Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.005
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(8): 1373-1388.e20, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35381199

RESUMEN

Systemic sclerosis (scleroderma, SSc) is an incurable autoimmune disease with high morbidity and mortality rates. Here, we conducted a population-scale single-cell genomic analysis of skin and blood samples of 56 healthy controls and 97 SSc patients at different stages of the disease. We found immune compartment dysfunction only in a specific subtype of diffuse SSc patients but global dysregulation of the stromal compartment, particularly in a previously undefined subset of LGR5+-scleroderma-associated fibroblasts (ScAFs). ScAFs are perturbed morphologically and molecularly in SSc patients. Single-cell multiome profiling of stromal cells revealed ScAF-specific markers, pathways, regulatory elements, and transcription factors underlining disease development. Systematic analysis of these molecular features with clinical metadata associates specific ScAF targets with disease pathogenesis and SSc clinical traits. Our high-resolution atlas of the sclerodermatous skin spectrum will enable a paradigm shift in the understanding of SSc disease and facilitate the development of biomarkers and therapeutic strategies.


Asunto(s)
Esclerodermia Sistémica , Células Cultivadas , Fibroblastos/metabolismo , Fibrosis , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/genética , Piel/metabolismo
2.
Cell ; 181(2): 410-423.e17, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32187527

RESUMEN

Memories are believed to be encoded by sparse ensembles of neurons in the brain. However, it remains unclear whether there is functional heterogeneity within individual memory engrams, i.e., if separate neuronal subpopulations encode distinct aspects of the memory and drive memory expression differently. Here, we show that contextual fear memory engrams in the mouse dentate gyrus contain functionally distinct neuronal ensembles, genetically defined by the Fos- or Npas4-dependent transcriptional pathways. The Fos-dependent ensemble promotes memory generalization and receives enhanced excitatory synaptic inputs from the medial entorhinal cortex, which we find itself also mediates generalization. The Npas4-dependent ensemble promotes memory discrimination and receives enhanced inhibitory drive from local cholecystokinin-expressing interneurons, the activity of which is required for discrimination. Our study provides causal evidence for functional heterogeneity within the memory engram and reveals synaptic and circuit mechanisms used by each ensemble to regulate the memory discrimination-generalization balance.


Asunto(s)
Miedo/fisiología , Memoria/fisiología , Neuronas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/fisiología , Giro Dentado/fisiología , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo
3.
Genes Dev ; 35(11-12): 835-840, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33985971

RESUMEN

Myocardin, a potent coactivator of serum response factor (SRF), competes with ternary complex factor (TCF) proteins for SRF binding to balance opposing mitogenic and myogenic gene programs in cardiac and smooth muscle. Here we identify a cardiac lncRNA transcribed adjacent to myocardin, named CARDINAL, which antagonizes SRF-dependent mitogenic gene transcription in the heart. CARDINAL-deficient mice show ectopic TCF/SRF-dependent mitogenic gene expression and decreased cardiac contractility in response to age and ischemic stress. CARDINAL forms a nuclear complex with SRF and inhibits TCF-mediated transactivation of the promitogenic gene c-fos, suggesting CARDINAL functions as an RNA cofactor for SRF in the heart.


Asunto(s)
Regulación de la Expresión Génica/genética , Corazón/fisiología , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , Factor de Respuesta Sérica/metabolismo , Transactivadores/metabolismo , Factores de Edad , Animales , Modelos Animales de Enfermedad , Eliminación de Gen , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica/genética , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Factor de Respuesta Sérica/genética , Transactivadores/genética , Activación Transcripcional
4.
Genes Dev ; 34(1-2): 72-86, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31831627

RESUMEN

Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo pathway to control cell growth and organ size, of which dysregulation yields to tumorigenesis or hypertrophy. Upon activation, YAP/TAZ translocate into the nucleus and bind to TEAD transcription factors to promote transcriptional programs for proliferation or cell specification. Immediate early genes, represented by AP-1 complex, are rapidly induced and control later-phase transcriptional program to play key roles in tumorigenesis and organ maintenance. Here, we report that YAP/TAZ directly promote FOS transcription that in turn contributes to the biological function of YAP/TAZ. YAP/TAZ bind to the promoter region of FOS to stimulate its transcription. Deletion of YAP/TAZ blocks the induction of immediate early genes in response to mitogenic stimuli. FOS induction contributes to expression of YAP/TAZ downstream target genes. Genetic deletion or chemical inhibition of AP-1 suppresses growth of YAP-driven cancer cells, such as Lats1/2-deficient cancer cells as well as Gαq/11 mutated uveal melanoma. Furthermore, AP-1 inhibition almost completely abrogates the hepatomegaly induced by YAP overexpression. Our findings reveal a feed-forward interplay between immediate early transcription of AP-1 and Hippo pathway function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Neoplásica de la Expresión Génica , Transactivadores/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes fos/genética , Células HEK293 , Humanos , Hígado/metabolismo , Melanoma/fisiopatología , Ratones , Mitógenos/farmacología , Tamaño de los Órganos/genética , Regiones Promotoras Genéticas/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Neoplasias de la Úvea/fisiopatología , Proteínas Señalizadoras YAP
5.
Proc Natl Acad Sci U S A ; 121(20): e2312855121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713626

RESUMEN

The immune landscape of bladder cancer progression is not fully understood, and effective therapies are lacking in advanced bladder cancer. Here, we visualized that bladder cancer cells recruited neutrophils by secreting interleukin-8 (IL-8); in turn, neutrophils played dual functions in bladder cancer, including hepatocyte growth factor (HGF) release and CCL3highPD-L1high super-immunosuppressive subset formation. Mechanistically, c-Fos was identified as the mediator of HGF up-regulating IL-8 transcription in bladder cancer cells, which was central to the positive feedback of neutrophil recruitment. Clinically, compared with serum IL-8, urine IL-8 was a better biomarker for bladder cancer prognosis and clinical benefit of immune checkpoint blockade (ICB). Additionally, targeting neutrophils or hepatocyte growth factor receptor (MET) signaling combined with ICB inhibited bladder cancer progression and boosted the antitumor effect of CD8+ T cells in mice. These findings reveal the mechanism by which tumor-neutrophil cross talk orchestrates the bladder cancer microenvironment and provide combination strategies, which may have broad impacts on patients suffering from malignancies enriched with neutrophils.


Asunto(s)
Progresión de la Enfermedad , Interleucina-8 , Neutrófilos , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/inmunología , Microambiente Tumoral/inmunología , Humanos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Ratones , Interleucina-8/metabolismo , Línea Celular Tumoral , Factor de Crecimiento de Hepatocito/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígeno B7-H1/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Femenino , Masculino , Infiltración Neutrófila
6.
Proc Natl Acad Sci U S A ; 121(3): e2312913120, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190526

RESUMEN

General anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones. Using distinct behavioral measures, we show that at identical brain anesthetic concentrations, female mice are more resistant to volatile anesthetics than males. Anesthetic sensitivity is bidirectionally modulated by testosterone. Castration increases anesthetic resistance. Conversely, testosterone administration acutely increases anesthetic sensitivity. Conversion of testosterone to estradiol by aromatase is partially responsible for this effect. In contrast, oophorectomy has no effect. To identify the neuronal circuits underlying sex differences, we performed whole brain c-Fos activity mapping under anesthesia in male and female mice. Consistent with a key role of the hypothalamus, we found fewer active neurons in the ventral hypothalamic sleep-promoting regions in females than in males. In humans, we demonstrate that females regain consciousness and recover cognition faster than males after identical anesthetic exposures. Remarkably, while behavioral and neurocognitive measures in mice and humans point to increased anesthetic resistance in females, cortical activity fails to show sex differences under anesthesia in either species. Cumulatively, we demonstrate that sex differences in anesthetic sensitivity are evolutionarily conserved and not reflected in conventional electroencephalographic-based measures of anesthetic depth. This covert resistance to anesthesia may explain the higher incidence of unintended awareness under general anesthesia in females.


Asunto(s)
Anestésicos , Caracteres Sexuales , Humanos , Femenino , Masculino , Animales , Ratones , Anestésicos/farmacología , Anestesia General , Testosterona/farmacología , Inconsciencia
7.
Proc Natl Acad Sci U S A ; 120(13): e2214171120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36947514

RESUMEN

Sleep/wake control involves several neurotransmitter and neuromodulatory systems yet the coordination of the behavioral and physiological processes underlying sleep is incompletely understood. Previous studies have suggested that activation of the Nociceptin/orphanin FQ (N/OFQ) receptor (NOPR) reduces locomotor activity and produces a sedation-like effect in rodents. In the present study, we systematically evaluated the efficacy of two NOPR agonists, Ro64-6198 and SR16835, on sleep/wake in rats, mice, and Cynomolgus macaques. We found a profound, dose-related increase in non-Rapid Eye Movement (NREM) sleep and electroencephalogram (EEG) slow wave activity (SWA) and suppression of Rapid Eye Movement sleep (REM) sleep in all three species. At the highest dose tested in rats, the increase in NREM sleep and EEG SWA was accompanied by a prolonged inhibition of REM sleep, hypothermia, and reduced locomotor activity. However, even at the highest dose tested, rats were immediately arousable upon sensory stimulation, suggesting sleep rather than an anesthetic state. NOPR agonism also resulted in increased expression of c-Fos in the anterodorsal preoptic and parastrial nuclei, two GABAergic nuclei that are highly interconnected with brain regions involved in physiological regulation. These results suggest that the N/OFQ-NOPR system may have a previously unrecognized role in sleep/wake control and potential promise as a therapeutic target for the treatment of insomnia.


Asunto(s)
Electroencefalografía , Péptidos Opioides , Ratas , Ratones , Animales , Sueño , Sueño REM/fisiología , Nociceptina
8.
J Neurosci ; 44(6)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38124015

RESUMEN

Opioid use disorder is a chronic, relapsing disease associated with persistent changes in brain plasticity. A common single nucleotide polymorphism (SNP) in the µ-opioid receptor gene, OPRM1 A118G, is associated with altered vulnerability to opioid addiction. Reconfiguration of neuronal connectivity may explain dependence risk in individuals with this SNP. Mice with the equivalent Oprm1 variant, A112G, demonstrate sex-specific alterations in the rewarding properties of morphine and heroin. To determine whether this SNP influences network-level changes in neuronal activity, we compared FOS expression in male and female mice that were opioid-naive or opioid-dependent. Network analyses identified significant differences between the AA and GG Oprm1 genotypes. Based on several graph theory metrics, including small-world analysis and degree centrality, we show that GG females in the opioid-dependent state exhibit distinct patterns of connectivity compared to other groups of the same genotype. Using a network control theory approach, we identified key cortical brain regions that drive the transition between opioid-naive and opioid-dependent brain states; however, these regions are less influential in GG females leading to sixfold higher average minimum energy needed to transition from the acute to the dependent state. In addition, we found that the opioid-dependent brain state is significantly less stable in GG females compared to other groups. Collectively, our findings demonstrate sex- and genotype-specific modifications in local, mesoscale, and global properties of functional brain networks following opioid exposure and provide a framework for identifying genotype differences in specific brain regions that play a role in opioid dependence.


Asunto(s)
Analgésicos Opioides , Trastornos Relacionados con Opioides , Masculino , Ratones , Femenino , Animales , Receptores Opioides , Receptores Opioides mu/metabolismo , Genotipo , Trastornos Relacionados con Opioides/genética , Polimorfismo de Nucleótido Simple/genética
9.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38798004

RESUMEN

Pain experience increases individuals' perception and contagion of others' pain, but whether pain experience affects individuals' affiliative or antagonistic responses to others' pain is largely unknown. Additionally, the neural mechanisms underlying how pain experience modulates individuals' responses to others' pain remain unclear. In this study, we explored the effects of pain experience on individuals' responses to others' pain and the underlying neural mechanisms. By comparing locomotion, social, exploration, stereotyped, and anxiety-like behaviors of mice without any pain experience (naïve observers) and mice with a similar pain experience (experienced observers) when they observed the pain-free demonstrator with intraperitoneal injection of normal saline and the painful demonstrator with intraperitoneal injection of acetic acid, we found that pain experience of the observers led to decreased social avoidance to the painful demonstrator. Through whole-brain c-Fos quantification, we discovered that pain experience altered neuronal activity and enhanced functional connectivity in the mouse brain. The analysis of complex network and graph theory exhibited that functional connectivity networks and activated hub regions were altered by pain experience. Together, these findings reveal that neuronal activity and functional connectivity networks are involved in the modulation of individuals' responses to others' pain by pain experience.


Asunto(s)
Encéfalo , Ratones Endogámicos C57BL , Dolor , Proteínas Proto-Oncogénicas c-fos , Animales , Ratones , Proteínas Proto-Oncogénicas c-fos/metabolismo , Masculino , Dolor/psicología , Dolor/fisiopatología , Conducta Social , Reacción de Prevención/fisiología , Vías Nerviosas/fisiopatología , Vías Nerviosas/fisiología
10.
Cell Mol Life Sci ; 81(1): 48, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236296

RESUMEN

The MAP kinase ERK is important for neuronal plasticity underlying associative learning, yet specific molecular pathways for neuronal ERK activation are undetermined. RapGEF2 is a neuron-specific cAMP sensor that mediates ERK activation. We investigated whether it is required for cAMP-dependent ERK activation leading to other downstream neuronal signaling events occurring during associative learning, and if RapGEF2-dependent signaling impairments affect learned behavior. Camk2α-cre+/-::RapGEF2fl/fl mice with depletion of RapGEF2 in hippocampus and amygdala exhibit impairments in context- and cue-dependent fear conditioning linked to corresponding impairment in Egr1 induction in these two brain regions. Camk2α-cre+/-::RapGEF2fl/fl mice show decreased RapGEF2 expression in CA1 and dentate gyrus associated with abolition of pERK and Egr1, but not of c-Fos induction, following fear conditioning, impaired freezing to context after fear conditioning, and impaired cAMP-dependent long-term potentiation at perforant pathway and Schaffer collateral synapses in hippocampal slices ex vivo. RapGEF2 expression is largely eliminated in basolateral amygdala, also involved in fear memory, in Camk2α-cre+/-::RapGEF2fl/fl mice. Neither Egr1 nor c-fos induction in BLA after fear conditioning, nor cue-dependent fear learning, are affected by ablation of RapGEF2 in BLA. However, Egr1 induction (but not that of c-fos) in BLA is reduced after restraint stress-augmented fear conditioning, as is freezing to cue after restraint stress-augmented fear conditioning, in Camk2α-cre+/-::RapGEF2fl/fl mice. Cyclic AMP-dependent GEFs have been genetically associated as risk factors for schizophrenia, a disorder associated with cognitive deficits. Here we show a functional link between one of them, RapGEF2, and cognitive processes involved in associative learning in amygdala and hippocampus.


Asunto(s)
Miedo , Genes Inmediatos-Precoces , Factores de Intercambio de Guanina Nucleótido , Memoria , Transducción de Señal , Animales , Ratones , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas Proto-Oncogénicas c-fos
11.
Proc Natl Acad Sci U S A ; 119(45): e2209382119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36603188

RESUMEN

Studies using rodent models have shown that relapse to drug or food seeking increases progressively during abstinence, a behavioral phenomenon termed "incubation of craving." Mechanistic studies of incubation of craving have focused on specific neurobiological targets within preselected brain areas. Recent methodological advances in whole-brain immunohistochemistry, clearing, and imaging now allow unbiased brain-wide cellular resolution mapping of regions and circuits engaged during learned behaviors. However, these whole-brain imaging approaches were developed for mouse brains, while incubation of drug craving has primarily been studied in rats, and incubation of food craving has not been demonstrated in mice. Here, we established a mouse model of incubation of palatable food craving and examined food reward seeking after 1, 15, and 60 abstinence days. We then used the neuronal activity marker Fos with intact-brain mapping procedures to identify corresponding patterns of brain-wide activation. Relapse to food seeking was significantly higher after 60 abstinence days than after 1 or 15 days. Using unbiased ClearMap analysis, we identified increased activation of multiple brain regions, particularly corticostriatal structures, following 60 but not 1 or 15 abstinence days. We used orthogonal SMART2 analysis to confirm these findings within corticostriatal and thalamocortical subvolumes and applied expert-guided registration to investigate subdivision and layer-specific activation patterns. Overall, we 1) identified brain-wide activity patterns during incubation of food seeking using complementary analytical approaches and 2) provide a single-cell resolution whole-brain atlas that can be used to identify functional networks and global architecture underlying the incubation of food craving.


Asunto(s)
Ansia , Metanfetamina , Animales , Ratones , Encéfalo , Ansia/fisiología , Señales (Psicología) , Comportamiento de Búsqueda de Drogas/fisiología , Alimentos , Recurrencia , Autoadministración
12.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35181604

RESUMEN

Acute stress leads to sequential activation of functional brain networks. A biologically relevant question is exactly which (single) cells belonging to brain networks are changed in activity over time after acute stress across the entire brain. We developed a preprocessing and analytical pipeline to chart whole-brain immediate early genes' expression-as proxy for cellular activity-after a single stressful foot shock in four dimensions: that is, from functional networks up to three-dimensional (3D) single-cell resolution and over time. The pipeline is available as an R package. Most brain areas (96%) showed increased numbers of c-fos+ cells after foot shock, yet hypothalamic areas stood out as being most active and prompt in their activation, followed by amygdalar, prefrontal, hippocampal, and finally, thalamic areas. At the cellular level, c-fos+ density clearly shifted over time across subareas, as illustrated for the basolateral amygdala. Moreover, some brain areas showed increased numbers of c-fos+ cells, while others-like the dentate gyrus-dramatically increased c-fos intensity in just a subset of cells, reminiscent of engrams; importantly, this "strategy" changed after foot shock in half of the brain areas. One of the strengths of our approach is that single-cell data were simultaneously examined across all of the 90 brain areas and can be visualized in 3D in our interactive web portal.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Dolor/fisiopatología , Animales , Electrochoque/métodos , Pie/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Análisis de la Célula Individual , Análisis Espacio-Temporal , Estrés Fisiológico/fisiología
13.
Proc Natl Acad Sci U S A ; 119(37): e2123451119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067301

RESUMEN

Filaggrin (FLG), an essential structural protein for skin barrier function, is down-regulated under chronic inflammatory conditions, leading to disruption of the skin barrier. However, the detailed molecular mechanisms of how FLG changes in the context of chronic inflammation are poorly understood. Here, we identified the molecular mechanisms by which inflammatory cytokines inhibit FLG expression in the skin. We found that the AP1 response element within the -343/+25 of the FLG promoter was necessary for TNFα + IFNγ-induced down-regulation of FLG promoter activity. Using DNA affinity precipitation assay, we observed that AP1 subunit composition binding to the FLG promoter was altered from c-FOS:c-JUN (at the early time) to FRA1:c-JUN (at the late time) in response to TNFα + IFNγ stimulation. Knockdown of FRA1 or c-JUN abrogated TNFα + IFNγ-induced FLG suppression. Histone deacetylase (HDAC) 1 interacted with FRA1:c-JUN under TNFα + IFNγ stimulation. Knockdown of HDAC1 abrogated the inhibitory effect of TNFα + IFNγ on FLG expression. The altered expression of FLG, FRA1, c-JUN, and HDAC1 was confirmed in mouse models of 2,4-dinitrochlorobenzene-induced atopic dermatitis and imiquimod-induced psoriasis. Thus, the current study demonstrates that TNFα + IFNγ stimulation suppresses FLG expression by promoting the FRA1:c-JUN:HDAC1 complex. This study provides insight into future therapeutic strategies targeting the FRA1:c-JUN:HDAC1 complex to restore impaired FLG expression in chronic skin inflammation.


Asunto(s)
Proteínas Filagrina , Histona Desacetilasa 1 , Queratinocitos , Proteínas Proto-Oncogénicas c-fos , Proteínas Proto-Oncogénicas c-jun , Animales , Enfermedad Crónica , Dermatitis/genética , Dermatitis/metabolismo , Regulación hacia Abajo , Proteínas Filagrina/genética , Proteínas Filagrina/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Interferón gamma/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
14.
J Neurosci ; 43(35): 6141-6163, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37541836

RESUMEN

Mouse ultrasonic vocalizations (USVs) contain predictable sequential structures like bird songs and speech. Neural representation of USVs in the mouse primary auditory cortex (Au1) and its plasticity with experience has been largely studied with single-syllables or dyads, without using the predictability in USV sequences. Studies using playback of USV sequences have used randomly selected sequences from numerous possibilities. The current study uses mutual information to obtain context-specific natural sequences (NSeqs) of USV syllables capturing the observed predictability in male USVs in different contexts of social interaction with females. Behavioral and physiological significance of NSeqs over random sequences (RSeqs) lacking predictability were examined. Female mice, never having the social experience of being exposed to males, showed higher selectivity for NSeqs behaviorally and at cellular levels probed by expression of immediate early gene c-fos in Au1. The Au1 supragranular single units also showed higher selectivity to NSeqs over RSeqs. Social-experience-driven plasticity in encoding NSeqs and RSeqs in adult females was probed by examining neural selectivities to the same sequences before and after the above social experience. Single units showed enhanced selectivity for NSeqs over RSeqs after the social experience. Further, using two-photon Ca2+ imaging, we observed social experience-dependent changes in the selectivity of sequences of excitatory and somatostatin-positive inhibitory neurons but not parvalbumin-positive inhibitory neurons of Au1. Using optogenetics, somatostatin-positive neurons were identified as a possible mediator of the observed social-experience-driven plasticity. Our study uncovers the importance of predictive sequences and introduces mouse USVs as a promising model to study context-dependent speech like communications.SIGNIFICANCE STATEMENT Humans need to detect patterns in the sensory world. For instance, speech is meaningful sequences of acoustic tokens easily differentiated from random ordered tokens. The structure derives from the predictability of the tokens. Similarly, mouse vocalization sequences have predictability and undergo context-dependent modulation. Our work investigated whether mice differentiate such informative predictable sequences (NSeqs) of communicative significance from RSeqs at the behavioral, molecular, and neuronal levels. Following a social experience in which NSeqs occur as a crucial component, mouse auditory cortical neurons become more sensitive to differences between NSeqs and RSeqs, although preference for individual tokens is unchanged. Thus, speech-like communication and its dysfunction may be studied in circuit, cellular, and molecular levels in mice.


Asunto(s)
Corteza Auditiva , Humanos , Animales , Ratones , Femenino , Masculino , Corteza Auditiva/fisiología , Ultrasonido/métodos , Vocalización Animal/fisiología , Neuronas
15.
J Cell Mol Med ; 28(9): e18357, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38683127

RESUMEN

In our previous study, intranuclear cardiac troponin I (cTnI) may function as a co-factor of Yin Yang 1(YY1). Here, we aimed to explore the role of intranuclear cTnI in ageing hearts. Nuclear translocation of cTnI was demonstrated using Western blot and immunofluorescence. The potential nuclear localization sequences (NLSs) of cTnI were predicted by a web server and then verified in 293T cells by putative NLS-eGFP-GST and NLS-mutant transfection. The ratio of Nuclear cTnI/ Total cTnI (Nu/T) decreased significantly in ageing hearts, accompanied with ATG5-decline-related impaired cardiac autophagy. RNA sequencing was performed in cTnI knockout hearts. The differential expressed genes (DEGs) were analysed by overlapping with YY1 ChIP-sequencing data. cTnI gain and loss experiments in vitro determined those filtered DEGs' expression levels. A strong correlation was found between expression patterns cTnI and FOS. Using ChIP-q-PCR, we demonstrated that specific binding DNA sequences of cTnI were enriched in the FOS promoter -299 to -157 region. It was further verified that pcDNA3.1 (-)-cTnI could increase the promoter activity of FOS by using luciferase report assay. At last, we found that FOS can regulate the ATG5 (autophagy-related gene 5) gene by using a luciferase report assay. Taken together, our results indicate that decreased intranuclear cTnI in ageing hearts may cause impaired cardiac autophagy through the FOS/ATG5 pathway.


Asunto(s)
Envejecimiento , Proteína 5 Relacionada con la Autofagia , Autofagia , Núcleo Celular , Miocardio , Troponina I , Troponina I/metabolismo , Troponina I/genética , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Envejecimiento/metabolismo , Envejecimiento/genética , Animales , Miocardio/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Ratones , Células HEK293 , Masculino , Regiones Promotoras Genéticas , Regulación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Ratones Noqueados
16.
J Cell Mol Med ; 28(17): e18578, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234952

RESUMEN

Kruppel-like factor 4 (Klf4) is a transcription factor that is involved in neuronal regeneration and the development of glutamatergic systems. However, it is unknown whether Klf4 is involved in acute seizure. To investigate the potential role of Klf4 in pentylenetetrazol (PTZ)-induced seizure, western blotting, immunofluorescence, behaviour test and electrophysiology were conducted in this study. We found that Klf4 protein and mRNA expression were increased in both the hippocampus (HP) and prefrontal cortex (PFC) after PTZ-induced seizure in mice. HP-specific knockout (KO) of Klf4 in mice decreased protein expression of Klf4 and the down-stream Klf4 target tumour protein 53 (TP53/P53). These molecular changes are accompanied by increased seizure latency, reduced immobility time in the forced swimming test and tail suspension test. Reduced hippocampal protein levels for synaptic proteins, including glutamate receptor 1 (GRIA1/GLUA1) and postsynaptic density protein 95 (DLG4/PSD95), were also observed after Klf4-KO, while increased mRNA levels of complement proteins were observed for complement component 1q subcomponent A (C1qa), complement component 1q subcomponent B (C1qb), complement component 1q subcomponent C (C1qc), complement component 3 (C3), complement component 4A (C4a) and complement component 4B (C4b). Moreover, c-Fos expression induced by PTZ was reduced by hippocampal conditional KO of Klf4. Electrophysiology showed that PTZ-induced action potential frequency was decreased by overexpression of Klf4. In conclusion, these findings suggest that Klf4 plays an important role in regulating PTZ-induced seizures and therefore constitutes a new molecular target that should be explored for the development of antiepileptic drugs.


Asunto(s)
Hipocampo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Ratones Noqueados , Pentilenotetrazol , Convulsiones , Animales , Factor 4 Similar a Kruppel/metabolismo , Convulsiones/metabolismo , Convulsiones/inducido químicamente , Convulsiones/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Hipocampo/metabolismo , Masculino , Corteza Prefrontal/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
17.
J Cell Physiol ; 239(5): e31216, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38327128

RESUMEN

c-Fos, a member of the immediate early gene, serves as a widely used marker of neuronal activation induced by various types of brain damage. In addition, c-Fos is believed to play a regulatory role in DNA damage repair. This paper reviews the literature on c-Fos' involvement in the regulation of DNA damage repair and indicates that genes of the Fos family can be induced by various forms of DNA damage. In addition, cells lacking c-Fos have difficulties in DNA repair. c-Fos is involved in tumorigenesis and progression as a proto-oncogene that maintains cancer cell survival, which may also be related to DNA repair. c-Fos may impact the repair of DNA damage by regulating the expression of downstream proteins, including ATR, ERCC1, XPF, and others. Nonetheless, the underlying mechanisms necessitate further exploration.


Asunto(s)
Daño del ADN , Reparación del ADN , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-fos , Humanos , Reparación del ADN/genética , Daño del ADN/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Animales , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo
18.
Hippocampus ; 34(7): 342-356, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38780087

RESUMEN

Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.


Asunto(s)
Giro Dentado , Receptores AMPA , Receptores de N-Metil-D-Aspartato , Sacarosa , Animales , Masculino , Ratas , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Aprendizaje Discriminativo/efectos de los fármacos , Aprendizaje Discriminativo/fisiología , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Memoria/fisiología , Memoria/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Wistar , Receptores AMPA/metabolismo , Receptores AMPA/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , ARN Mensajero/metabolismo , Autoadministración , Sacarosa/administración & dosificación
19.
Mol Pain ; 20: 17448069241252385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38631845

RESUMEN

Preemptive analgesia is used for postoperative pain management, providing pain relief with few adverse effects. In this study, the effect of a preemptive regime on rat behavior and c-fos expression in the spinal cord of the uterine surgical pain model was evaluated. It was a lab-based experimental study in which 60 female Sprague-Dawley rats; eight to 10 weeks old, weighing 150-300 gm were used. The rats were divided into two main groups: (i) superficial pain group (SG) (with skin incision only), (ii) deep pain group (with skin and uterine incisions). Each group was further divided into three subgroups based on the type of preemptive analgesia administered i.e., "tramadol, buprenorphine, and saline subgroups." Pain behavior was evaluated using the "Rat Grimace Scale" (RGS) at 2, 4, 6, 9 and 24 h post-surgery. Additionally, c-fos immunohistochemistry was performed on sections from spinal dorsal horn (T12-L2), and its expression was evaluated using optical density and mean cell count 2 hours postoperatively. Significant reduction in the RGS was noted in both the superficial and deep pain groups within the tramadol and buprenorphine subgroups when compared to the saline subgroup (p ≤ .05). There was a significant decrease in c-fos expression both in terms of number of c-fos positive cells and the optical density across the superficial laminae and lamina X of the spinal dorsal horn in both SD and DG (p ≤ .05). In contrast, the saline group exhibited c-fos expression primarily in laminae I-II and III-IV for both superficial and deep pain groups and lamina X in the deep pain group only (p ≤ .05). Hence, a preemptive regimen results in significant suppression of both superficial and deep components of pain transmission. These findings provide compelling evidence of the analgesic efficacy of preemptive treatment in alleviating pain response associated with uterine surgery.


Asunto(s)
Modelos Animales de Enfermedad , Dolor Postoperatorio , Proteínas Proto-Oncogénicas c-fos , Ratas Sprague-Dawley , Útero , Animales , Femenino , Proteínas Proto-Oncogénicas c-fos/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Útero/cirugía , Útero/efectos de los fármacos , Anestesia General/métodos , Analgesia/métodos , Tramadol/farmacología , Tramadol/uso terapéutico , Dimensión del Dolor , Ratas , Anestesia Local/métodos , Conducta Animal/efectos de los fármacos , Buprenorfina/farmacología , Buprenorfina/uso terapéutico
20.
Curr Issues Mol Biol ; 46(7): 6885-6902, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39057053

RESUMEN

Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in animal models subjected to acute neuroinflammation induced by bacterial lipopolysaccharide (LPS). Coronal brain sections of C57BL/6JN male mice or Wistar male rats administered with EEPs or F10 before LPS were subjected to in situ hybridization to determine c-fos and CD14 mRNA levels in the hypothalamus or GABAA γ2 mRNA levels in the hippocampus. Theta oscillations were recorded every 6 h in the hippocampus of Wistar rats. In total, five flavonoids and eight phenolic acids were identified and quantified in P. sacharosa leaves. Either EEPs or F10 crossed the blood-brain barrier (BBB) into the brain and reduced the mRNA expression of c-fos, CD14, and GABAA γ2. A decrease in theta oscillation was observed in the hippocampus of the LPS group, while the F10 + LPS group overrode the LPS effect on theta activity. We conclude that the bioactive compounds of P. sacharosa reduce the central response to inflammation, allowing the early return of ambulatory activity and well-being of the animal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA