Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(14): 2977-2994.e23, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37343560

RESUMEN

Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether human cells exhibit distinct genetic dependencies. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell-cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells and cerebral organoids, supporting the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells reshaped the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.


Asunto(s)
Hominidae , Células-Madre Neurales , Células Madre Pluripotentes , Células Madre , Animales , Humanos , Pan troglodytes/genética
2.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588250

RESUMEN

Although lengthening of the cell cycle and G1 phase is a generic feature of tissue maturation during development, the underlying mechanism remains poorly understood. Here, we develop a time-lapse imaging strategy to measure the four cell cycle phases in single chick neural progenitor cells in their endogenous environment. We show that neural progenitors are widely heterogeneous with respect to cell cycle length. This variability in duration is distributed over all phases of the cell cycle, with the G1 phase contributing the most. Within one cell cycle, each phase duration appears stochastic and independent except for a correlation between S and M phase duration. Lineage analysis indicates that the majority of daughter cells may have a longer G1 phase than mother cells, suggesting that, at each cell cycle, a mechanism lengthens the G1 phase. We identify that the CDC25B phosphatase known to regulate the G2/M transition indirectly increases the duration of the G1 phase, partly through delaying passage through the restriction point. We propose that CDC25B increases the heterogeneity of G1 phase length, revealing a previously undescribed mechanism of G1 lengthening that is associated with tissue development.


Asunto(s)
Células-Madre Neurales , Ciclo Celular/fisiología , División Celular , Fase G1/fisiología , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34006647

RESUMEN

Classical nonhomologous end joining (C-NHEJ) repairs DNA double-strand breaks (DSBs) throughout interphase but predominates in G1 phase when homologous recombination is unavailable. Complexes containing the Ku70/80 ("Ku") and XRCC4/ligase IV (Lig4) core C-NHEJ factors are required, respectively, for sensing and joining DSBs. While XRCC4/Lig4 are absolutely required for joining RAG1/2 endonuclease ("RAG")-initiated DSBs during V(D)J recombination in G1-phase progenitor lymphocytes, cycling cells deficient for XRCC4/Lig4 also can join chromosomal DSBs by alternative end-joining (A-EJ) pathways. Restriction of V(D)J recombination by XRCC4/Lig4-mediated joining has been attributed to RAG shepherding V(D)J DSBs exclusively into the C-NHEJ pathway. Here, we report that A-EJ of DSB ends generated by RAG1/2, Cas9:gRNA, and Zinc finger endonucleases in Lig4-deficient G1-arrested progenitor B cell lines is suppressed by Ku. Thus, while diverse DSBs remain largely as free broken ends in Lig4-deficient G1-arrested progenitor B cells, deletion of Ku70 increases DSB rejoining and translocation levels to those observed in Ku70-deficient counterparts. Correspondingly, while RAG-initiated V(D)J DSB joining is abrogated in Lig4-deficient G1-arrested progenitor B cell lines, joining of RAG-generated DSBs in Ku70-deficient and Ku70/Lig4 double-deficient lines occurs through a translocation-like A-EJ mechanism. Thus, in G1-arrested, Lig4-deficient progenitor B cells are functionally end-joining suppressed due to Ku-dependent blockage of A-EJ, potentially in association with G1-phase down-regulation of Lig1. Finally, we suggest that differential impacts of Ku deficiency versus Lig4 deficiency on V(D)J recombination, neuronal apoptosis, and embryonic development results from Ku-mediated inhibition of A-EJ in the G1 cell cycle phase in Lig4-deficient developing lymphocyte and neuronal cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Autoantígeno Ku/genética , Células Precursoras de Linfocitos B/metabolismo , Recombinación V(D)J , Animales , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fase G1/genética , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Ratones , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Precursoras de Linfocitos B/citología
4.
Cereb Cortex ; 32(16): 3488-3500, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34918060

RESUMEN

During cortical development, the balance between progenitor self-renewal and neurogenesis is critical for determining the size/morphology of the cortex. A fundamental feature of the developing cortex is an increase in the length of G1 phase in RGCs over the course of neurogenesis, which is a key determinant of progenitor fate choice. How the G1 length is temporally regulated remains unclear. Here, Pdk1, a member of the AGC kinase family, was conditionally disrupted by crossing an Emx1-Cre mouse line with a Pdk1fl/fl line. The loss of Pdk1 led to a shorter cell cycle accompanied by increased RGC proliferation specifically at late rather than early/middle neurogenic stages, which was attributed to impaired lengthening of G1 phase. Coincidently, apical-to-basal interkinetic nuclear migration was accelerated in Pdk1 cKO cortices. Consequently, we detected an increased neuronal output at P0. We further showed the significant upregulation of the cell cycle regulator cyclin D1 and its activator Myc in the cKO cortices relative to those of control animals. Overall, we have identified a novel role for PDK1 in cortical neurogenesis. PDK1 functions as an upstream regulator of the Myc-cyclin D1 pathway to control the lengthening of G1 phase and the balance between RGC proliferation and differentiation.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Ciclina D1 , Neurogénesis , Neuroglía , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Ciclina D1/metabolismo , Fase G1 , Ratones , Neuroglía/citología
5.
Biosci Biotechnol Biochem ; 87(8): 825-832, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37245061

RESUMEN

The phytochemical investigation of Dialium corbisieri seeds led to the isolation of five monoterpenoid indole alkaloids along with a phytoserotonin, 1-6 and among the known compounds, the spectroscopic data of (5S)-methoxy-akuammiline (1) was reported for the first time. The structures were elucidated based on nuclear magnetic resonance spectroscopic techniques such as ultraviolet, infrared, high-resolution electrospray ionization time-of-flight mass spectrometry, and electron-capture dissociation spectrum calculations. The isolated compounds were evaluated for their cytotoxicity and cell progression in the human acute promyelocytic leukemia HL60 cell line.


Asunto(s)
Leucemia Promielocítica Aguda , Humanos , Células HL-60 , Leucemia Promielocítica Aguda/tratamiento farmacológico , Estructura Molecular , Alcaloides Indólicos/farmacología , Puntos de Control de la Fase G1 del Ciclo Celular
6.
Cell Mol Life Sci ; 78(10): 4507-4519, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33884444

RESUMEN

During early embryonic development both the rapid increase in cell number and the expression of genes that control developmental decisions are tightly regulated. Accumulating evidence has indicated that these two seemingly independent processes are mechanistically intertwined. The picture that emerges from studies on the cell cycle of embryonic stem cells is one in which proteins that promote cell cycle progression prevent differentiation and vice versa. Here, we review which transcription factors and signalling pathways play a role in both maintenance of pluripotency as well as cell cycle progression. We will not only describe the mechanism behind their function but also discuss the role of these regulators in different states of mouse pluripotency. Finally, we elaborate on how canonical cell cycle regulators impact on the molecular networks that control the maintenance of pluripotency and lineage specification.


Asunto(s)
Fase G1/fisiología , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular/fisiología , Células Madre Embrionarias/fisiología , Humanos , Transducción de Señal/fisiología
7.
J Clin Lab Anal ; 36(5): e24396, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35373420

RESUMEN

BACKGROUNDS: As a regulator of cell cycle, cell division cycle-associated 5 (CDCA5) is involved in the progression of various malignant tumors. However, the potential relationship between CDCA5 and lung cancer has not been reported. METHODS: In our study, we analyzed the expression of CDCA5 in a variety of malignant tumors, performed Kaplan-Meier survival analysis of lung adenocarcinoma (LUAD), explored the potential relationship between CDCA5 expression and clinicopathological characteristics, assessed the predictive capability of at different stages of clinicopathological characteristics, revealed the enriched functions and signaling pathways among LUAD paitents with high CDCA5 expression, and investigated the correlation between PD-1, PD-L1, and CDCA5 through bioinformatics analyses. Subsequently, we performed quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting (WB) to demonstrate that CDCA5 mediates the p53-p21 pathway and regulates the cell cycle. RESULT: CDCA5 is probably involved in the occurrence and development of NSCLC, and function as a reliable biomarker for predicting the survival outcomes of patients with early stage of patients with LUAD. Furthermore, CDCA5 may be a promising indicator of immunotherapy efficacy. In addition, silencing the expression of CDCA5 significantly increased the proportion of apoptotic NSCLC cells, and caused NSCLC cells to be arrested in the G1 phase. CONSLUSION: In conclusion, CDCA5 regulated the cell cycle of NSCLC cells by mediating the p53-p21 signaling pathway, participating in the development and progression of NSCLC patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Proteínas de Ciclo Celular , Neoplasias Pulmonares , Proteínas Adaptadoras Transductoras de Señales/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Fase G1 , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Oncogenes , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743215

RESUMEN

We study the impact of radiation LET on manifestation of HRS/IRR response in Chinese hamster cells ovary cells exposed to radiations used in radiotherapy. Earlier we have investigated this response to carbon ions (455 MeV/amu) in the pristine Bragg curve plateau and behind the Bragg peak, 60Co γ-rays, and 14.5 MeV neutrons. Now we present results of cytogenetic metaphase analysis in plateau-phase CHO-K1 cells irradiated with scanning beam protons (83 MeV) at doses < 1 Gy and additional data for 14.5 MeV neutrons. Dose curves for frequency of total chromosome aberrations (CA, protons), paired fragments (protons, neutrons), aberrant cells (neutrons) had typical HRS/IRR structure: HRS region (up to 0.1 and 0.15 Gy), IRR region (0.1−0.6 Gy and 0.15−0.35 Gy) for protons and neutrons, respectively, and regular dose dependence. Taken together with previous results, the data show that LET increase shifts the HRS upper border (from 0.08−0.1 Gy for γ-rays, protons and plateau carbons to 0.12−0.15 Gy for "tail" carbons and neutrons). The IRR regions shortens (0.52−0.4 γ-rays and protons, 0.25 plateau carbons, 0.2 Gy "tail" carbons and neutrons). CA level of IRR increases by 1.5−2.5 times for carbons as compared to γ-rays and protons. Outside HRS/IRR the yield of CA also enhanced with LET increase. The results obtained for different LET radiations suggest that CHO-K1 cells with G1-like CA manifested the general feature of the HRS/IRR phenomena.


Asunto(s)
Neutrones , Protones , Animales , Aberraciones Cromosómicas , Cricetinae , Cricetulus , Relación Dosis-Respuesta en la Radiación , Rayos gamma/efectos adversos
9.
Molecules ; 27(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35684419

RESUMEN

Onosma bracteata Wall. is an important medicinal and immunity-enhancing herbs. This plant is commonly used in the preparation of traditional Ayurvedic drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the present study aimed to investigate the antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human osteosarcoma (MG-63) cells. Among all the fractions isolated from O. bracteata, ethyl acetate fraction (Obea) showed good antioxidant activity in superoxide radical scavenging assay and lipid peroxidation assay with an EC50 value of 95.12 and 80.67 µg/mL, respectively. Silica gel column chromatography of ethyl acetate (Obea) fraction of O. bracteata yielded a pure compound, which was characterized by NMR, FTIR, and HR-MS analysis and was identified as 1,2-benzene dicarboxylic acid, bis (2-methyl propyl) ester (BDCe fraction). BDCe fraction was evaluated for the antiproliferative potential against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung carcinoma A549 cell lines by MTT assay and exhibited GI50 values of 37.53 µM, 56.05 µM, and 47.12 µM, respectively. In MG-63 cells, the BDCe fraction increased the level of ROS and simultaneously decreased the mitochondria membrane potential (MMP) potential by arresting cells at the G0/G1 phase, suggesting the initiation of apoptosis. Western blotting analysis revealed the upregulation of p53, caspase3, and caspase9 while the expressions of p-NF-κB, p-Akt and Bcl-xl were decreased. RT-qPCR studies also showed upregulation in the expression of p53 and caspase3 and downregulation in the expression of CDK2, Bcl-2 and Cyclin E genes. Molecular docking analysis displayed the interaction between BDCe fraction with p53 (-151.13 kcal/mol) and CDK1 (-133.96 kcal/mol). The results of the present work suggest that the BDCe fraction has chemopreventive properties against osteosarcoma (MG-63) cells through the induction of cell cycle arrest and apoptosis via Akt/NF-κB/p53 pathways. This study contributes to the understanding of the utilization of BDCe fraction in osteosarcoma treatment.


Asunto(s)
Neoplasias Óseas , Boraginaceae , Osteosarcoma , Apoptosis , Boraginaceae/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ésteres , Humanos , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Osteosarcoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
10.
Cancer Sci ; 112(9): 3520-3532, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34115916

RESUMEN

Malignant mesothelioma (MM) is one of the most aggressive tumors. We conducted bioinformatics analysis using Cancer Cell Line Encyclopedia (CCLE) datasets to identify new molecular markers in MM. Overexpression of oxytocin receptor (OXTR), which is a G-protein-coupled receptor for the hormone and neurotransmitter oxytocin, mRNA was distinctively identified in MM cell lines. Therefore, we assessed the role of OXTR and its clinical relevance in MM. Kaplan-Meier and Cox regression analyses were applied to assess the association between overall survival and OXTR mRNA expression using The Cancer Genome Atlas (TCGA) datasets. The function of OXTR and the efficacy of its antagonists were investigated in vitro and in vivo using MM cell lines. Consistent with the findings from CCLE datasets analysis, OXTR mRNA expression was highly increased in MM tissues compared with other cancer types in the TCGA datasets, and MM cases with high OXTR expression showed poor overall survival. Moreover, OXTR knockdown dramatically decreased MM cell proliferation in cells with high OXTR expression via tumor cell cycle disturbance, whereas oxytocin treatment significantly increased MM cell growth. OXTR antagonists, which have high selectivity for OXTR, inhibited the growth of MM cell lines with high OXTR expression, and oral administration of the OXTR antagonist, cligosiban, significantly suppressed MM tumor progression in a xenograft model. Our findings suggest that OXTR plays a crucial role in MM cell proliferation and is a promising therapeutic target that may broaden potential therapeutic options and could be a prognostic biomarker of MM.


Asunto(s)
Mesotelioma Maligno/tratamiento farmacológico , Mesotelioma Maligno/metabolismo , Piridinas/administración & dosificación , Receptores de Oxitocina/antagonistas & inhibidores , Receptores de Oxitocina/metabolismo , Triazoles/administración & dosificación , Animales , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oxitocina/farmacología , ARN Mensajero/genética , Receptores de Oxitocina/genética , Transfección , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
11.
BMC Cancer ; 21(1): 1088, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625047

RESUMEN

BACKGROUND: The aminoisoquinoline FX-9 shows pro-apoptotic and antimitotic effects against lymphoblastic leukemia cells and prostate adenocarcinoma cells. In contrast, decreased cytotoxic effects against non-neoplastic blood cells, chondrocytes, and fibroblasts were observed. However, the actual FX-9 molecular mode of action is currently not fully understood. METHODS: In this study, microarray gene expression analysis comparing FX-9 exposed and unexposed prostate cancer cells (PC-3 representing castration-resistant prostate cancer), followed by pathway analysis and gene annotation to functional processes were performed. Immunocytochemistry staining was performed with selected targets. RESULTS: Expression analysis revealed 0.83% of 21,448 differential expressed genes (DEGs) after 6-h exposure of FX-9 and 0.68% DEGs after 12-h exposure thereof. Functional annotation showed that FX-9 primarily caused an activation of inflammatory response by non-canonical nuclear factor-kappa B (NF-κB) signaling. The 6-h samples showed activation of the cell cycle inhibitor CDKN1A which might be involved in the secondary response in 12-h samples. This secondary response predominantly consisted of cell cycle-related changes, with further activation of CDKN1A and inhibition of the transcription factor E2F1, including downstream target genes, resulting in G1-phase arrest. Matching our previous observations on cellular level senescence signaling pathways were also found enriched. To verify these results immunocytochemical staining of p21 Waf1/Cip1 (CDKN1A), E2F1 (E2F1), PAI-1 (SERPNE1), and NFkB2/NFkB p 100 (NFKB2) was performed. Increased expression of p21 Waf1/Cip1 and NFkB2/NFkB p 100 after 24-h exposure to FX-9 was shown. E2F1 and PAI-1 showed no increased expression. CONCLUSIONS: FX-9 induced G1-phase arrest of PC-3 cells through activation of the cell cycle inhibitor CDKN1A, which was initiated by an inflammatory response of noncanonical NF-κB signaling.


Asunto(s)
Antineoplásicos/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Isoquinolinas/farmacología , FN-kappa B/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Antineoplásicos/uso terapéutico , Factor de Transcripción E2F1/antagonistas & inhibidores , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Humanos , Isoquinolinas/uso terapéutico , Masculino , Persona de Mediana Edad , Células PC-3 , Inhibidor 1 de Activador Plasminogénico/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Puntos de Control de la Fase S del Ciclo Celular , Factores de Tiempo , Análisis de Matrices Tisulares
12.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769053

RESUMEN

The potent splicing inhibitor spliceostatin A (SSA) inhibits cell cycle progression at the G1 and G2/M phases. We previously reported that upregulation of the p27 cyclin-dependent kinase inhibitor encoded by CDKN1B and its C-terminal truncated form, namely p27*, which is translated from CDKN1B pre-mRNA, is one of the causes of G1 phase arrest caused by SSA treatment. However, the detailed molecular mechanism underlying G1 phase arrest caused by SSA treatment remains to be elucidated. In this study, we found that SSA treatment caused the downregulation of cell cycle regulators, including CCNE1, CCNE2, and E2F1, at both the mRNA and protein levels. We also found that transcription elongation of the genes was deficient in SSA-treated cells. The overexpression of CCNE1 and E2F1 in combination with CDKN1B knockout partially suppressed G1 phase arrest caused by SSA treatment. These results suggest that the downregulation of CCNE1 and E2F1 contribute to the G1 phase arrest induced by SSA treatment, although they do not exclude the involvement of other factors in SSA-induced G1 phase arrest.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Ciclina E/genética , Factor de Transcripción E2F1/genética , Fase G1/efectos de los fármacos , Proteínas Oncogénicas/genética , Piranos/farmacología , Compuestos de Espiro/farmacología , Línea Celular Tumoral , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Regulación hacia Abajo/efectos de los fármacos , Células HeLa , Humanos , ARN Mensajero/genética
13.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916766

RESUMEN

R-loops are three-stranded structures generated by annealing of nascent transcripts to the template DNA strand, leaving the non-template DNA strand exposed as a single-stranded loop. Although R-loops play important roles in physiological processes such as regulation of gene expression, mitochondrial DNA replication, or immunoglobulin class switch recombination, dysregulation of the R-loop metabolism poses a threat to the stability of the genome. A previous study in yeast has shown that the homologous recombination machinery contributes to the formation of R-loops and associated chromosome instability. On the contrary, here, we demonstrate that depletion of the key homologous recombination factor, RAD51, as well as RAD51 inhibition by the B02 inhibitor did not prevent R-loop formation induced by the inhibition of spliceosome assembly in human cells. However, we noticed that treatment of cells with B02 resulted in RAD51-dependent accumulation of R-loops in an early G1 phase of the cell cycle accompanied by a decrease in the levels of chromatin-bound ORC2 protein, a component of the pre-replication complex, and an increase in DNA synthesis. Our results suggest that B02-induced R-loops might cause a premature origin firing.


Asunto(s)
Inestabilidad Cromosómica/efectos de los fármacos , ADN/biosíntesis , Inhibidores Enzimáticos/farmacología , Fase G1/efectos de los fármacos , Estructuras R-Loop , Recombinasa Rad51 , Línea Celular Tumoral , Humanos , Complejo de Reconocimiento del Origen/metabolismo , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/metabolismo
14.
Mar Drugs ; 18(3)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210159

RESUMEN

Jahanyne, a lipopeptide with a unique terminal alkynyl and OEP (2-(1-oxo-ethyl)-pyrrolidine) moiety, exhibits anticancer activity. We synthesized jahanyne and analogs modified at the OEP moiety, employing an α-fluoromethyl ketone (FMK) strategy. Preliminary bioassays indicated that compound 1b (FMK-jahanyne) exhibited decreased activities to varying degrees against most of the cancer cells tested, whereas the introduction of a fluorine atom to the α-position of a hydroxyl group (2b) enhanced activities against all lung cancer cells. Moreover, jahanyne and 2b could induce G0/G1 cell cycle arrest in a concentration-dependent manner.


Asunto(s)
Diseño de Fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Lipopéptidos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Organismos Acuáticos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cianobacterias/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lipopéptidos/síntesis química , Lipopéptidos/uso terapéutico , Neoplasias Pulmonares/patología , Estructura Molecular , Relación Estructura-Actividad
15.
BMC Bioinformatics ; 20(Suppl 12): 322, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31216979

RESUMEN

BACKGROUND: Cell size is a key characteristic that significantly affects many aspects of cellular physiology. There are specific control mechanisms during cell cycle that maintain the cell size within a range from generation to generation. Such control mechanisms introduce substantial variabilities to important properties of the cell cycle such as growth and division. To quantitatively study the effect of such variability in progression through cell cycle, detailed stochastic models are required. RESULTS: In this paper, a new hybrid stochastic model is proposed to study the effect of molecular noise and size control mechanism on the variabilities in cell cycle of the budding yeast Saccharomyces cerevisiae. The proposed model provides an accurate, yet computationally efficient approach for simulation of an intricate system by integrating the deterministic and stochastic simulation schemes. The developed hybrid stochastic model can successfully capture several key features of the cell cycle observed in experimental data. In particular, the proposed model: 1) confirms that the majority of noise in size control stems from low copy numbers of transcripts in the G1 phase, 2) identifies the size and time regulation modules in the size control mechanism, and 3) conforms with phenotypes of early G1 mutants in exquisite detail. CONCLUSIONS: Hybrid stochastic modeling approach can be used to provide quantitative descriptions for stochastic properties of the cell cycle within a computationally efficient framework.


Asunto(s)
Ciclo Celular , Modelos Biológicos , Saccharomyces cerevisiae/citología , Fase G1 , Regulación Fúngica de la Expresión Génica , Mutación/genética , Fenotipo , Ploidias , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Procesos Estocásticos
16.
J Cell Physiol ; 234(4): 3613-3620, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30565675

RESUMEN

Leukemia inhibitory factor (LIF), a member of the interleukin-6 cytokine family, plays a complex role in cancer. LIF inhibits the proliferation and survival of several myeloid leukemia cells but promotes tumor progression and metastasis in many solid tumors. However, the relationship between LIF and gastric cancer has not been well understood. LIF was downregulated in gastric cancer as detected by western blot analysis and immunohistochemistry (IHC). Notably, LIF was downregulated in approximately 70% (56/80) of primary gastric cancers, in which it was significantly associated with advanced clinical stage, lymph node metastasis, and poor overall survival (median 5-year survival = 26 vs. 43 months for patients with high LIF expression and low LIF expression gastric cancer, respectively). To study the potential function of LIF in the downregulation of gastric cancer, we monitored the behavior using proliferation, cell cycle, and flow cytometry analysis. Overexpression of LIF inhibited the gastric cancer cell cycle in the G1 phase. In our experiment, overexpression of LIF by lentivirus upregulated P21 and downregulated cyclin D1. Recombinant human LIF also downregulated P21 and cyclin D1 at various times. A further in vivo tumor formation study in nude mice indicated that overexpression of LIF in gastric cancer significantly delayed the progress of tumor formation. These findings indicate that LIF may serve as a negative regulator of gastric cancer.


Asunto(s)
Proliferación Celular , Puntos de Control de la Fase G1 del Ciclo Celular , Factor Inhibidor de Leucemia/metabolismo , Neoplasias Gástricas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Factor Inhibidor de Leucemia/genética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Metástasis de la Neoplasia , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Carga Tumoral
17.
J Cell Biochem ; 120(12): 19784-19795, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31347720

RESUMEN

Long noncoding RNAs (lncRNAs) are vital mediators involved in cancer progression. Previous studies confirmed that FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is upregulated in tumor diseases. The potential influence of FOXD2-AS1 in glioma progression, however, remains unknown. In this paper, FOXD2-AS1 was found to be upregulated in glioma tissues. Its level was linked with glioma stage. Moreover, glioma patients expressing high level of FOXD2-AS1 suffered worse prognosis. Biological functions of FOXD2-AS1 in glioma cells were analyzed through integrative bioinformatics and TCGA RNA sequencing data analysis. Pathway enrichment analysis uncovered that FOXD2-AS1 was mainly linked with cell cycle regulation in both low-grade glioma and glioblastoma. Further experiments demonstrated that silence of FOXD2-AS1 inhibited proliferation, arrested cell cycle and downregulated cyclin-dependent kinase 1 (CDK1) in human glioma cells. Dual-luciferase reporter assay confirmed that FOXD2-AS1 upregulated CDK1 by sponging miR-31. Rescue assays were performed and confirmed the regulatory loop FOXD2-AS1/miR-31/CDK1 in glioma. Collectively, our results indicated that the FOXD2-AS1/miR-31/CDK1 axis influenced glioma progression, providing a potential new target for glioma patients.


Asunto(s)
Neoplasias Encefálicas/patología , Proteína Quinasa CDC2/genética , Glioma/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Proteína Quinasa CDC2/metabolismo , Estudios de Casos y Controles , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/patología , Glioma/genética , Glioma/mortalidad , Humanos , Análisis de Supervivencia
18.
Biochem Biophys Res Commun ; 513(1): 81-87, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30935694

RESUMEN

Unc-93 homolog B1 (UNC93B1), a transmembrane protein, is correlated with immune diseases, such as influenza, herpes simplex encephalitis, and the pathogenesis of systemic lupus erythematosus; however, the role of UNC93B1 in cancers including human oral squamous cell carcinomas (OSCCs) remains unknown. In the current study, we investigated the UNC93B1expression level in OSCCs using quantitative reverse transcription-polymerase chain reaction, immunoblot analysis, and immunohistochemistry. Our data showed that UNC93B1 mRNA and protein expressions increased markedly (p < 0.05) in OSCCs compared with normal cells and tissues and that high expression of UNC93B1 in OSCCs was related closely to tumoral size. UNC93B1 knockdown (shUNC93B1) OSCC cells showed decreased cellular proliferation by cell-cycle arrest in the G1 phase with up-regulation of p21Cip1 and down-regulation of CDK4, CDK6, cyclin D1, and cyclin E. We also found that granulocyte macrophage colony-stimulating factor (GM-CSF) was down-regulated significantly (p < 0.05) in shUNC93B1 OSCC cells. Moreover, inactivation of GM-CSF using neutralization antibody led to cell-cycle arrest at the G1 phase similar to the phenotype of the shUNC93B1 cells. The current findings indicated that UNC93B1 might play a crucial role in OSCC by controlling the secretion level of GM-CSF involved in tumoral growth and could be a potential therapeutic target for OSCCs.


Asunto(s)
Carcinoma de Células Escamosas/patología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Humanos , Proteínas de Transporte de Membrana/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo
19.
Biochem Biophys Res Commun ; 508(4): 1133-1138, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30554657

RESUMEN

Tripartite motif family-like 2 (TRIML2), a member of the TRIM proteins family, is closely related to Alzheimer's disease, however, no studies of TRIML2 have been published in the cancer research literature. In the current study, we investigated the expression level of TRIML2 and its molecular mechanisms in human oral squamous cell carcinoma (OSCC); reverse transcriptase-quantitative polymerase chain reaction, immunoblot analysis, and immunohistochemistry showed that TRIML2 is up-regulated significantly in OSCCs in vitro and in vivo. TRIML2 knockdown OSCC cells showed decreased cellular proliferation by cell-cycle arrest at G1 phase that resulted from down-regulation of CDK4, CDK6, and cyclin D1 and up-regulation of p21Cip1 and p27Kip1. Surprisingly, resveratrol, a polyphenol, led to not only down-regulation of TRIML2 but also cell-cycle arrest at G1 phase similar to TRIML2 knockdown experiments. Taken together, we concluded that TRIML2 might play a significant role in tumoral growth and that resveratrol may be a new drug for treating OSCC by interfering with TRIML2 function.


Asunto(s)
Proteínas Portadoras/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Proteínas Portadoras/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Resveratrol/farmacología
20.
Biochem Biophys Res Commun ; 509(1): 8-15, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30581004

RESUMEN

NHERF1/EBP50 is a PDZ-scaffold protein initially identified as an organizer and modulator of transporters and channels at the apical side of epithelia via actin-binding ezrin-moesin-radixin proteins. Presently, hepatocellular carcinoma (HCC) is one of the most deadly cancers in the world and has no effective therapeutic strategies. In the present study, we attempted to explore the role of NHERF1 in regulating liver cancer progression. The results indicated that NHERF1 was significantly expressed in liver tumor samples compared to the corresponding adjacent normal tissues. HCC patients with low NHERF1 exhibited better survival rate. Additionally, repressing NHERF1 expression markedly down-regulated the cell proliferation. G0/G1 transition was highly induced by NHERF1 knockdown, accompanied with reduced expressions of Cyclin D1 and cyclin-dependent kinase 4 (CDK4), as well as the enhanced expression of p27, phosphatase and tensin homolog (PTEN) and p53. Moreover, NHERF1 suppression significantly induced apoptosis in liver cancer cells by promoting the activation of Caspase-3 and poly (ADP-ribose) polymerase (PARP). We also observed a remarkable increase of reactive oxygen species (ROS) production in NHERF1-knockdown cells, along with c-Jun-N-terminal kinase (JNK) phosphorylation. Importantly, suppressing ROS production abolished NHERF1 knockdown-induced JNK activation. Moreover, cell cycle-regulatory proteins meditated by NHERF1 knockdown in liver cancer cells were abrogated by the pre-treatment of ROS scavenger. Further, restraining ROS generation also diminished NHERF1 knockdown-induced apoptosis. In vivo, we also found that NHERF1 knockdown markedly reduced the tumor growth. In conclusion, the results suggested that NHERF1 played an essential role in regulating liver cancer progression, and repressing NHERF1 expression exhibited significant anticancer effects via the induction of G0/G1 phase arrest, apoptosis and ROS generation.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Fosfoproteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Apoptosis , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfoproteínas/análisis , Fosfoproteínas/genética , Intercambiadores de Sodio-Hidrógeno/análisis , Intercambiadores de Sodio-Hidrógeno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA