RESUMEN
Broader adoption of native mass spectrometry (MS) and ion mobility-mass spectrometry (IM-MS) has propelled the development of several techniques which take advantage of the selectivity, sensitivity, and speed of MS to make measurements of complex biological molecules in the gas phase. One such method, collision induced unfolding (CIU), has risen to prominence in recent years, due to its well documented capability to detect shifts in structural stability of biological molecules in response to external stimuli (e.g., mutations, stress, non-covalent interactions, sample conditions etc.). This increase in reported CIU measurements is enabled partly due to advances in IM-MS instrumentation by vendors, and also innovative method development by researchers. This perspective highlights a few of these advances and concludes with a look forward toward the future of the gas phase unfolding field.
RESUMEN
The GroES heptamer is the molecular co-chaperonin that partners with the tetradecamer chaperonin GroEL, which assists in the folding of various nonnative polypeptide chains in Escherichia coli. Gp31 is a structural and functional analogue of GroES encoded by the bacteriophage T4, becoming highly expressed in T4-infected E. coli, taking over the role of GroES, favoring the folding of bacteriophage proteins. Despite being slightly larger, gp31 is quite homologous to GroES in terms of its tertiary and quaternary structure, as well as in its function and mode of interaction with the chaperonin GroEL. Here, we performed a side-by-side comparison of GroES and gp31 heptamer complexes by (ion mobility) tandem mass spectrometry. Surprisingly, we observed quite distinct fragmentation mechanisms for the GroES and gp31 heptamers, whereby GroES displays a unique and unusual bimodal charge distribution in its released monomers. Not only the gas-phase dissociation but also the gas-phase unfolding of GroES and gp31 were found to be very distinct. We rationalize these observations with the similar discrepancies we observed in the thermal unfolding characteristics and surface contacts within GroES and gp31 in the solution. From our data, we propose a model that explains the observed simultaneous dissociation pathways of GroES and the differences between GroES and gp31 gas-phase dissociation and unfolding. We conclude that, although GroES and gp31 exhibit high homology in tertiary and quaternary structure, they are quite distinct in their solution and gas-phase (un)folding characteristics and stability. Graphical Abstract.