to 1200 µM, with a limit of detection (LOD) of 5.3 nM. Furthermore, the detection mechanism was investigated through various characterization analyses, including high resolution transmission electron microscopy, fluorescence spectra, ultraviolet-visible absorption spectra, and fluorescence lifetime. The results indicated that the fluorescence quenching induced by FA was a result of electron transfer from FA to the ligands of DPA@Ag/Cu NCs. The selectivity of the FA sensor was also evaluated, showing that common amino acids and inorganic ions had minimal impact on the detection of FA. Moreover, the standard addition method was successfully applied to detect FA in human serum, chewable tablets and FA tablets with promising results. The use of DPA@Ag/Cu NCs demonstrates significant potential for detecting FA in complex biological samples.


Asunto(s)
Aleaciones , Cobre , Colorantes Fluorescentes , Ácido Fólico , Penicilamina , Plata , Espectrometría de Fluorescencia , Penicilamina/análisis , Penicilamina/química , Penicilamina/sangre , Cobre/química , Ácido Fólico/análisis , Ácido Fólico/química , Ácido Fólico/sangre , Plata/química , Humanos , Aleaciones/química , Colorantes Fluorescentes/química , Límite de Detección , Nanopartículas del Metal/química , Comprimidos/análisis
10.
Mol Hum Reprod ; 30(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38366926

RESUMEN

5,10-Methylenetetrahydrofolate reductase (MTHFR) is an enzyme that plays a key role in providing methyl groups for DNA methylation, including during spermatogenesis. A common genetic variant in humans (MTHFR 677C>T) results in reduced enzyme activity and has been linked to various disorders, including male infertility. A new animal model has been created by reproducing the human equivalent of the polymorphism in mice using CRISPR/Cas9. Biochemical parameters in the Mthfr 677TT mice recapitulate alterations found in MTHFR 677TT men. Our aims were to characterize the sperm DNA methylome of the Mthfr 677CC and TT mice on a control diet (2 mg folic acid/kg diet) and assess the effects of folic acid supplementation (10 mg/kg diet) on the sperm DNA methylome. Body and reproductive organ weights, testicular sperm counts, and histology were examined. DNA methylation in sperm was assessed using bisulfite pyrosequencing and whole-genome bisulfite sequencing (WGBS). Reproductive parameters and locus-specific imprinted gene methylation were unaffected by genotype or diet. Using WGBS, sperm from 677TT mice had 360 differentially methylated tiles as compared to 677CC mice, predominantly hypomethylation (60% of tiles). Folic acid supplementation mostly caused hypermethylation in sperm of males of both genotypes and was found to partially correct the DNA methylation alterations in sperm associated with the TT genotype. The new mouse model will be useful in understanding the role of MTHFR deficiency in male fertility and in designing folate supplementation regimens for the clinic.


Asunto(s)
Metilación de ADN , Metilenotetrahidrofolato Reductasa (NADPH2) , Sulfitos , Masculino , Humanos , Animales , Ratones , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Semen , Espermatozoides/metabolismo , Ácido Fólico/farmacología , Genotipo , Suplementos Dietéticos
11.
J Transl Med ; 22(1): 857, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334187

RESUMEN

In this study, we dynamically monitored the glomerular filtration rate and other assessment of renal function and markers of injury in various mice models of acute kidney injury. Male C57BL/6 mice were utilized to establish acute kidney injury models of sepsis, ischemia reperfusion, cisplatin, folic acid, aristolochic acid and antibiotic. In addition to the real time glomerular filtration rate, renal LCN-2 and HAVCR-1 mRNA expression levels, and serum creatinine, urea nitrogen and cystatin c levels were also used to evaluate renal function. In addition, the protein levels of LCN-2 and HAVCR-1 in renal, serum and urine were measured. Our results demonstrated that the changes in biomarkers always lagged the real time glomerular filtration rate during the progression and recovery of renal injury. Cystatin-c can reflect renal injury earlier than other markers, but it remains higher in the recovery stage. Perhaps the glomerular filtration rate does not reflect the greater injury caused by vancomycin plus piperacillin.


Asunto(s)
Lesión Renal Aguda , Biomarcadores , Modelos Animales de Enfermedad , Tasa de Filtración Glomerular , Lipocalina 2 , Ratones Endogámicos C57BL , Animales , Lesión Renal Aguda/sangre , Lesión Renal Aguda/fisiopatología , Masculino , Biomarcadores/sangre , Biomarcadores/metabolismo , Lipocalina 2/sangre , Lipocalina 2/orina , Cistatina C/sangre , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/sangre , Riñón/fisiopatología , Riñón/metabolismo , Riñón/patología , Ratones , ARN Mensajero/metabolismo , ARN Mensajero/genética , Ácido Fólico/sangre , Creatinina/sangre , Daño por Reperfusión/fisiopatología , Sepsis/complicaciones , Sepsis/sangre , Sepsis/fisiopatología , Cisplatino
12.
BMC Microbiol ; 24(1): 366, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342101

RESUMEN

BACKGROUND: Folate (vitamin B9) occurs naturally mainly as tetrahydrofolate (THF), methyl-tetrahydrofolate (M-THF), and formyl-tetrahydrofolate (F-THF), and as dietary synthetic form (folic acid). While folate auxotrophy and prototrophy are known for several gut microbes, the specific folate forms produced by gut prototrophs and their impact on gut auxotrophs and microbiota remain unexplored. METHODS: Here, we quantified by UHPLC-FL/UV folate produced by six predicted gut prototrophs (Marvinbryantia formatexigens DSM 14469, Blautia hydrogenotrophica 10507 T, Blautia producta DSM 14466, Bacteroides caccae DSM 19024, Bacteroides ovatus DSM 1896, and Bacteroides thetaiotaomicron DSM 2079 T) and investigated the impact of different folate forms and doses (50 and 200 µg/l) on the growth and metabolism of the gut auxotroph Roseburia intestinalis in pure cultures and during fecal anaerobic batch fermentations (48 h, 37 °C) of five healthy adults. RESULTS: Our results confirmed the production of folate by all six gut strains, in the range from 15.3 ng/ml to 205.4 ng/ml. Different folate forms were detected, with THF ranging from 12.8 to 41.4 ng/ml and 5-MTHF ranging from 0.2 to 113.3 ng/ml, and being detected in all strains. Natural folate forms, in contrast to folic acid, promoted the growth and metabolism of the auxotroph R. intestinalis L1-82, with dose-dependent effects. During fecal batch fermentations, folate forms at both levels had no detectable effect on total bacteria concentration, on gut community composition and metabolic activity and on Roseburia spp. abundance, compared to the control without folate addition. CONCLUSIONS: Our study demonstrates for the first time in vitro the production of different natural folate forms by predicted gut prototrophs and the stimulation on the growth of the folate auxotrophic butyrate-producing R. intestinalis L1-82. Surprisingly, folate did not impact fecal fermentations. Our data suggest that the dietary folate forms at the tested levels may only have limited effects, if any, on the human gut microbiota in vivo.


Asunto(s)
Heces , Fermentación , Ácido Fólico , Microbioma Gastrointestinal , Ácido Fólico/metabolismo , Heces/microbiología , Humanos , Adulto , Tetrahidrofolatos/metabolismo , Masculino , Femenino , Adulto Joven
13.
Diabetes Metab Res Rev ; 40(4): e3814, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769695

RESUMEN

AIMS: This study aimed to evaluate the association between gestational diabetes mellitus (GDM) and circulating folate metabolites, folic acid (FA) intake, and the methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) genotype. MATERIALS AND METHODS: A prospective pregnancy cohort study was conducted in Beijing, China, from 2022 to 2023. Circulating folate metabolites, including red blood cell (RBC) 5-methyltetrahydrofolate (5-MTHF), 5, 10-methylene-tetrahydrofolate (5,10-CH2-THF), 5- formyltetrahydrofolate (5-CHO-THF), and unmetabolised folic acid (UMFA), and plasma homocysteine (HCY), 5-MTHF, and methylmalonic acid (MMA), were determined at 6-17 weeks and 20-26 weeks of gestation. FA intake and the MTHFR and MTRR genotype were also examined. GDM was diagnosed between 24 and 28 weeks of pregnancy by a 75-g oral glucose tolerance test (OGTT). The association between the folate status and GDM was ascertained using multivariate generalised linear models, logistic regression models, and restricted cubic spline regression, adjusting for potential confounders. RESULTS: The study included 2032 pregnant women, of whom 392 (19.29%) developed GDM. UMFA above the 75th percentile (≥P75) [adjusted OR (aOR) (95% confidence interval [CI]) = 1.36 (1.01-1.84)], UMFA ≥ P90 [aOR (95% CI) = 1.82 (1.23-2.69)], and HCY ≥ P75 [aOR (95% CI) = 1.40 (1.04-1.88)] in early pregnancy, and RBC 5-MTHF [aOR (95% CI) = 1.48 (1.10-2.00)], RBC 5,10-CH2-THF [aOR (95% CI) = 1.55 (1.15-2.10)], and plasma 5-MTHF [aOR (95% CI) = 1.36 (1.00-1.86)] in mid-pregnancy ≥ P75 are associated with GDM. Higher UMFA levels in early pregnancy show positive associations with the 1-h and 2-h glucose levels during the OGTT, and higher HCY levels are associated with increased fasting glucose levels during the OGTT. In comparison, RBC 5- MTHF and 5,10-CH2-THF, and plasma 5- MTHF in mid-pregnancy are positively associated with the 1-h glucose level (p < 0.05). The MTHFR and MTRR genotype and FA intake are not associated with GDM. CONCLUSIONS: Elevated levels of UMFA and HCY during early pregnancy, along with elevated RBC 5-MTHF and 5,10-CH2-THF and plasma 5-MTHF during mid-pregnancy, are associated with GDM. These findings indicate distinct connections between different folate metabolites and the occurrence of GDM.


Asunto(s)
Diabetes Gestacional , Ácido Fólico , Metilenotetrahidrofolato Reductasa (NADPH2) , Humanos , Femenino , Diabetes Gestacional/sangre , Diabetes Gestacional/metabolismo , Embarazo , Ácido Fólico/sangre , Estudios Prospectivos , Adulto , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Biomarcadores/sangre , Estudios de Seguimiento , Ferredoxina-NADP Reductasa/genética , Genotipo , China/epidemiología , Pronóstico , Segundo Trimestre del Embarazo/sangre , Homocisteína/sangre , Homocisteína/metabolismo
14.
Arch Biochem Biophys ; 755: 109991, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621447

RESUMEN

Regulation of nucleotide biosynthesis is necessary for maintaining cellular processes including DNA replication and repair. A key enzyme in this process is deoxythymidylate kinase (dTYMK), which catalyzes the initial step in the production of dTTP from dTMP. This gene constitutes the first merged step of dTTP synthesis from the de novo and salvage pathways which regulate dTMP biosynthesis. Decreased de novo dTMP biosynthesis causes dysregulated dTTP:dUTP pools, and leads to increased uracil in DNA and neural tube closure defect (NTD) development in mice. The goal of this research was to investigate if dTYMK, the downstream enzyme in dTTP production, is an essential gene in mice and if impairments in dTYMK play a causal role in development including NTD pathology in mice. Dtymk+/- C57BL/6J females were weaned onto either a control, excess folic acid, or folic acid deficient diet and timed breeding was performed after 8 weeks on diet. The offspring were analyzed for NTDs and other reproductive outcomes at embryonic day 12.5 (E12.5). Dtymk-/- mice were confirmed to be embryonic lethal before E12.5, and Dtymk+/- mice on all three experimental diets did not show the presence of open neural tube defects, spina bifida or exencephaly. However, the expression of dTYMK in Dtymk+/- mouse embryos was confirmed to be decreased by approximately 3-fold compared to Dtymk+/+ embryos. Although dTYMK was demonstrated to be an essential gene in mice and is required for the regulation of nucleotide pools in vitro, there was no evidence of increased risk of NTDs because of a reduction in expression of this enzyme during embryonic development. It is possible that a further reduction in expression may be required to see developmental anomalies in C57BL/6J mice.

15.
J Nutr ; 154(2): 670-679, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092151

RESUMEN

BACKGROUND: Folic acid (FA) is the oxidized form of folate found in supplements and FA-fortified foods. Most FA is reduced by dihydrofolate reductase to 5-methyltetrahydrofolate (5mTHF); the latter is the form of folate naturally found in foods. Ingestion of FA increases the plasma levels of both 5mTHF and unmetabolized FA (UMFA). Limited information is available on the downstream metabolic effects of FA supplementation, including potential effects associated with UMFA. OBJECTIVE: We aimed to assess the metabolic effects of FA-supplementation, and the associations of plasma 5mTHF and UMFA with the metabolome in FA-naïve Bangladeshi adults. METHODS: Sixty participants were selected from the Folic Acid and Creatine Trial; half received 800 µg FA/day for 12 weeks and half placebo. Plasma metabolome profiles were measured by high-resolution mass spectrometry, including 170 identified metabolites and 26,541 metabolic features. Penalized regression methods were used to assess the associations of targeted metabolites with FA-supplementation, plasma 5mTHF, and plasma UMFA. Pathway analyses were conducted using Mummichog. RESULTS: In penalized models of identified metabolites, FA-supplementation was associated with higher choline. Changes in 5mTHF concentrations were positively associated with metabolites involved in amino acid metabolism (5-hydroxyindoleacetic acid, acetylmethionine, creatinine, guanidinoacetate, hydroxyproline/n-acetylalanine) and 2 fatty acids (docosahexaenoic acid and linoleic acid). Changes in 5mTHF concentrations were negatively associated with acetylglutamate, acetyllysine, carnitine, propionyl carnitine, cinnamic acid, homogentisate, arachidonic acid, and nicotine. UMFA concentrations were associated with lower levels of arachidonic acid. Together, metabolites selected across all models were related to lipids, aromatic amino acid metabolism, and the urea cycle. Analyses of nontargeted metabolic features identified additional pathways associated with FA supplementation. CONCLUSION: In addition to the recapitulation of several expected metabolic changes associated with 5mTHF, we observed additional metabolites/pathways associated with FA-supplementation and UMFA. Further studies are needed to confirm these associations and assess their potential implications for human health. TRIAL REGISTRATION NUMBER: This trial was registered at https://clinicaltrials.gov as NCT01050556.


Asunto(s)
Suplementos Dietéticos , Ácido Fólico , Adulto , Humanos , Alimentos Fortificados , Colina , Ácidos Araquidónicos
16.
J Nutr ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326632

RESUMEN

BACKGROUND: Folate and vitamin B12 (B12) are cofactors in folate-mediated one-carbon metabolism (FOCM), a metabolic network that supports synthesis of nucleotides (including thymidylate, or dTMP) and methionine. FOCM impairments such as a deficiency or imbalance of cofactors can perturb dTMP synthesis, causing uracil misincorporation into DNA. OBJECTIVE: The purpose of this study was to determine how reduced expression of the B12-dependent enzyme methionine synthase (MTR) and excess dietary folic acid interact to affect folate distribution and markers of genome stability in mouse tissues. METHODS: Heterozygous Mtr knockout mice (Mtr+/-) model the FOCM-specific effects of B12 deficiency. Folate accumulation and vitamer distribution, genomic uracil levels, and phosphorylated histone γH2AX immunostaining were measured in male Mtr+/+ and Mtr+/- mice weaned to either a folate-sufficient control (C) diet (2 mg/kg folic acid) or a high folic acid (HFA) diet (20 mg/kg folic acid) for 7 weeks. RESULTS: Exposure to the HFA diet led to tissue-specific patterns of folate accumulation, with plasma, colon, kidney, and skeletal muscle exhibiting increased folate concentrations compared to control. Liver total folate did not differ. Though unmetabolized folic acid (UMFA) increased 10-fold in mouse plasma with HFA diet, UMFA accounted for less than 0.2% of total folate in liver and colon tissue. Exposure to HFA diet resulted in a shift in folate distribution in colon tissue with higher 5-methyl-THF and lower formyl-THF than in control mice. Mtr heterozygosity did not impact folate accumulation or distribution in any tissue. Mice on HFA diet exhibited higher uracil in genomic DNA and phosphorylated histone H2AX (γH2AX) foci in colon. Similar differences were not seen in liver. CONCLUSIONS: This study demonstrates that folic acid, even when consumed at high doses, does not meaningfully accumulate in mouse tissues, although high-dose folic acid shifts folate distribution and increases uracil accumulation in genomic DNA in colon tissue.

17.
FASEB J ; 37(1): e22698, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520012

RESUMEN

Folate plays an important role in the modulation of one-carbon metabolism and DNA methylation through a complex biosynthesis pathway. Folate deficiency during pregnancy has been associated with an increased risk for birth defects. This study investigates the extent to which the availability of folate and S-Adenosylmethionine (SAM) affects placental DNA methylation. We hypothesized that maintaining sufficient levels of folate and SAM is particularly important in individuals carrying the MTHFR C677T polymorphism. Maternal- and cord blood was analyzed to genotype the MTHFR rs1801133 SNP. Red blood cell (RBC) folate, vitamin B12, SAM, and S-Adenosylhomocysteine (SAH) were analyzed in cord blood. Epigenome-wide methylation analyses were performed on 90 placenta tissue samples isolated from the fetal side of the placenta; 45 originating from mother-infant dyads homozygous for the MTHFR C677T variant and 45 originating from mother-infant dyads with the homozygous wild type MTHFR677 genotype. Verification of the results was performed using pyrosequencing assays. Genome-wide placental DNA methylation patterns were relatively stable and not significantly affected by levels of one-carbon metabolites. MTHFR genotype was associated with DNA methylation of several loci, including a locus in the MTHFR region. RBC folate and particularly the SAM:SAH ratio did affect overall CpG DNA methylation in some CpG regions when the loci were split according to their CpG island relation. This was most evident in participants carrying the MTHFR C677T variant suggesting a stronger influence of the biosynthesis pathway on the overall placental DNA methylation in MTHFR TT individuals than in MTHFR CC individuals.


Asunto(s)
Metilación de ADN , Ácido Fólico , Metilenotetrahidrofolato Reductasa (NADPH2) , Placenta , Femenino , Humanos , Lactante , Embarazo , Carbono/metabolismo , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Ácido Fólico/metabolismo , Ácido Fólico/farmacología , Ácido Fólico/uso terapéutico , Genotipo , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Placenta/efectos de los fármacos , Placenta/metabolismo , S-Adenosilmetionina/metabolismo , Vitamina B 12/metabolismo
18.
FASEB J ; 37(1): e22677, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515682

RESUMEN

Epigenetic defects induced by assisted reproductive technologies (ART) have been suggested as a potential mechanism contributing to suboptimal placentation. Here, we hypothesize that ART perturbs DNA methylation (DNAme) and gene expression during early placenta development, leading to abnormal placental phenotypes observed at term. Since folic acid (FA) plays a crucial role in epigenetic regulation, we propose that FA supplementation can rescue ART-induced placental defects. Female mice were placed on a control diet (CD), a moderate 4-fold (FAS4) or high dose 10-fold (FAS10) FA-supplemented diet prior to ART and compared to a natural mating group. ART resulted in 41 and 28 differentially expressed genes (DEGs) in E10.5 female and male placentas, respectively. Many DEGs were implicated in early placenta development and associated with DNAme changes; a number clustered at known imprinting control regions (ICR). In females, FAS4 partially corrected alterations in gene expression while FAS10 showed evidence of male-biased adverse effects. DNAme and gene expression for five genes involved in early placentation (Phlda2, EphB2, Igf2, Peg3, L3mbtl1) were followed up in placentas from normal as well as delayed and abnormal embryos. Phlda2 and Igf2 expression levels were lowest after ART in placentas of female delayed embryos. Moreover, ART concomitantly reduced DNAme at the Kcnq1ot1 ICR which regulates Phlda2 expression; FAS4 partially improved DNAme in a sex-specific manner. In conclusion, ART-associated placental DNAme and transcriptome alterations observed at mid-gestation are sex-specific; they may help explain adverse placental phenotypes detected at term and are partially corrected by maternal moderate dose FA supplementation.


Asunto(s)
Impresión Genómica , Placenta , Femenino , Ratones , Embarazo , Masculino , Animales , Placenta/metabolismo , Epigénesis Genética , Metilación de ADN , Reproducción , Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Suplementos Dietéticos
19.
Transgenic Res ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103700

RESUMEN

Lettuce is one of the most widely consumed vegetables in the world, commonly eaten fresh in salads, sandwiches, wraps, and as a garnish in various dishes. Consequently, it is a very promising vehicle to deliver vitamins, such as folate (vitamin B9), to a specific population using biofortified varieties generated by conventional or molecular breeding. A new genetically modified lettuce was generated with increased folate content. However, some issues related to public perception regarding this technology should still be evaluated. The aim of this study was to analyze whether consumers are willing to accept a folate-biofortified GM lettuce that could become available to the Brazilian market. A questionnaire involving several issues regarding lettuce consumption was answered by 2,391 people from almost all Brazilian states. When informed that the folic acid biofortified lettuce is a transgenic plant, 46.1% of respondents stated that they would eat it and 30.5% stated that it would be a possibility. This study demonstrated that if there is any explanation regarding the advantage in relation to the use of biotechnology, like enrichment with folic acid, the number of people who accept it increases.

20.
Neuroepidemiology ; : 1-14, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074459

RESUMEN

BACKGROUND: Previous reviews explored the association between maternal use of folic acid and multivitamin supplements and risk of neural tube defect (NTD) in children, with no definitive conclusion. These reviews had produced contradictory results, and there had been no umbrella review. Therefore, the objective of this umbrella review is to combine the inconsistent data on the effect of prenatal folic acid and/or multivitamin supplementation for the prevention of NTD in offspring. METHODS: Using the PRISMA guideline, PubMed, Embase, Scopus, Web of Sciences, Cochrane Database of Systematic Reviews, Scopus, and Google Scholar reported that the effects of folic acid and/or multivitamin supplementation for the prevention of NTD in offspring were searched. The quality of the included studies was assessed using Assessment of Multiple Systematic Reviews (AMSTAR). A weighted inverse variance random-effects model was applied to find the pooled estimates. The subgroup analysis, heterogeneity, publication bias, and sensitivity analysis were also assessed. RESULT: Ten SRM with 296,816 study participants were included. The random-effects model analysis from 10 included systematic review and meta-analysis revealed that the pooled effect of either folic acid or multivitamin supplementation for the prevention of NTD globally is found to be 0.43 (95% CI: 0.29, 0.58) (I2 = 93.50%; p ≤0.001). In the subgroup analysis, the pooled effect was found to be 0.23 (0.09, 0.37) in folic acid group, while this estimate is 0.63 (0.53, 0.72) and 0.61 (0.46, 0.75) in groups who took multivitamin. The pooled effect of prevention of NTD was found to be 0.50 (0.34, 0.66) in SRMs aimed at occurrence prevention (primary prevention) group, while this estimate is 0.20 (-0.01, 0.41) among SRMs, which aimed at reoccurrence (secondary) prevention, and 0.61 (0.46, 0.75) among those SRMs aimed to assess the effect folic acid or multivitamin for the prevention of both occurrence and reoccurrence. The pooled effect of either folic acid or multivitamin supplementation for the prevention of NTD was found to be 0.45 (0.03, 0.87) in SRMs of observational studies, while this estimate is 0.43 (0.32, 0.54) among SRMs of randomized controlled trials. CONCLUSION: This umbrella review of systematic review and meta-analysis found that prenatal folic acid and/or multivitamin supplementation was associated with a 57% reduction in NTD. Participants who took folic acid supplementation were associated with a slightly higher (77%) percentage of reduction in NTD compared with those who took multivitamin (37%). Reductions of 80% and 50% were observed for reoccurrence and occurrence prevention of NTD. Reductions of 57% and 55% of NTD have been found in SRM of RCTs and observational studies. This umbrella review revealed that both folic acid and multivitamin were associated with significantly lower levels of NTD in children. Considering the incorporation of those supplements in NTD prevention strategies during the preconception period is recommended. More large-scale prospective cohort and RCTs are needed to understand the protective effect of multivitamins and/or folic acid on NTD risk addressing the molecular mechanisms and to determine the optimal dose, duration, and timing of maternal multivitamin and folic acid intake for best child NTD risk reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA