Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Fluoresc ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38396147

RESUMEN

Gamma rays, as hazardous nuclear radiation, necessitate effective and rapid detection methods. This paper introduces a low-cost, fast, and simple fluorescence method based on CdTe/CdS core/shell quantum dots for gamma-ray detection. CdTe/CdS quantum dots, subjected to gamma irradiation from a 60Co source under various conditions, were investigated to assess their fluorescence sensor capabilities. The obtained results showed that an increase in CdTe/CdS nanoparticle size was associated with decreased sensitivity, while a reduction in CdTe/CdS concentration correlated with increased sensitivity. To further validate the practicality of CdTe/CdS core/shell quantum dots in gamma-ray detection, the structural properties of the quantum dots were meticulously studied. Raman spectroscopy, X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) analysis were conducted before and after gamma-ray radiation. The results demonstrated the crystalline stability of CdTe/CdS core/shell quantum dots under gamma irradiation, highlighting their robust structural integrity. In conclusion, the experimental findings underscore the exceptional potential of CdTe/CdS quantum dots as an off-fluorescence probe for simple, low-cost, fast, and on-site detection of gamma rays. This research contributes to the advancement of efficient and practical methods for gamma-ray sensing in various applications.

2.
Philos Trans A Math Phys Eng Sci ; 382(2266): 20230082, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38104620

RESUMEN

Many instruments for astroparticle physics are primarily geared towards multi-messenger astrophysics, to study the origin of cosmic rays and to understand high-energy astrophysical processes. Since these instruments observe the Universe at extreme energies and in kinematic ranges not accessible at accelerators these experiments provide also unique and complementary opportunities to search for particles and physics beyond the standard model of particle physics. In particular, the reach of IceCube, Fermi and KATRIN to search for and constrain Dark Matter, Axions, heavy Big Bang relics, sterile neutrinos and Lorentz invariance violation will be discussed. The contents of this article are based on material presented at the Humboldt-Kolleg 'Clues to a mysterious Universe-exploring the interface of particle, gravity and quantum physics' in June 2022. This article is part of the theme issue 'The particle-gravity frontier'.

3.
BMC Microbiol ; 23(1): 224, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587432

RESUMEN

BACKGROUND: Bimetallic nanoparticles (BNPs) has drawn a lot of attention especially during the last couple of decades. A bimetallic nanoparticle stands for a combination of two different metals that exhibit several new and improved physicochemical properties. Therefore, the green synthesis and design of bimetallic nanoparticles is a field worth exploring. METHODS: In this study, we present a green synthesis of silver nanoparticles (Ag NPs), selenium (Se) NPs, and bimetallic Ag-Se NPs using Gamma irradiation and utilizing a bacterial filtrate of Bacillus paramycoides. Different Techniques such as UV-Vis., XRD, DLS, SEM, EDX, and HR-TEM, were employed for identifying the synthesized NPs. The antimicrobial and antibiofilm activities of both the Ag/Se monometallic and bimetallic Ag-Se NPs were evaluated against some standard microbial strains including, Aspergillus brasiliensis ATCC16404, Candida albicans ATCC10231, Alternaria alternate EUM108, Fusarium oxysporum EUM37, Escherichia coli ATCC11229, Bacillus cereus ATCC15442, Klebsiella pneumoniae ATCC13883, Bacillus subtilis ATCC15442, and Pseudomonas aeruginosa ATCC6538 as a model tested pathogenic microbes. The individual free radical scavenging potentials of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs were determined using the DPPH radical scavenging assay. The degradation of methylene blue (MB) dye in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was used to assess their photocatalytic behavior. RESULTS: According to the UV-Vis. spectrophotometer, the dose of 20.0 kGy that results in Ag NPs with the highest O.D. = 3.19 at 390 nm is the most effective dose. In a similar vein, the optimal dose for the synthesis of Se NPs was 15.0 kGy dose with O.D. = 1.74 at 460 nm. With a high O.D. of 2.79 at 395 nm, the most potent dose for the formation of bimetallic Ag-Se NPs is 15.0 kGy. The recorded MIC-values for Ag-Se NPs were 62.5 µg mL- 1, and the data clearly demonstrated that C. albicans was the organism that was most susceptible to the three types of NPs. The MIC value was 125 µg mL- 1 for both Ag NPs and Se NPs. In antibiofilm assay, 5 µg mL- 1 Ag-Se NPs inhibited C. albicans with a percentage of 90.88%, E. coli with a percentage of 90.70%, and S. aureus with a percentage of 90.62%. The synthesized NPs can be arranged as follows in decreasing order of antioxidant capacity as an antioxidant result: Ag-Se NPs > Se NPs > Ag NPs. The MB dye degradation in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was confirmed by the decrease in the measured absorbance (at 664 nm) after 20 min of exposure to sunlight. CONCLUSION: Our study provides insight towards the synthesis of bimetallic NPs through green methodologies, to develop synergistic combinatorial antimicrobials with possible applications in the treatment of infectious diseases caused by clinically and industrial relevant drug-resistant strains.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Selenio , Selenio/farmacología , Antioxidantes/farmacología , Plata/farmacología , Escherichia coli , Rayos gamma , Staphylococcus aureus , Antiinfecciosos/farmacología , Azul de Metileno , Candida albicans , Biopelículas
4.
Strahlenther Onkol ; 199(2): 182-191, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35925202

RESUMEN

PURPOSE: The frequency of acrocentric chromosome associations (ACA) was studied to determine the possible dose-response relationship of gamma irradiation in human lymphocytes. METHODS: Peripheral blood collected from three healthy donors was irradiated with 0, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 5 Gy of gamma radiation. Chromosomal preparations were made after 48 h of culture as per standard guidelines. The experiment was repeated three times, with a different donor each time. RESULTS: The ACA frequency in irradiated lymphocytes increased with radiation dose. The D-G type of association was most prominent and showed a significant dose-dependent increase in frequency. The dose response of ACA frequency to radiation was found to be linear: ACA frequency = 0.2923 (±0.0276) + 0.1846 (±0.0307) × D (correlation coefficient r = 0.9442). As expected, dicentric chromosome (DC) frequencies followed the linear quadratic fit model, with DC frequency = 0.0015 (±0.0013) + 0.0220 (±0.0059) × D + 0.0215 (±0.0018) × D^2 (correlation coefficient r = 0.9982). A correlation curve was prepared for ACA frequency versus DC frequency, resulting in the regression equation y = 1.130x + 0.4051 (R2 = 0.7408; p = 0.0014). CONCLUSION: Our results showed an increase in ACA frequency in irradiated lymphocytes with an increase in radiation dose; thus, ACA may serve as a candidate cytogenetic biomarker for radiation biodosimetry.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas , Humanos , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Linfocitos
5.
J Fluoresc ; 33(5): 1705-1716, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36826726

RESUMEN

Organic liquid scintillation detectors are widely used to measure the presence of radiation. With these devices, there are advantages in that they are easy to manufacture, large in size, and have a short fluorescence decay time. However, they are not suitable for gamma spectroscopy because they are composed of a low-atomic-number material. In this regard, alternative materials for the secondary solute used in basic organic liquid scintillators have been investigated, and the applicability of alternative materials, the detection characteristics, and neutron/gamma identification tests were all assessed. 7-Diethylamino-4-methylcoumarin (DMC), selected as an alternative material, is a benzopyrone derivative in the form of colorless crystals with high fluorescence, a high quantum yield in the visible region, and excellent light stability. In addition, it has a large Stokes shift, and solubility in a solvent is good. Through an analysis in this study, it was found that the absorption wavelength range of DMC coincides with the emission wavelength range of PPO, which is the primary solute used with DMC. Finally, it was confirmed that the optimal concentration of DMC was 0.08 wt%. As a result of performing gamma and neutron measurement tests using a DMC-based liquid scintillator, it was found to perform well (FOM = 1.42) compared to a commercial liquid scintillator, BC-501A.

6.
J Fluoresc ; 33(6): 2361-2367, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37071231

RESUMEN

Gamma rays are a type of ionizing radiation that are extremely hazardous and dangerous for humans and the environment. The fluorescence method is a simple, useful, and fast method for the detection of gamma rays. In this research, CdTe/ZnS core/shell quantum dots were used as on fluorescence sensor for the detection of gamma rays. CdTe/ZnS core/shell QDs were prepared via a simple and rapid photochemical method. The shell thickness and concentration of CdTe/ZnS core/shell quantum dots were studied as two important factors in the optical behavior of CdTe/ZnS quantum dots. The obtained results showed that the PL intensity of CdTe/ZnS QDs after gamma irradiation was increased and also a slight redshift in the PL spectrum was observed. X-ray diffractions (XRD) and Raman analyses were used to study the effect of gamma irradiation on the structural properties of CdTe/ZnS QDs. The obtained results showed that gamma irradiation couldn't damage the crystalline structure of CdTe/ZnS core/shell QDs.

7.
Can J Physiol Pharmacol ; 101(12): 672-681, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37767909

RESUMEN

Ionizing radiation (IR) activates several signaling pathways. This study shows the impact of acute low-dose IR on crucial cytokines involved in cell-mediated immunity. The immunomodulatory effects of 0.25 and 0.5 Gray (Gy) gamma rays and standard immunomodulatory drugs (cyclophosphamide) on blood counts and significant pro-inflammatory cytokines implicated in various inflammatory conditions were tested in 20 rats. Examined was the effect of acute low doses on critical cytokines, which could be utilized as an alternative to current immunosuppressive drugs. One day post-irradiation, serum levels of interferon-gamma (INF-γ), tumor necrosis factor-alpha, and interleukin-2/1-beta were measured. A 0.25 Gy exposure did not affect the detected cytokines or blood cell count compared to the nonirradiated group. On the other hand, 0.5 Gy raises the majority of the immunologically examined cytokines except for INF-γ. Except for INF-γ, cyclophosphamide reduces all of the cytokines examined. As a result, low-dose IR has a less negative influence on essential inflammatory cytokines, permitting its use. More research is needed to determine how low amounts could be used in different immunological disorders.


Asunto(s)
Citocinas , Radiación Ionizante , Ratas , Animales , Citocinas/metabolismo , Rayos gamma/efectos adversos , Interferón gamma , Ciclofosfamida/farmacología , Relación Dosis-Respuesta en la Radiación
8.
Luminescence ; 38(9): 1597-1606, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37325972

RESUMEN

A series of ZnB2 O4 phosphors doped with different concentrations of Eu and Dy (0.05 0.1, 0.2, 0.5, 1.0 mol%) and co-doped with Ce (1, 2, 5, 7, 10 mol%) respectively was prepared via the solid-state reaction technique and the thermoluminescence (TL) behaviour of gamma ray-irradiated samples was studied. The synthesized samples were irradiated with γ-rays for the dose range 0.03-1.20 kGy. The TL intensity variations with dose, dopant concentration, and the effect of co-doping were studied. The TL response curves for ZnB2 O4 :Eu3+ and ZnB2 O4 :Dy3+ , ZnB2 O4 :Eu3 ,Ce3+ and ZnB2 O4 :Dy3+ ,Ce3+ phosphor were observed. It was revealed that ZnB2 O4 :Eu3+ showed a linear TL behaviour for the dose 0.03-1.20 kGy and ZnB2 O4 :Dy3+ showed linearity for the gamma dose range 0.03-0.10 kGy. Furthermore, fading for all the samples was observed to be less than 10% for a storage period of 30 days. In addition to this, the trapping parameters, especially activation energies were evaluated using the Ilich method and the initial rise method. The activation energy values obtained from both methods were in complete agreement with each other.


Asunto(s)
Boratos , Metales de Tierras Raras , Disprosio , Zinc , Rayos gamma
9.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240171

RESUMEN

Soybean (Glycine max (L.) Merr.) is a nutritious crop that can provide both oil and protein. A variety of mutagenesis methods have been proposed to obtain better soybean germplasm resources. Among the different types of physical mutagens, carbon-ion beams are considered to be highly efficient with high linear energy transfer (LET), and gamma rays have also been widely used for mutation breeding. However, systematic knowledge of the mutagenic effects of these two mutagens during development and on phenotypic and genomic mutations has not yet been elucidated in soybean. To this end, dry seeds of Williams 82 soybean were irradiated with a carbon-ion beam and gamma rays. The biological effects of the M1 generation included changes in survival rate, yield and fertility. Compared with gamma rays, the relative biological effectiveness (RBE) of the carbon-ion beams was between 2.5 and 3.0. Furthermore, the optimal dose for soybean was determined to be 101 Gy to 115 Gy when using the carbon-ion beam, and it was 263 Gy to 343 Gy when using gamma rays. A total of 325 screened mutant families were detected from out of 2000 M2 families using the carbon-ion beam, and 336 screened mutant families were found using gamma rays. Regarding the screened phenotypic M2 mutations, the proportion of low-frequency phenotypic mutations was 23.4% when using a carbon ion beam, and the proportion was 9.8% when using gamma rays. Low-frequency phenotypic mutations were easily obtained with the carbon-ion beam. After screening the mutations from the M2 generation, their stability was verified, and the genome mutation spectrum of M3 was systemically profiled. A variety of mutations, including single-base substitutions (SBSs), insertion-deletion mutations (INDELs), multinucleotide variants (MNVs) and structural variants (SVs) were detected with both carbon-ion beam irradiation and gamma-ray irradiation. Overall, 1988 homozygous mutations and 9695 homozygous + heterozygous genotype mutations were detected when using the carbon-ion beam. Additionally, 5279 homozygous mutations and 14,243 homozygous + heterozygous genotype mutations were detected when using gamma rays. The carbon-ion beam, which resulted in low levels of background mutations, has the potential to alleviate the problems caused by linkage drag in soybean mutation breeding. Regarding the genomic mutations, when using the carbon-ion beam, the proportion of homozygous-genotype SVs was 0.45%, and that of homozygous + heterozygous-genotype SVs was 6.27%; meanwhile, the proportions were 0.04% and 4.04% when using gamma rays. A higher proportion of SVs were detected when using the carbon ion beam. The gene effects of missense mutations were greater under carbon-ion beam irradiation, and the gene effects of nonsense mutations were greater under gamma-ray irradiation, which meant that the changes in the amino acid sequences were different between the carbon-ion beam and gamma rays. Taken together, our results demonstrate that both carbon-ion beam and gamma rays are effective techniques for rapid mutation breeding in soybean. If one would like to obtain mutations with a low-frequency phenotype, low levels of background genomic mutations and mutations with a higher proportion of SVs, carbon-ion beams are the best choice.


Asunto(s)
Glycine max , Mutágenos , Glycine max/genética , Mutación , Rayos gamma , Iones , Fenotipo , Carbono , Genómica
10.
J Biol Inorg Chem ; 27(1): 155-173, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35064832

RESUMEN

Recently some borate bioactive glasses have been discovered to have an antibacterial effect when interacting with pathogenic bacteria. In this study, borate bioactive glasses (BG) doped with metal oxide (MO) ZnO, TiO2, TeO2, and CeO2 (encoded BG-Zn, BG-Ti, BG-Te, and BG-Ce, respectively) were prepared using the melt-quench method and have been characterized before and after gamma irradiation at 25.0 kGy. X-ray diffraction was performed to recognize the amorphous phases of all samples. Infrared absorption of glasses confirms vibrational bands in their wave number according to mixed main triangular and tetrahedral borate groups. After immersion in the simulated body fluid (SBF) solution, two characteristic peaks are generated indicating the bioactivity of the studied glasses through the formation of hydroxyapatite. SEM micrographs of glass after immersion display that the crystalline phases are identified to be more distinct in different shapes because of the multi-composition involved. The antibacterial activity of borate glasses was assessed against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 6538. The antibacterial results showed that BG-Te was  the most efficient against S. aureus ATCC 6538. Furthermore, BG-Te reduced biofilm production (79.23%) at the concentration of 20.0 mg/mL. (BG-Te) at 20.0 mg/mL significantly decreased the viability percent, cell count, protein content, and protease activity of S. aureus cells. BG-Te presents powerful activity against bacterial infections. It was necessary to equilibrate the antibacterial efficiency with the biocompatibility, so the MTT assay confirmed that BG-Te has low cytotoxicity on the human fibroblast cells (WI-38). It is expected that borate bioglass contained TeO2 could be a promising biomaterial for bone tissue engineering.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/química , Antibacterianos/farmacología , Boratos/química , Boratos/farmacología , Vidrio/química , Humanos , Staphylococcus aureus
11.
Mol Biol Rep ; 49(6): 5729-5749, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34427889

RESUMEN

In order to meet the growing human food and nutrition demand a perpetual process of crop improvement is idealized. It has seen changing trends and varying concepts throughout human history; from simple selection to complex gene-editing. Among these techniques, random mutagenesis has been shown to be a promising technology to achieve desirable genetic gain with less time and minimal efforts. Over the decade, several hundred varieties have been released through random mutagenesis, but the production is falling behind the demand. Several food crops like banana, potato, cassava, sweet potato, apple, citrus, and others are vegetatively propagated. Since such crops are not propagated through seed, genetic improvement through classical breeding is impractical for them. Besides, in the case of polyploids, accomplishment of allelic homozygosity requires a considerable land area, extensive fieldwork with huge manpower, and hefty funding for an extended period of time. Apart from induction, mapping of induced genes to facilitate the knowledge of biological processes has been performed only in a few selected facultative vegetative crops like banana and cassava which can form a segregating population. During the last few decades, there has been a shift in the techniques used for crop improvement. With the introduction of the robust technologies like meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) more and more crops are being subjected to gene editing. However, more work needs to be done in case of vegetatively propagated crops.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Productos Agrícolas/genética , Edición Génica/métodos , Genoma de Planta/genética , Mutagénesis/genética , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética
12.
J Appl Toxicol ; 42(3): 529-539, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34550611

RESUMEN

The effects of low-dose radiation (LDR, ≤0.1 Gy) on living organisms have been the hot areas of radiation biology but do not reach a definitive conclusion yet. So far, few studies have adequately accounted for the male reproductive system responses to LDR, particularly the regulation of testosterone content. Hence, this study was designed to evaluate the effects of LDR on Leydig cells and testicular tissue, especially the ability to synthesize testosterone. We found that less than 0.2-Gy 60 Co gamma rays did not cause significant changes in the hemogram index and the body weight; also, pathological examination did not find obvious structural alterations in testis, epididymis, and other radiation-sensitive organs. Consistently, the results from in vitro showed that only more than 0.5-Gy gamma rays could induce remarkable DNA damage, cycle arrest, and apoptosis. Notably, LDR disturbed the contents of testosterone in mice serums and culture supernatants of TM3 cells and dose dependently increased the expression of 3ß-HSD. After cotreatment with trilostane (Tril), the inhibitor of 3ß-HSD, increased testosterone could be partially reversed. Besides, DNA damage repair-related enzymes, including DNMT1, DNMT3B, and Sirt1, were increased in irradiated TM3 cells, accompanying by evident demethylation in the gene body of 3ß-HSD. In conclusion, our results strongly suggest that LDR could induce obvious perturbation in the synthesis of testosterone without causing organic damage, during which DNA demethylation modification of 3ß-HSD might play a crucial role and would be a potential target to prevent LDR-induced male reproductive damage.


Asunto(s)
Desmetilación , Rayos gamma/efectos adversos , Células Madre Mesenquimatosas/efectos de la radiación , Complejos Multienzimáticos/metabolismo , Progesterona Reductasa/metabolismo , Esteroide Isomerasas/metabolismo , Testículo/efectos de la radiación , Testosterona/metabolismo , Animales , Relación Dosis-Respuesta en la Radiación , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35054839

RESUMEN

Genetic variations are an important source of germplasm diversity, as it provides an allele resource that contributes to the development of new traits for plant breeding. Gamma rays have been widely used as a physical agent for mutation creation in plants, and their mutagenic effect has attracted extensive attention. However, few studies are available on the comprehensive mutation profile at both the large-scale phenotype mutation screening and whole-genome mutation scanning. In this study, biological effects on M1 generation, large-scale phenotype screening in M2 generation, as well as whole-genome re-sequencing of seven M3 phenotype-visible lines were carried out to comprehensively evaluate the mutagenic effects of gamma rays on Arabidopsis thaliana. A total of 417 plants with visible mutated phenotypes were isolated from 20,502 M2 plants, and the phenotypic mutation frequency of gamma rays was 2.03% in Arabidopsis thaliana. On average, there were 21.57 single-base substitutions (SBSs) and 11.57 small insertions and deletions (InDels) in each line. Single-base InDels accounts for 66.7% of the small InDels. The genomic mutation frequency was 2.78 × 10-10/bp/Gy. The ratio of transition/transversion was 1.60, and 64.28% of the C > T events exhibited the pyrimidine dinucleotide sequence; 69.14% of the small InDels were located in the sequence with 1 to 4 bp terminal microhomology that was used for DNA end rejoining, while SBSs were less dependent on terminal microhomology. Nine genes, on average, were predicted to suffer from functional alteration in each re-sequenced line. This indicated that a suitable mutation gene density was an advantage of gamma rays when trying to improve elite materials for one certain or a few traits. These results will aid the full understanding of the mutagenic effects and mechanisms of gamma rays and provide a basis for suitable mutagen selection and parameter design, which can further facilitate the development of more controlled mutagenesis methods for plant mutation breeding.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Mutación , Secuenciación Completa del Genoma/métodos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Rayos gamma/efectos adversos , Genoma de Planta , Tasa de Mutación , Fenotipo , Fitomejoramiento
14.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362061

RESUMEN

Mutation is a source of genetic diversity widely used in breeding programs for the acquisition of agronomically interesting characters in commercial varieties of the Prunus species, as well as in the rest of crop species. Mutation can occur in nature at a very low frequency or can be induced artificially. Spontaneous or bud sport mutations in somatic cells can be vegetatively propagated to get an individual with the mutant phenotype. Unlike animals, plants have unlimited growth and totipotent cells that let somatic mutations to be transmitted to the progeny. On the other hand, in vitro tissue culture makes it possible to induce mutation in plant material and perform large screenings for mutant's selection and cleaning of chimeras. Finally, targeted mutagenesis has been boosted by the application of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 and Transcription activator-like effector nuclease (TALEN) editing technologies. Over the last few decades, environmental stressors such as global warming have been threatening the supply of global demand for food based on population growth in the near future. For this purpose, the release of new varieties adapted to such changes is a requisite, and selected or generated Prunus mutants by properly regulated mechanisms could be helpful to this task. In this work, we reviewed the most relevant mutations for breeding traits in Prunus species such as flowering time, self-compatibility, fruit quality, and disease tolerance, including new molecular perspectives in the present postgenomic era including CRISPR/Cas9 and TALEN editing technologies.


Asunto(s)
Edición Génica , Prunus , Animales , Sistemas CRISPR-Cas/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Prunus/genética , Prunus/metabolismo , Fitomejoramiento , Mutación , Endonucleasas/metabolismo , Genoma de Planta
15.
Molecules ; 27(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500295

RESUMEN

The present study was planned to determine the effect of kale leaf powder and gamma rays on variations in the pH, amino acid and fatty acid profiles of chicken meat at different storage intervals. Significant changes (p ≤ 0.05) in the pH, amino acid and fatty acid profiles of chicken meat following different treatments (KLP (1% and 2%) and gamma irradiation (3k Gy)) were reported at 0, 7 and 14 days of storage. The pH value of the chicken meat sample decreased with the addition of kale leaf powder, whereas the value increased following a gamma irradiation dose of 3 kGy and with the passage of time. During different storage intervals, the minimum reduction in the amino acid and fatty acid quantities in the chicken meat samples was reported after gamma irradiation treatment. However, with the addition of KLP, the amount of amino acids and fatty acids in the chicken meat samples increased. Conclusively, the pH was observed to be reduced in the meat following combined treatment (irradiation + KLP), whereas the 2% KLP treatment improved the amino acid and fatty acid profiles of the chicken samples.


Asunto(s)
Brassica , Irradiación de Alimentos , Animales , Ácidos Grasos/análisis , Pollos , Aminoácidos , Polvos , Carne/análisis , Hojas de la Planta/química
16.
J Radiol Prot ; 42(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35072656

RESUMEN

Based on ground gamma ray spectrometry surveys conducted from 2007 to 2010 in populated areas across Canada (i.e. in southern Canada, excluding the northern territories), and with consideration of the exposure outdoors and indoors in various types of buildings as well as exposure to radionuclides in building materials (assuming most building materials are of local origin), the population-weighted annual effective dose from exposure to terrestrial gamma rays was estimated to be 167 ± 43µSv. Under Canadian-specific average occupancy times, indoor exposures at home contribute 69% of the total annual effective dose, followed by 19% from indoor exposures other than at home, 6.2% from outdoor exposures and 5.8% from exposures inside vehicles. This assessment with measurements in a total of 1057 sites in populated areas across Canada is in general agreement with earlier assessments based on airborne gamma surveys mostly over unpopulated areas of Canada and truck-borne radiometric surveys along paved urban roads in four cities.


Asunto(s)
Contaminación del Aire Interior , Contaminantes Radiactivos del Suelo , Contaminación del Aire Interior/análisis , Canadá , Exposición a Riesgos Ambientales/análisis , Rayos gamma , Radiometría/métodos , Contaminantes Radiactivos del Suelo/análisis
17.
Sensors (Basel) ; 21(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34884033

RESUMEN

A lunar vehicle radiation dosimeter (LVRAD) has been proposed for studying the radiation environment on the lunar surface and evaluating its impact on human health. The LVRAD payload comprises four systems: a particle dosimeter and spectrometer (PDS), a tissue-equivalent dosimeter, a fast neutron spectrometer, and an epithermal neutron spectrometer. A silicon photodiode sensor with compact readout electronics was proposed for the PDS. The PDS system aims to measure protons with 10-100 MeV of energy and assess dose in the lunar space environment. The manufactured silicon photodiode sensor has an effective area of 20 mm × 20 mm and thickness of 650 µm; the electronics consist of an amplifier, analog pulse processor, and a 12-bit analog-to-digital converter for signal readout. We studied the responses of silicon sensors which were manufactured with self-made electronics to gamma rays with a wide range of energies and proton beams.


Asunto(s)
Dosímetros de Radiación , Silicio , Rayos gamma , Humanos , Neutrones , Protones , Radiometría
18.
Sensors (Basel) ; 21(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34770347

RESUMEN

There has been considerable interest in inorganic scintillators based on lutetium due to their favorable physical properties. Despite their advantages, lutetium-based scintillators could face issues because of the natural occurring radioisotope of 176Lu that is contained in natural lutetium. In order to mitigate its potential shortcomings, previous works have studied to understand the energy spectrum of the intrinsic radiation of 176Lu (IRL). However, few studies have focused on the various principal types of photon interactions with matter; in other words, only the full-energy peak according to the photoelectric effect or internal conversion have been considered for understanding the energy spectrum of IRL. Thus, the approach we have used in this study considers other principal types of photon interactions by convoluting each energy spectrum with combinations for generating the spectrum of the intrinsic radiation of 176Lu. From the results, we confirm that the method provides good agreement with the experiment. A significant contribution of this study is the provision of a new approach to process energy spectra induced by mutually independent radiation interactions as a single spectrum.

19.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008729

RESUMEN

Surface modification of polypropylene (PP) films was achieved using gamma-irradiation-induced grafting to provide an adequate surface capable of carrying glycopeptide antibiotics. The copolymer was obtained following a versatile two-step route; pristine PP was exposed to gamma rays and grafted with methyl methacrylate (MMA), and afterward, the film was grafted with N-vinylimidazole (NVI) by simultaneous irradiation. Characterization included Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and physicochemical analysis of swelling and contact angle. The new material (PP-g-MMA)-g-NVI was loaded with vancomycin to quantify the release by UV-vis spectrophotometry at different pH. The surface of (PP-g-MMA)-g-NVI exhibited pH-responsiveness and moderate hydrophilicity, which are suitable properties for controlled drug release.


Asunto(s)
Sistemas de Liberación de Medicamentos , Imidazoles/química , Polimetil Metacrilato/química , Polipropilenos/química , Polivinilos/química , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Fotoelectrones , Polimerizacion , Solventes/química , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Vancomicina/farmacología
20.
Sol Phys ; 295(2): 18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32109973

RESUMEN

We report on the source of > 300 MeV protons during the SOL2014-09-01 sustained gamma-ray emission (SGRE) event based on multi-wavelength data from a wide array of space- and ground-based instruments. Based on the eruption geometry we provide concrete explanation for the spatially and temporally extended γ -ray emission from the eruption. We show that the associated flux rope is of low inclination (roughly oriented in the east-west direction), which enables the associated shock to extend to the frontside. We compare the centroid of the SGRE source with the location of the flux rope's leg to infer that the high-energy protons must be precipitating between the flux rope leg and the shock front. The durations of the SOL2014-09-01 SGRE event and the type II radio burst agree with the linear relationship between these parameters obtained for other SGRE events with duration ≥ 3 hrs . The fluence spectrum of the SEP event is very hard, indicating the presence of high-energy (GeV) particles in this event. This is further confirmed by the presence of an energetic coronal mass ejection with a speed > 2000 km s - 1 , similar to those in ground level enhancement (GLE) events. The type II radio burst had emission components from metric to kilometric wavelengths as in events associated with GLE events. All these factors indicate that the high-energy particles from the shock were in sufficient numbers needed for the production of γ -rays via neutral pion decay.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA