Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 168(1-2): 86-100.e15, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27916275

RESUMEN

Type 1 diabetes is characterized by the destruction of pancreatic ß cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional ß-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic ß cell mass from α cells.


Asunto(s)
Artemisininas/farmacología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Modelos Animales de Enfermedad , Receptores de GABA-A/metabolismo , Transducción de Señal , Animales , Arteméter , Artemisininas/administración & dosificación , Proteínas Portadoras/metabolismo , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus Tipo 1/patología , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Estabilidad Proteica/efectos de los fármacos , Ratas , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Pez Cebra , Ácido gamma-Aminobutírico/metabolismo
2.
J Neurosci ; 44(32)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38942471

RESUMEN

The mechanisms utilized by neurons to regulate the efficacy of phasic and tonic inhibition and their impacts on synaptic plasticity and behavior are incompletely understood. Cleft lip and palate transmembrane protein 1 (Clptm1) is a membrane-spanning protein that interacts with multiple γ-aminobutyric acid type A receptor (GABAAR) subunits, trapping them in the endoplasmic reticulum and Golgi network. Overexpression and knock-down studies suggest that Clptm1 modulates GABAAR-mediated phasic inhibition and tonic inhibition as well as activity-induced inhibitory synaptic homeostasis in cultured hippocampal neurons. To investigate the role of Clptm1 in the modulation of GABAARs in vivo, we generated Clptm1 knock-out (KO) mice. Here, we show that genetic KO of Clptm1 elevated phasic and tonic inhibitory transmission in both male and female heterozygous mice. Although basal excitatory synaptic transmission was not affected, Clptm1 haploinsufficiency significantly blocked high-frequency stimulation-induced long-term potentiation (LTP) in hippocampal CA3→CA1 synapses. In the hippocampus-dependent contextual fear-conditioning behavior task, both male and female Clptm1 heterozygous KO mice exhibited impairment in contextual fear memory. In addition, LTP and contextual fear memory were rescued by application of L-655,708, a negative allosteric modulator of the extrasynaptic GABAAR α5 subunit. These results suggest that haploinsufficiency of Clptm1 contributes to cognitive deficits through altered synaptic transmission and plasticity by elevation of inhibitory neurotransmission, with tonic inhibition playing a major role.


Asunto(s)
Haploinsuficiencia , Proteínas de la Membrana , Ratones Noqueados , Plasticidad Neuronal , Receptores de GABA-A , Transmisión Sináptica , Animales , Ratones , Masculino , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Femenino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transmisión Sináptica/fisiología , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/genética , Ratones Endogámicos C57BL , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Potenciación a Largo Plazo/genética , Hipocampo/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Miedo/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Memoria/fisiología , Inhibición Neural/fisiología
3.
Eur J Neurosci ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39275952

RESUMEN

In this work, we cloned and functionally expressed two novel GABAA receptor subunits from Procambarus clarkii crayfish. These two new subunits, PcGABAA-α and PcGABAA-ß2, revealed significant sequence homology with the PcGABAA-ß subunit, previously identified in our laboratory. In addition, PcGABAA-α subunit also shared a significant degree of identity with the Drosophila melanogaster genes DmGRD (GABA and glycine-like receptor subunits of Drosophila) as well as PcGABAA-ß2 subunit with DmLCCH3 (ligand-gated chloride channel homolog 3). Electrophysiological recordings showed that the expression in HEK cells of the novel subunits, either alone or in combination, failed to form functional homo- or heteromeric receptors. However, the co-expression of PcGABAA-α with PcGABAA-ß evoked sodium- or chloride-dependent currents that accurately reproduced the time course of the GABA-evoked currents in the X-organ neurons from crayfish, suggesting that these GABA subunits combine to form two types of GABA receptors, one with cationic selectivity filter and the other preferentially permeates anions. On the other hand, PcGABAA-ß2 and PcGABAA-ß co-expression generated a chloride current that does not show desensitization. Muscimol reproduced the time course of GABA-evoked currents in all functional receptors, and picrotoxin blocked these currents; bicuculline did not block any of the recorded currents. Reverse transcription polymerae chain reaction (RT-PCR) amplifications and FISH revealed that PcGABAA-α and PcGABAA-ß2 are predominantly expressed in the crayfish nervous system. Altogether, these findings provide the first evidence of a neural GABA-gated cationic channel in the crayfish, increasing our understanding of the role of these new GABAA receptor subunits in native heteromeric receptors.

4.
Dig Dis Sci ; 69(4): 1214-1227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38376789

RESUMEN

BACKGROUND: HSK3486 (ciprofol), a new candidate drug similar to propofol, exerts sedative and hypnotic effects through gamma-aminobutyric acid type A receptors; however, its potential role in colorectal cancer is currently unknown. AIMS: This study aimed to evaluate the effects of HSK3486 on colorectal cancer cell proliferation. METHODS: Imaging was performed to detect reactive oxygen species and mitochondrial membrane potential. Western blotting was used to determine the expression of target signals. The HSK3486 molecular mechanism was investigated through ATPase inhibitory factor 1 knockdown and xenograft model experiments to assess mitochondrial function in colorectal cancer cells. RESULTS: Cell Counting Kit-8 and Annexin V/propidium iodide double staining assays showed that HSK3486 inhibited colorectal cancer cell proliferation in a concentration-dependent manner. In addition, HSK3486 treatment increased the expression of B-cell lymphoma-2-associated X, cleaved caspase 3, and cleaved poly (ADP-ribose) polymerase, whereas myeloid cell leukemia-1 and B-cell lymphoma 2 expression decreased. HSK3486 promoted mitochondrial dysfunction by inducing ATPase inhibitor factor 1 expression. Furthermore, HSK3486 promoted oxidative stress, as shown by the increase in reactive oxygen species and lactate dehydrogenase levels, along with a decrease in mitochondrial membrane potential and ATP levels. ATPase inhibitor factor 1 small interfering RNA pretreatment dramatically increased the mitochondrial membrane potential and tumor size in a xenograft model following exposure to HSK3486. CONCLUSION: Collectively, our findings revealed that HSK3486 induces oxidative stress, resulting in colorectal cancer cell apoptosis, making it a potential candidate therapeutic strategy for colorectal cancer.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Humanos , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Adenosina Trifosfatasas/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Potencial de la Membrana Mitocondrial , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteína Inhibidora ATPasa/efectos de los fármacos
5.
Korean J Physiol Pharmacol ; 28(1): 73-81, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154966

RESUMEN

The substantia gelatinosa (SG) within the trigeminal subnucleus caudalis (Vc) is recognized as a pivotal site of integrating and modulating afferent fibers carrying orofacial nociceptive information. Although naringenin (4',5,7-thrihydroxyflavanone), a natural bioflavonoid, has been proven to possess various biological effects in the central nervous system (CNS), the activity of naringenin at the orofacial nociceptive site has not been reported yet. In this study, we explored the influence of naringenin on GABA response in SG neurons of Vc using whole-cell patch-clamp technique. The application of GABA in a bath induced two forms of GABA responses: slow and fast. Naringenin enhanced both amplitude and area under curve (AUC) of GABA-mediated responses in 57% (12/21) of tested neurons while decreasing both parameters in 33% (7/21) of neurons. The enhancing or suppressing effect of naringenin on GABA response have been observed, with enhancement occurring when the GABA response was slow, and suppression when it was fast. Furthermore, both the enhancement of slower GABA responses and the suppression of faster GABA responses by naringenin were concentration dependent. Interestingly, the nature of GABA response was also found to be sex-dependent. A majority of SG neurons from juvenile female mice exhibited slower GABA responses, whereas those from juvenile males predominantly displayed faster GABA responses. Taken together, this study indicates that naringenin plays a partial role in modulating orofacial nociception and may hold promise as a therapeutic target for treating orofacial pain, with effects that vary according to sex.

6.
J Biol Chem ; 298(12): 102590, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36244453

RESUMEN

Type A γ-aminobutyric acid receptors (GABAARs) represent a family of pentameric GABA-gated Cl-/HCO3- ion channels which mediate inhibitory transmission in the central nervous system. Cell surface expression of GABAARs, a prerequisite for their function, is dependent on the appropriate assembly of the receptor subunits and their transient interactions with molecular chaperones within the endoplasmic reticulum (ER) and Golgi apparatus. Here, we describe a highly conserved amino acid sequence within the extracellular N-terminal domain of the receptor subunits adjoining the first transmembrane domain as a region important for GABAAR processing within the ER. Modifications of this region in the α1, ß3, and γ2 subunits using insertion or site-directed mutagenesis impaired GABAAR trafficking to the cell surface in heterologous cell systems although they had no effect on the subunit assembly. We found that mutated receptors accumulated in the ER where they were shown to associate with chaperones calnexin, BiP, and Grp94. However, their surface expression was increased when ER-associated degradation or proteosome function was inhibited, while modulation of ER calcium stores had little effect. When compared to the wt, mutated receptors showed decreased interaction with calnexin, similar binding to BiP, and increased association with Grp94. Structural modeling of calnexin interaction with the wt or mutated GABAAR revealed that disruption in structure caused by mutations in the conserved region adjoining the first transmembrane domain may impair calnexin binding. Thus, this previously uncharacterized region plays an important role in intracellular processing of GABAARs at least in part by stabilizing their interaction with calnexin.


Asunto(s)
Proteínas Portadoras , Receptores de GABA-A , Animales , Ratones , Calnexina/genética , Calnexina/metabolismo , Espacio Extracelular/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Chaperonas Moleculares/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Subunidades de Proteína/metabolismo
7.
Cell Mol Neurobiol ; 43(2): 605-619, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35460435

RESUMEN

Diabetes is a common metabolic disease characterized by loss of blood sugar control and a high rate of complications. γ-Aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter in the adult mammalian brain. The normal function of the GABAergic system is affected in diabetes. Herein, we summarize the role of the GABAergic system in diabetic cognitive dysfunction, diabetic blood sugar control disorders, diabetes-induced peripheral neuropathy, diabetic central nervous system damage, maintaining diabetic brain energy homeostasis, helping central control of blood sugar and attenuating neuronal oxidative stress damage. We show the key regulatory role of the GABAergic system in multiple comorbidities in patients with diabetes and hope that further studies elucidating the role of the GABAergic system will yield benefits for the treatment and prevention of comorbidities in patients with diabetes.


Asunto(s)
Encefalopatías , Diabetes Mellitus , Hipoglucemia , Animales , Adulto , Humanos , Ácido gamma-Aminobutírico/metabolismo , Glucemia , Mamíferos/metabolismo
8.
Fish Shellfish Immunol ; 134: 108608, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36764632

RESUMEN

Although accumulating data demonstrated that gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, plays an important regulatory role in immunity of vertebrates, its immunomodulatory function and mechanisms of action remain poorly understood in invertebrates such as bivalve mollusks. In this study, the effect of GABA on phagocytic activity of hemocytes was evaluated in a commercial bivalve species, Tegillarca granosa. Furthermore, the potential regulatory mechanism underpinning was investigated by assessing potential downstream targets. Data obtained demonstrated that in vitro GABA incubation significantly constrained the phagocytic activity of hemocytes. In addition, the GABA-induced suppression of phagocytosis was markedly relieved by blocking of GABAA and GABAB receptors using corresponding antagonists. Hemocytes incubated with lipopolysaccharides (LPS) and GABA had significant higher K+-Cl- cotransporter 2 (KCC2) content compared to the control. In addition, GABA treatment led to an elevation in intracellular Cl-, which was shown to be leveled down to normal by blocking the ionotropic GABAA receptor. Treatment with GABAA receptor antagonist also rescued the suppression of GABAA receptor-associated protein (GABARAP), KCC, TNF receptor associated factor 6 (TRAF6), inhibitor of nuclear factor kappa-B kinase subunit alpha (IKKα), and nuclear factor kappa B subunit 1 (NFκB) caused by GABA incubation. Furthermore, incubation of hemocytes with GABA resulted in a decrease in cAMP content, an increase in intracellular Ca2+, and downregulation of cAMP-dependent protein kinase (PKA), calmodulin kinase II (CAMK2), calmodulin (CaM), calcineurin (CaN), TRAF6, IKKα, and NFκB. All these above-mentioned changes were found to be evidently relieved by blocking the metabotropic G-protein-coupled GABAB receptor. Our results suggest GABA may play an inhibitory role on phagocytosis through binding to both GABAA and GABAB receptors, and subsequently regulating corresponding downstream pathways in bivalve invertebrates.


Asunto(s)
Receptores de GABA-A , Receptores de GABA , Animales , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Quinasa I-kappa B/metabolismo , Hemocitos/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Ácido gamma-Aminobutírico/farmacología , Fagocitosis
9.
Alcohol Alcohol ; 58(3): 308-314, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37041103

RESUMEN

AIMS: Alcohol use alters the reward signaling processes contributing to the development of addiction. We studied the effects of alcohol use disorder (AUD) on brain regions and blood of deceased women and men to examine sex-dependent differences in epigenetic changes associated with AUD. We investigated the effects of alcohol use on the gene promoter methylation of GABBR1 coding for GABAB receptor subunit 1 in blood and brain. METHODS: We chose six brain regions associated with addiction and the reward pathway (nucleus arcuatus, nucleus accumbens, the mamillary bodies, amygdala, hippocampus and anterior temporal cortex) and performed epigenetic profiling of the proximal promoter of the GABBR1 gene of post-mortem brain and blood samples of 17 individuals with AUD pathology (4 female, 13 male) and 31 healthy controls (10 female, 21 male). RESULTS: Our results show sex-specific effects of AUD on GABBR1 promoter methylation. Especially, CpG -4 showed significant tissue-independent changes and significantly decreased methylation levels for the AUD group in the amygdala and the mammillary bodies of men. We saw prominent and consistent change in CpG-4 across all investigated tissues. For women, no significant loci were observed. CONCLUSION: We found sex-dependent differences in GABBR1 promoter methylation in relation to AUD. CpG-4 hypomethylation in male individuals with AUD is consistent for most brain regions. Blood shows similar results without reaching significance, potentially serving as a peripheral marker for addiction-associated neuronal adaptations. Further research is needed to discover more contributing factors in the pathological alterations of alcohol addiction to offer sex-specific biomarkers and treatment.


Asunto(s)
Alcoholismo , Receptores de GABA , Humanos , Masculino , Femenino , Receptores de GABA/genética , Receptores de GABA/metabolismo , Alcoholismo/genética , Alcoholismo/metabolismo , Metilación de ADN/genética , Etanol , Encéfalo/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Citosina
10.
Pestic Biochem Physiol ; 195: 105533, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666607

RESUMEN

The long-term and irrational application of insecticides has increased the rate of development of pest resistance and caused numerous environmental issues. To address these problems, our previous work reported that 4,5-dihydropyrazolo[1,5-a]quinazoline (DPQ) is a class of gelled heterocyclic compounds that act on insect γ-aminobutyric acid receptors (GABAR). DPQ scaffold has no cross-resistance to existing insecticides, so the development of this scaffold is an interesting task for integrated pest management. In the present study, a novel series of 4,5-dihydropyrazolo[1,5-a]quinazolines (DPQs) were designed and synthesized based on pyraquinil, a highly insecticidal compound discovered in our previous work. Insecticidal activities of the target compounds against diamondback moth (Plutella xylostella), beet armyworm (Spodoptera exigua), fall armyworm (Spodoptera frugiperda), and red imported fire ant (Solenopsis invicta Buren) were evaluated. Compounds 6 and 12 showed the best insecticidal activity against Plutella xylostella (P. xylostella) (LC50 = 1.49 and 0.97 mg/L), better than pyraquinil (LC50 = 1.76 mg/L), indoxacarb and fipronil (LC50 = 1.80 mg/L). Meanwhile, compound 12 showed slow toxicity to Solenopsis invicta Buren (S. invicta), with a 5 d mortality rate of 98.89% at 0.5 mg/L that is similar to fipronil. Moreover, Electrophysiological studies against the PxRDL1 GABAR heterologously expressed in Xenopus oocytes indicated that compound 12 could act as a potent GABA receptor antagonist (2 µΜ, inhibition rate, 68.25%). Molecular docking results showed that Ser285 (chain A) and Thr289 (chain D) of P. xylostella GABAR participated in hydrogen bonding interactions with compound 12, and density functional theory (DFT) calculations suggested the importance of pyrazolo[1,5-a]quinazoline core in potency. This systematic study provides valuable clues for the development of DPQ scaffold in the field of agrochemicals, and compound 12 can be further developed as an insecticide and bait candidate.


Asunto(s)
Insecticidas , Lepidópteros , Animales , Quinazolinas/farmacología , Insecticidas/farmacología , Simulación del Acoplamiento Molecular , Antioxidantes
11.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108794

RESUMEN

The pentameric γ-Aminobutyric acid type A receptors (GABAARs) are ligand-gated ion channels that mediate the majority of inhibitory neurotransmission in the brain. In the cerebellum, the two main receptor subtypes are the 2α1/2ß/γ and 2α6/2ß/δ subunits. In the present study, an interaction proteomics workflow was used to reveal additional subtypes that contain both α1 and α6 subunits. Immunoprecipitation of the α6 subunit from mouse brain cerebellar extract co-purified the α1 subunit. In line with this, pre-incubation of the cerebellar extract with anti-α6 antibodies and analysis by blue native gel electrophoresis mass-shifted part of the α1 complexes, indicative of the existence of an α1α6-containing receptor. Subsequent mass spectrometry of the blue native gel showed the α1α6-containing receptor subtype to exist in two main forms, i.e., with or without Neuroligin-2. Immunocytochemistry on a cerebellar granule cell culture revealed co-localization of α6 and α1 in post-synaptic puncta that apposed the presynaptic marker protein Vesicular GABA transporter, indicative of the presence of this synaptic GABAAR subtype.


Asunto(s)
Receptores de GABA-A , Receptores de GABA , Ratones , Animales , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Electroforesis en Gel de Poliacrilamida Nativa , Cerebelo/metabolismo , Anticuerpos/metabolismo , Ácido gamma-Aminobutírico/metabolismo
12.
J Exp Biol ; 225(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35224637

RESUMEN

Echinoderms, such as sea urchins, occupy an interesting position in animal phylogeny in that they are genetically closer to vertebrates than the vast majority of all other invertebrates but have a nervous system that lacks a brain or brain-like structure. Despite this, very little is known about the neurobiology of the adult sea urchin, and how the nervous system is utilized to produce behavior. Here, we investigated effects on the righting response of antagonists of ionotropic receptors for the neurotransmitters acetylcholine, GABA and glycine, and antagonists of metabotropic receptors for the amines dopamine and noradrenaline (norepinephrine). Antagonists slowed the righting response in a dose-dependent manner, with a rank order of potency of strychnine>haloperidol>propranolol>bicuculline>hexamethonium, with RT50 values (concentrations that slowed righting time by 50%) ranging from 4.3 µmol l-1 for strychnine to 7.8 mmol l-1 for hexamethonium. The results also showed that both glycine and adrenergic receptors are needed for actual tube foot movement, and this may explain the slowed righting seen when these receptors were inhibited. Conversely, inhibition of dopamine receptors slowed the righting response but had no effect on tube foot motility, indicating that these receptors play roles in the neural processing involved in the righting behavior, rather than the actual physical righting. Our results identify the first effects of inhibiting the glycinergic, dopaminergic and adrenergic neurotransmitter systems in adult sea urchins and distinguish between the ability of sea urchins to right themselves and their ability to move their tube feet.


Asunto(s)
Erizos de Mar , Estricnina , Animales , Dopamina , Equinodermos , Hexametonio , Norepinefrina , Receptores Dopaminérgicos
13.
Can J Physiol Pharmacol ; 100(7): 665-678, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35856422

RESUMEN

Systemic inflammatory response syndrome plays an important role in the development of sepsis. GABAergic and cholinergic pathways activation are considered important for inflammatory response regulation. Tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-12, IL-10, as well as inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) are important inflammatory mediators involved in the pathogenesis of sepsis. Muscimol, an active compound from the mushroom Amanita muscaria (L.) Lam., is a potent GABAA agonist, inhibits inflammatory response via activating GABAA receptor and vagus nerve. However, the effect of muscimol on lipopolysaccharide (LPS)-induced systemic inflammatory response is still unclear. Therefore, we studied the effects of muscimol on systemic inflammatory response and survival rate in endotoxemic mice. Mice endotoxemia was induced by LPS. Muscimol was given to mice or RAW264.7 cells 30 min before LPS (10 mg/kg, i.p., or 10 ng/mL, respectively). Mice received GABAergic and cholinergic receptor antagonists 30 min before muscimol and LPS. Muscimol decreased TNF-α, IL-1ß, IL-12, iNOS-derived NO, and increased IL-10 levels and survival rate after LPS treatment. Muscimol significantly decreased nuclear factor kappa B (NF-κB) activity, increased IκB expression, and decreased pIKK expression in LPS-treated RAW264.7 cells. GABAergic and cholinergic antagonists failed to reverse muscimol's protection in LPS-treated mice. In conclusion, muscimol protected against systemic inflammatory response in endotoxemic mice may be partially independent of GABAergic and cholinergic receptors.


Asunto(s)
Endotoxemia , Sepsis , Animales , Endotoxemia/inducido químicamente , Endotoxemia/tratamiento farmacológico , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Lipopolisacáridos/farmacología , Ratones , Muscimol/farmacología , Muscimol/uso terapéutico , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptores Colinérgicos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
14.
Pestic Biochem Physiol ; 181: 105008, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35082031

RESUMEN

γ-Aminobutyric acid (GABA) receptors (GABARs) are ligand-gated Cl- channels, which cause an influx of Cl- that inhibits excitation in postsynaptic cells upon activation. GABARs are important targets for drugs and pest control chemicals. We previously reported that the isoxazoline ectoparasiticide fluralaner inhibits GABA-induced currents in housefly (Musca domestica) GABARs by binding to the putative binding site in the transmembrane subunit interface. In the present study, we investigated whether fluralaner inhibits the GABA response in the GABAR activated state, the resting state, or both, using two-electrode voltage clamp electrophysiology protocols. We found that inhibition progresses over time to steady-state levels by repeated short applications of GABA during fluralaner perfusion. The GABA response was not impaired by fluralaner treatment in the GABAR resting state. However, once inhibited, the GABA response was not restored by repeated applications of GABA. These findings suggest that fluralaner might reach the binding site of the activated conformation of GABARs in a stepwise fashion and tightly bind to it.


Asunto(s)
Moscas Domésticas , Insecticidas , Animales , Isoxazoles/farmacología , Receptores de GABA/metabolismo , Receptores de GABA-A
15.
Pestic Biochem Physiol ; 183: 105064, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35430066

RESUMEN

A major contributor to bee colony decline is infestation with its most devastating pest, the mite Varroa destructor. To control these mites, thymol is often used, although how it achieves this is not understood. One well-documented action of thymol is to modulate GABA-activated ion channels, which includes insect RDL receptors, a known insecticidal target. Here we have cloned two Varroa RDL subunits, one of which is similar to the canonical RDL subunit, while the other has some differences in M4, and, to a lesser extent, M2 and its binding site loops. Expression of this unusual RDL receptor in Xenopus oocytes reveals GABA-activated receptors, with an EC50 of 56 µM. In contrast to canonical RDL receptors, thymol does not enhance GABA-elicited responses in this receptor, and concentration response curves reveal a decrease in GABA Imax in its presence; this decrease is not seen when similar data are obtained from Apis RDL receptors. We conclude that an M2 T6'M substitution is primarily responsible for the different thymol effects, and suggest that understanding how and where thymol acts could assist in the design of novel bee-friendly miticides.


Asunto(s)
Parásitos , Varroidae , Animales , Abejas , Parásitos/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Timol/farmacología , Ácido gamma-Aminobutírico/metabolismo
16.
Pestic Biochem Physiol ; 183: 105085, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35430075

RESUMEN

Nootkatone, a sesquiterpenoid isolated from Alaskan yellow cedar (Cupressus nootkatensis), is known to possess insect repellent and acaricidal properties and has recently been registered for commercial use by the Environmental Protection Agency. Previous studies failed to elucidate the mechanism of action of nootkatone, but we found a molecular overlay of picrotoxinin and nootkatone indicated a high degree of structural and electrostatic similarity. We therefore tested the hypothesis that nootkatone was a GABA-gated chloride channel antagonist, similar to picrotoxinin. The KD50 and LD50 of nootkatone on the insecticide-susceptible strain of Drosophila melanogaster (CSOR) showed resistance ratios of 8 and 11, respectively, compared to the cyclodiene-resistant strain of RDL1675, indicating significant cross-resistance. Nootkatone reversed GABA-mediated block of the larval CSOR central nervous system; nerve firing of 78 ± 17% of baseline in the CSOR strain was significantly different from 24 ± 11% of baseline firing in the RDL1675 strain (p = 0.035). This finding indicated that the resistance was expressed within the nervous system. Patch clamp recordings on D. melanogaster central neurons mirrored extracellular recordings where nootkatone inhibited GABA-stimulated currents by 44 ± 9% at 100 µM, whereas chloride current was inhibited 4.5-fold less at 100 µM in RDL1675. Taken together, these data suggest nootkatone toxicity in D. melanogaster is mediated through GABA receptor antagonism.


Asunto(s)
Drosophila melanogaster , Insecticidas , Animales , Resistencia a los Insecticidas , Insecticidas/toxicidad , Sesquiterpenos Policíclicos , Receptores de GABA , Ácido gamma-Aminobutírico/farmacología
17.
Chem Biodivers ; 19(8): e202200236, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35781793

RESUMEN

A series of 4-oxo-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-d]pyrimidine derivatives were designed and synthesized based on the fipronil low energy conformation by scaffold hopping strategy. Physicochemical properties calculation, insecticidal assay and binding mode studies were also performed. It was found that the target compounds displayed lower insecticidal activities than fipronil. The differences in binding modes between these compounds and fipronil may be the major reason for reduced insecticidal activities.


Asunto(s)
Insecticidas , Insecticidas/química , Insecticidas/farmacología , Conformación Molecular , Oxotremorina/análogos & derivados , Pirimidinas/química , Pirimidinas/farmacología , Relación Estructura-Actividad
18.
Int J Neurosci ; 132(6): 633-642, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32988247

RESUMEN

PURPOSE: Converging evidence has recently established the significance of γ-aminobutyric acid neurotransmitter (GABA) system in the development of schizophrenia (SCZ). We aimed to determine the association of two markers of the GABAA receptor ß2 subunit gene (GABRB2), rs12187676 G/C and rs1816072 T/C, with the risk of SCZ in Iranian population. MATERIALS AND METHODS: In this case-control study, 190 patients with SCZ and 200 healthy controls were recruited from December 2018 to February 2020. Genotyping was done using the Tetra-ARMS-PCR technique. In silico analyses were performed to determine the potential effects of the variants. RESULTS: The C allele and genotypes of codominant CC vs.TT and CT vs.TT, dominant TT vs. TC + CC, recessive TT + TC vs. CC of rs1816072 polymorphism, as well as codominant CC vs. GG and recessive GG + GC vs. CC genetic models of rs12187676 polymorphism were significantly associated with SCZ susceptibility. Compared to the TC/GC model, we have found that the TC/CC combination significantly increased the risk of SCZ by 4.32 fold while the TT/GG combination conferred a protective role against SCZ. Haplotypes analysis indicated that GABRB2 polymorphisms are in weak linkage disequilibrium with each other (LD = 0.1). However, bioinformatics analyses predicted that these polymorphisms do not have significant effects on the secondary structure and the splicing of GABRB2-mRNA. CONCLUSIONS: We found that intronic GABRB2 polymorphisms were associated with SCZ risk in a sample of the Iranian population. These findings provided proof of concept for the involvement of the GABAergic neurotransmission system in SCZ development. These observations should be validated across other ethnicities and clinical subtypes.


Asunto(s)
Receptores de GABA-A , Esquizofrenia , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Irán , Polimorfismo de Nucleótido Simple , Receptores de GABA-A/genética , Esquizofrenia/genética
19.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35456893

RESUMEN

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by several alterations, including disorganized brain cytoarchitecture and excitatory/inhibitory (E/I) imbalance. We aimed to analyze aspects associated with the inhibitory components in ASD, using bioinformatics to develop notions about embryonic life and tissue analysis for postnatal life. We analyzed microarray and RNAseq datasets of embryos from different ASD models, demonstrating that regions involved in neuronal development are affected. We evaluated the effect of prenatal treatment with resveratrol (RSV) on the neuronal organization and quantity of parvalbumin-positive (PV+), somatostatin-positive (SOM+), and calbindin-positive (CB+) GABAergic interneurons, besides the levels of synaptic proteins and GABA receptors in the medial prefrontal cortex (mPFC) and hippocampus (HC) of the ASD model induced by valproic acid (VPA). VPA increased the total number of neurons in the mPFC, while it reduced the number of SOM+ neurons, as well as the proportion of SOM+, PV+, and CB+ neurons (subregion-specific manner), with preventive effects of RSV. In summary, metabolic alterations or gene expression impairments could be induced by VPA, leading to extensive damage in the late developmental stages. By contrast, due to its antioxidant, neuroprotective, and opposite action on histone properties, RSV may avoid damages induced by VPA.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Efectos Tardíos de la Exposición Prenatal , Resveratrol , Ácido Valproico , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/inducido químicamente , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Modelos Animales de Enfermedad , Femenino , Interneuronas/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Resveratrol/uso terapéutico , Ácido Valproico/efectos adversos
20.
Ceska Slov Farm ; 71(5): 224-233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36443027

RESUMEN

The anticonvulsant spectrum of the original promising anticonvulsant N-[(2,4-dichlorophenyl) methyl]-2-(2,4-dioxo-1H-quinazolin-3-yl) acetamide was studied. The compound had a pronounced anticonvulsant effect, significantly reducing the mortality of mice in models of seizures induced by pentylenetetrazole, picrotoxin, strychnine, and caffeine. In the thiosemicarbazideinduced seizure model, the test compound did not reduce mortality. The obtained results indicated that the mechanism of anticonvulsant action involved GABA-ergic (effective in models of pentylenetetrazole and picrotoxin-induced seizures), glycinergic (efficiency in the strychnine model of paroxysms), and adenosinergic (effectiveness in the model of caffeine induced seizures). Molecular docking of a promising anticonvulsant to anticonvulsant biotargets follow the mechanisms of chemo-induced seizures, namely GABA, glycine, and adenosine receptors type A2A, GABAAT, and BCAT enzymes. The conformity between in vivo and in silico studies results was revealed.


Asunto(s)
Anticonvulsivantes , Pentilenotetrazol , Animales , Ratones , Anticonvulsivantes/farmacología , Picrotoxina , Estricnina , Espectro de Acción , Cafeína , Simulación del Acoplamiento Molecular , Acetamidas/farmacología , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Ácido gamma-Aminobutírico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA