Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 635
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(2): 499-514.e23, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576454

RESUMEN

Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors.


Asunto(s)
Aneuploidia , Neoplasias/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Mapeo Cromosómico , Cromosomas/genética , Factor de Transcripción E2F1/antagonistas & inhibidores , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Femenino , Biblioteca de Genes , Genómica , Humanos , Queratinas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Oncogenes , Sistemas de Lectura Abierta/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
2.
Immunity ; 55(12): 2386-2404.e8, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36446385

RESUMEN

The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes , Leucemia Linfocítica Granular Grande , Animales , Ratones , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Linfocitos T CD8-positivos , Mutación con Ganancia de Función , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/patología , Mutación , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
3.
Cell ; 167(1): 187-202.e17, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662089

RESUMEN

Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Carcinoma/genética , Predisposición Genética a la Enfermedad , Inflamasomas/metabolismo , Queratosis/genética , Neoplasias Cutáneas/genética , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis/química , Carcinoma/patología , Cromosomas Humanos Par 17/genética , Epidermis/patología , Mutación de Línea Germinal , Humanos , Hiperplasia/genética , Hiperplasia/patología , Inflamasomas/genética , Interleucina-1/metabolismo , Queratosis/patología , Proteínas NLR , Comunicación Paracrina , Linaje , Dominios Proteicos , Pirina/química , Transducción de Señal , Neoplasias Cutáneas/patología , Síndrome
4.
Mol Cell ; 83(5): 731-745.e4, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36693379

RESUMEN

The speckle-type POZ protein (SPOP) functions in the Cullin3-RING ubiquitin ligase (CRL3) as a receptor for the recognition of substrates involved in cell growth, survival, and signaling. SPOP mutations have been attributed to the development of many types of cancers, including prostate and endometrial cancers. Prostate cancer mutations localize in the substrate-binding site of the substrate recognition (MATH) domain and reduce or prevent binding. However, most endometrial cancer mutations are dispersed in seemingly inconspicuous solvent-exposed regions of SPOP, offering no clear basis for their cancer-causing and peculiar gain-of-function properties. Herein, we present the first structure of SPOP in its oligomeric form, uncovering several new interfaces important for SPOP self-assembly and normal function. Given that many previously unaccounted-for cancer mutations are localized in these newly identified interfaces, we uncover molecular mechanisms underlying dysregulation of SPOP function, with effects ranging from gross structural changes to enhanced self-association, and heightened stability and activity.


Asunto(s)
Neoplasias de la Próstata , Factores de Transcripción , Masculino , Humanos , Ubiquitinación , Factores de Transcripción/metabolismo , Proteínas Represoras/genética , Neoplasias de la Próstata/genética , Mutación
5.
Immunol Rev ; 322(1): 81-97, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38084635

RESUMEN

Germline human heterozygous STAT1 gain-of-function (GOF) variants were first discovered a common cause of chronic mucocutaneous candidiasis (CMC) in 2011. Since then, numerous STAT1 GOF variants have been identified. A variety of clinical phenotypes, including fungal, viral, and bacterial infections, endocrine disorders, autoimmunity, malignancy, and aneurysms, have recently been revealed for STAT1 GOF variants, which has led to the expansion of the clinical spectrum associated with STAT1 GOF. Among this broad range of complications, it has been determined that invasive infections, aneurysms, and malignancies are poor prognostic factors for STAT1 GOF. The effectiveness of JAK inhibitors as a therapeutic option has been established, although further investigation of their long-term utility and side effects is needed. In contrast to the advancements in treatment options, the precise molecular mechanism underlying STAT1 GOF remains undetermined. Two primary hypotheses for this mechanism involve impaired STAT1 dephosphorylation and increased STAT1 protein levels, both of which are still controversial. A precise understanding of the molecular mechanism is essential for not only advancing diagnostics but also developing therapeutic interventions. Here, we provide a comprehensive review of STAT1 GOF with the aim of establishing a stronger connection between bedside observations and laboratory research.


Asunto(s)
Aneurisma , Candidiasis Mucocutánea Crónica , Humanos , Candidiasis Mucocutánea Crónica/diagnóstico , Candidiasis Mucocutánea Crónica/genética , Candidiasis Mucocutánea Crónica/terapia , Mutación con Ganancia de Función , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Investigación
6.
Trends Immunol ; 45(2): 138-153, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38238227

RESUMEN

Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.


Asunto(s)
Hipersensibilidad , Linfoma , Humanos , Mutación con Ganancia de Función , Hipersensibilidad/genética , Regulación de la Expresión Génica , Células Germinativas , Factor de Transcripción STAT6/genética
7.
Am J Hum Genet ; 110(1): 92-104, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36563679

RESUMEN

Variant interpretation remains a major challenge in medical genetics. We developed Meta-Domain HotSpot (MDHS) to identify mutational hotspots across homologous protein domains. We applied MDHS to a dataset of 45,221 de novo mutations (DNMs) from 31,058 individuals with neurodevelopmental disorders (NDDs) and identified three significantly enriched missense DNM hotspots in the ion transport protein domain family (PF00520). The 37 unique missense DNMs that drive enrichment affect 25 genes, 19 of which were previously associated with NDDs. 3D protein structure modeling supports the hypothesis of function-altering effects of these mutations. Hotspot genes have a unique expression pattern in tissue, and we used this pattern alongside in silico predictors and population constraint information to identify candidate NDD-associated genes. We also propose a lenient version of our method, which identifies 32 hotspot positions across 16 different protein domains. These positions are enriched for likely pathogenic variation in clinical databases and DNMs in other genetic disorders.


Asunto(s)
Trastornos del Neurodesarrollo , Humanos , Dominios Proteicos/genética , Mutación/genética , Trastornos del Neurodesarrollo/genética
8.
Am J Hum Genet ; 110(11): 1919-1937, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37827158

RESUMEN

Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.


Asunto(s)
Anomalías Congénitas , Discapacidades del Desarrollo , N-Metiltransferasa de Histona-Lisina , Humanos , Mutación con Ganancia de Función , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/metabolismo , Lisina , Metilación , Metiltransferasas/genética , Neoplasias/genética , Drosophila/genética , Proteínas de Drosophila/genética , Discapacidades del Desarrollo/genética , Anomalías Congénitas/genética
9.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37451268

RESUMEN

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Asunto(s)
Discapacidad Intelectual , Fosfatidilinositoles , Animales , Síndrome , Actinas , Pez Cebra/genética , Discapacidad Intelectual/genética , Monoéster Fosfórico Hidrolasas/genética , Fosfatos de Fosfatidilinositol
10.
Dev Biol ; 513: 50-62, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38492873

RESUMEN

The voltage gated (Kv) slow-inactivating delayed rectifier channel regulates the development of hollow organs of the zebrafish. The functional channel consists of the tetramer of electrically active Kcnb1 (Kv2.1) subunits and Kcng4b (Kv6.4) modulatory or electrically silent subunits. The two mutations in zebrafish kcng4b gene - kcng4b-C1 and kcng4b-C2 (Gasanov et al., 2021) - have been studied during ear development using electrophysiology, developmental biology and in silico structural modelling. kcng4b-C1 mutation causes a C-terminal truncation characterized by mild Kcng4b loss-of-function (LOF) manifested by failure of kinocilia to extend and formation of ectopic otoliths. In contrast, the kcng4b-C2-/- mutation causes the C-terminal domain to elongate and the ectopic seventh transmembrane (TM) domain to form, converting the intracellular C-terminus to an extracellular one. Kcng4b-C2 acts as a Kcng4b gain-of-function (GOF) allele. Otoliths fail to develop and kinocilia are reduced in kcng4b-C2-/-. These results show that different mutations of the silent subunit Kcng4 can affect the activity of the Kv channel and cause a wide range of developmental defects.


Asunto(s)
Oído , Canales Aniónicos Dependientes del Voltaje , Proteínas de Pez Cebra , Pez Cebra , Animales , Oído/embriología , Mutación/genética , Pez Cebra/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
11.
Annu Rev Genomics Hum Genet ; 23: 475-498, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35395171

RESUMEN

Most known disease-causing mutations occur in protein-coding regions of DNA. While some of these involve a loss of protein function (e.g., through premature stop codons or missense changes that destabilize protein folding), many act via alternative molecular mechanisms and have dominant-negative or gain-of-function effects. In nearly all cases, these non-loss-of-function mutations can be understood by considering interactions of the wild-type and mutant protein with other molecules, such as proteins, nucleic acids, or small ligands and substrates. Here, we review the diverse molecular mechanisms by which pathogenic mutations can have non-loss-of-function effects, including by disrupting interactions, increasing binding affinity, changing binding specificity, causing assembly-mediated dominant-negative and dominant-positive effects, creating novel interactions, and promoting aggregation and phase separation. We believe that increased awareness of these diverse molecular disease mechanisms will lead to improved diagnosis (and ultimately treatment) of human genetic disorders.


Asunto(s)
Pliegue de Proteína , Humanos , Mutación
12.
Am J Hum Genet ; 109(3): 457-470, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120630

RESUMEN

We used a machine learning approach to analyze the within-gene distribution of missense variants observed in hereditary conditions and cancer. When applied to 840 genes from the ClinVar database, this approach detected a significant non-random distribution of pathogenic and benign variants in 387 (46%) and 172 (20%) genes, respectively, revealing that variant clustering is widespread across the human exome. This clustering likely occurs as a consequence of mechanisms shaping pathogenicity at the protein level, as illustrated by the overlap of some clusters with known functional domains. We then took advantage of these findings to develop a pathogenicity predictor, MutScore, that integrates qualitative features of DNA substitutions with the new additional information derived from this positional clustering. Using a random forest approach, MutScore was able to identify pathogenic missense mutations with very high accuracy, outperforming existing predictive tools, especially for variants associated with autosomal-dominant disease and cancer. Thus, the within-gene clustering of pathogenic and benign DNA changes is an important and previously underappreciated feature of the human exome, which can be harnessed to improve the prediction of pathogenicity and disambiguation of DNA variants of uncertain significance.


Asunto(s)
Genoma Humano , Mutación Missense , Análisis por Conglomerados , Exoma/genética , Genoma Humano/genética , Humanos , Mutación Missense/genética , Virulencia
13.
FASEB J ; 38(16): e23883, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39150825

RESUMEN

Mutations in SCN4A gene encoding Nav1.4 channel α-subunit, are known to cause neuromuscular disorders such as myotonia or paralysis. Here, we study the effect of two amino acid replacements, K1302Q and G1306E, in the DIII-IV loop of the channel, corresponding to mutations found in patients with myotonia. We combine clinical, electrophysiological, and molecular modeling data to provide a holistic picture of the molecular mechanisms operating in mutant channels and eventually leading to pathology. We analyze the existing clinical data for patients with the K1302Q substitution, which was reported for adults with or without myotonia phenotypes, and report two new unrelated patients with the G1306E substitution, who presented with severe neonatal episodic laryngospasm and childhood-onset myotonia. We provide a functional analysis of the mutant channels by expressing Nav1.4 α-subunit in Xenopus oocytes in combination with ß1 subunit and recording sodium currents using two-electrode voltage clamp. The K1302Q variant exhibits abnormal voltage dependence of steady-state fast inactivation, being the likely cause of pathology. K1302Q does not lead to decelerated fast inactivation, unlike several other myotonic mutations such as G1306E. For both mutants, we observe increased window currents corresponding to a larger population of channels available for activation. To elaborate the structural rationale for our experimental data, we explore the contacts involving K/Q1302 and E1306 in the AlphaFold2 model of wild-type Nav1.4 and Monte Carlo-minimized models of mutant channels. Our data provide the missing evidence to support the classification of K1302Q variant as likely pathogenic and may be used by clinicians.


Asunto(s)
Miotonía , Canal de Sodio Activado por Voltaje NAV1.4 , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Humanos , Animales , Miotonía/genética , Femenino , Xenopus laevis , Masculino , Mutación , Oocitos/metabolismo , Adulto , Sustitución de Aminoácidos
14.
Brain ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875478

RESUMEN

USP25 encodes ubiquitin-specific proteases 25, a key member of deubiquitinating enzyme family and is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown etiology. Five heterozygous USP25 variants including two de novo and three co-segregated variants were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared to the East Asian population and all populations in the gnomAD database. The mean onset ages of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom except one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was ubiquitously expressed in mouse brain with two peaks on embryonic days (E14‒E16) and postnatal day 21, respectively. Similarly, USP25 expressed in fetus/early childhood stage with a second peak at approximately 12‒20 years old in human brain, consistent with the seizure onset age at infancy and juvenile in the patients. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knock-out mice, which showed increased seizure susceptibility compared to wild-type mice in pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we employed multiple functional detections. In HEK293T cells, the severe phenotype associated variant (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed a stable truncated dimers with increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del increased neuronal excitability in mice brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.

15.
Mol Cell ; 68(6): 1134-1146.e6, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29225033

RESUMEN

TP53 missense mutations significantly influence the development and progression of various human cancers via their gain of new functions (GOF) through different mechanisms. Here we report a unique mechanism underlying the GOF of p53-R249S (p53-RS), a p53 mutant frequently detected in human hepatocellular carcinoma (HCC) that is highly related to hepatitis B infection and aflatoxin B1. A CDK inhibitor blocks p53-RS's nuclear translocation in HCC, whereas CDK4 interacts with p53-RS in the G1/S phase of the cells, phosphorylates it, and enhances its nuclear localization. This is coupled with binding of a peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) to p53-RS, but not the p53 form with mutations of four serines/threonines previously shown to be crucial for PIN1 binding. As a result, p53-RS interacts with c-Myc and enhances c-Myc-dependent rDNA transcription key for ribosomal biogenesis. These results unveil a CDK4-PIN1-p53-RS-c-Myc pathway as a novel mechanism for the GOF of p53-RS in HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Mutación , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Serina/metabolismo , Proteína p53 Supresora de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Proliferación Celular , Quinasa 4 Dependiente de la Ciclina/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Serina/genética , Células Tumorales Cultivadas
16.
J Med Genet ; 61(8): 780-782, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38548315

RESUMEN

Schaaf-Yang syndrome (SYS) is an ultra-rare neurodevelopmental disorder caused by truncating mutations in MAGEL2 Heterologous expression of wild-type (WT) or a truncated (p.Gln638*) C-terminal HA-tagged MAGEL2 revealed a shift from a primarily cytoplasmic to a more nuclear localisation for the truncated protein variant. We now extend this analysis to six additional SYS mutations on a N-terminal FLAG-tagged MAGEL2. Our results replicate and extend our previous findings, showing that all the truncated MAGEL2 proteins consistently display a predominant nuclear localisation, irrespective of the C-terminal or N-terminal position and the chemistry of the tag. The variants associated with arthrogryposis multiplex congenita display a more pronounced nuclear retention phenotype, suggesting a correlation between clinical severity and the degree of nuclear mislocalisation. These results point to a neomorphic effect of truncated MAGEL2, which might contribute to the pathogenesis of SYS.


Asunto(s)
Núcleo Celular , Proteínas de Neoplasias , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Mutación , Fenotipo , Artrogriposis/genética , Artrogriposis/patología , Citoplasma/metabolismo , Citoplasma/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Transporte de Proteínas , Células HEK293 , Hipopituitarismo , Facies , Péptidos y Proteínas de Señalización Intracelular , Proteínas Intrínsecamente Desordenadas , Trastornos de Impronta , Discapacidades del Desarrollo , Trastornos de los Cromosomas
17.
J Allergy Clin Immunol ; 153(1): 275-286.e18, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37935260

RESUMEN

BACKGROUND: Inborn errors of immunity (IEI) with dysregulated JAK/STAT signaling present with variable manifestations of immune dysregulation and infections. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but initially reported outcomes were poor. JAK inhibitors (JAKi) offer a targeted treatment option that may be an alternative or bridge to HSCT. However, data on their current use, treatment efficacy and adverse events are limited. OBJECTIVE: We evaluated the current off-label JAKi treatment experience for JAK/STAT inborn errors of immunity (IEI) among European Society for Immunodeficiencies (ESID)/European Society for Blood and Marrow Transplantation (EBMT) Inborn Errors Working Party (IEWP) centers. METHODS: We conducted a multicenter retrospective study on patients with a genetic disorder of hyperactive JAK/STAT signaling who received JAKi treatment for at least 3 months. RESULTS: Sixty-nine patients (72% children) were evaluated (45 STAT1 gain of function [GOF], 21 STAT3-GOF, 1 STAT5B-GOF, 1 suppressor of cytokine signaling 1 [aka SOCS1] loss of function, 1 JAK1-GOF). Ruxolitinib was the predominantly prescribed JAKi (80%). Overall, treatment resulted in improvement (partial or complete remission) of clinical symptoms in 87% of STAT1-GOF and in 90% of STAT3-GOF patients. We documented highly heterogeneous dosing and monitoring regimens. The response rate and time to response varied across different diseases and manifestations. Adverse events including infection and weight gain were frequent (38% of patients) but were mild (grade I-II) and transient in most patients. At last follow-up, 52 (74%) of 69 patients were still receiving JAKi treatment, and 11 patients eventually underwent HSCT after receipt of previous JAKi bridging therapy, with 91% overall survival. CONCLUSIONS: Our study suggests that JAKi may be highly effective to treat symptomatic JAK/STAT IEI patients. Prospective studies to define optimal JAKi dosing for the variable clinical presentations and age ranges should be pursued.


Asunto(s)
Síndromes de Inmunodeficiencia , Inhibidores de las Cinasas Janus , Niño , Humanos , Inhibidores de las Cinasas Janus/uso terapéutico , Estudios Retrospectivos , Estudios Prospectivos , Síndromes de Inmunodeficiencia/terapia , Resultado del Tratamiento
18.
J Allergy Clin Immunol ; 154(1): 229-236.e2, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38438084

RESUMEN

BACKGROUND: Immune dysregulation often presents as autoimmunity, inflammation, and/or lymphoproliferation. Several germline genetic defects have been associated with immune dysregulation; they include heterozygous gain-of-function (GOF) mutations in IKZF1, an essential transcription factor for hematopoiesis containing zinc finger domains (ZFs). However, in a large percentage of patients, the genetic origin of their immunedysregulation remains undetermined. OBJECTIVE: A family with 2 members presenting immune dysregulation signs was studied to identify the genetic cause of their disease. METHODS: Whole exome sequencing, analysis of immunologic parameters, and functional assays (including Western blotting, electrophoretic mobility shift assay during the cell cycle, and TH cell differentiation) were performed. RESULTS: The 2 patients carried a novel heterozygous mutation in IKZF1 (IKZF1T398M). IKZF1 heterozygous mutations have previously been shown to be responsible for several distinct human immunologic diseases by directly affecting the ability of ZFs to bind to DNA or to dimerize. Herein, we showed that the IKZF1T398M, which is outside the ZFs, caused impaired phosphorylation of IKZF1, resulting in enhanced DNA-binding ability at the S phase of the cell cycle, reduction of the G1-S phase transition, and decreased proliferation. Confirming these data, similar functional alterations were observed with IKZF1T398A, but not with IKZF1T398D, mimicking dephosphorylation and phosphorylation, respectively. In T lymphocytes, expression of IKZF1T398M led to TH cell differentiation skewed toward TH2 cells. Thus, our data indicate that IKZF1T398M behaves as a GOF variant underlying immune dysregulation. CONCLUSION: Disturbed IKZF1 phosphorylation represents a novel GOF mechanism (GOF by loss of phosphorylation (termed as GOF-LOP) associated with immune dysregulation, highlighting the regulatory role of IKZF1 during cell cycle progression through phosphorylation.


Asunto(s)
Mutación con Ganancia de Función , Factor de Transcripción Ikaros , Humanos , Factor de Transcripción Ikaros/genética , Fosforilación , Femenino , Masculino , Linaje , Adulto
19.
Artículo en Inglés | MEDLINE | ID: mdl-38579942

RESUMEN

BACKGROUND: Monoallelic loss-of-function IKZF1 (IKAROS) variants cause B-cell deficiency or combined immunodeficiency, whereas monoallelic gain-of-function (GOF) IKZF1 variants have recently been reported to cause hypergammaglobulinemia, abnormal plasma cell differentiation, autoimmune and allergic manifestations, and infections. OBJECTIVE: We studied 7 relatives with autoimmune/inflammatory and lymphoproliferative manifestations to identify the immunologic disturbances and the genetic cause of their disease. METHODS: We analyzed biopsy results and performed whole-exome sequencing and immunologic studies. RESULTS: Disease onset occurred at a mean age of 25.2 years (range, 10-64, years). Six patients suffered from autoimmune/inflammatory diseases, 4 had confirmed IG4-related disease (IgG4-RD), and 5 developed B-cell malignancies: lymphoma in 4 and multiple myeloma in the remaining patient. Patients without immunosuppression were not particularly prone to infectious diseases. Three patients suffered from life-threatening coronavirus disease 2019 pneumonia, of whom 1 had autoantibodies neutralizing IFN-α. The recently described IKZF1 GOF p.R183H variant was found in the 5 affected relatives tested and in a 6-year-old asymptomatic girl. Immunologic analysis revealed hypergammaglobulinemia and high frequencies of certain lymphocyte subsets (exhausted B cells, effector memory CD4 T cells, effector memory CD4 T cells that have regained surface expression of CD45RA and CD28-CD57+ CD4+ and CD8+ T cells, TH2, and Tfh2 cells) attesting to immune dysregulation. Partial clinical responses to rituximab and corticosteroids were observed, and treatment with lenalidomide, which promotes IKAROS degradation, was initiated in 3 patients. CONCLUSIONS: Heterozygosity for GOF IKZF1 variants underlies autoimmunity/inflammatory diseases, IgG4-RD, and B-cell malignancies, the onset of which may occur in adulthood. Clinical and immunologic data are similar to those for patients with unexplained IgG4-RD. Patients may therefore benefit from treatments inhibiting pathways displaying IKAROS-mediated overactivity.

20.
J Allergy Clin Immunol ; 153(4): 1125-1139, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38072195

RESUMEN

BACKGROUND: Inborn errors of immunity (IEI) often lack specific disease models and personalized management. Signal transducer and activator of transcription (STAT)-1 gain of function (GoF) is such example of an IEI with diverse clinical phenotype with unclear pathomechanisms and unpredictable response to therapy. Limitations in obtaining fresh samples for functional testing and research further highlights the need for patient-specific ex vivo platforms. OBJECTIVE: Using STAT1-GoF as an example IEI, we investigated the potential of patient-derived expanded potential stem cells (EPSC) as an ex vivo platform for disease modeling and personalized treatment. METHODS: We generated EPSC derived from individual STAT1-GoF patients. STAT1 mutations were confirmed with Sanger sequencing. Functional testing including STAT1 phosphorylation/dephosphorylation and gene expression with or without Janus activating kinase inhibitors were performed. Functional tests were repeated on EPSC lines with GoF mutations repaired by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) editing. RESULTS: EPSC were successfully reprogrammed from STAT1-GoF patients and expressed the same pluripotent makers as controls, with distinct morphologic differences. Patient-derived EPSC recapitulated the functional abnormalities of index STAT1-GoF patients with STAT1 hyperphosphorylation and increased expression of STAT1 and its downstream genes (IRF1, APOL6, and OAS1) after IFN-γ stimulation. Addition of ruxolitinib and baricitinib inhibited STAT1 hyperactivation in STAT1-GoF EPSC in a dose-dependent manner, which was not observed with tofacitinib. Corrected STAT1 phosphorylation and downstream gene expression were observed among repaired STAT1-GoF EPSC cell lines. CONCLUSION: This proof-of-concept study demonstrates the potential of our patient-derived EPSC platform to model STAT1-GoF. We propose this platform when researching, recapitulating, and repairing other IEI in the future.


Asunto(s)
Mutación con Ganancia de Función , Factor de Transcripción STAT1 , Células Madre , Humanos , Mutación , Fosforilación , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Células Madre/inmunología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA