Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.245
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 723: 150200, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38850814

RESUMEN

OBJECTIVES: This study aimed to explore the involvement of phosphoenolpyruvate carboxykinase 2 (PCK2) in gefitinib-resistant non-small cell lung cancer (NSCLC) cells and assess its feasibility as a therapeutic target against gefitinib resistance. METHODS: Gefitinib-resistant cell lines, PC9GR and HCC827GR, were generated through progressive exposure of parental cells to escalating concentrations of gefitinib. Transcriptomic analysis encompassed the treatment of PC9 and PC9GR cells with gefitinib or vehicle, followed by RNA extraction, sequencing, and subsequent bioinformatic analysis. Cell viability was determined via CCK-8 assay, while clonogenic assays assessed colony formation. Apoptosis was detected utilizing the Annexin V-FITC/7AAD kit. Iron ion concentrations were quantified using FerroOrange. mRNA analysis was conducted through quantitative RT-PCR. Western blotting was employed for protein analysis. H&E and immunohistochemical staining were performed on tumor tissue sections. RESULTS: The results revealed that depletion or inhibition of PCK2 significantly enhanced gefitinib's efficacy in inducing cell growth arrest, apoptosis, and ferroptosis in resistant NSCLC. Moreover, PCK2 knockdown led to the downregulation of key ferroptosis-related proteins, GPX4 and SLC7A11, while upregulating ASCL4. Conversely, overexpression of PCK2 in gefitinib-sensitive cells rendered resistance to gefitinib. In vivo experiments using a gefitinib-resistant xenograft model demonstrated that PCK2 silencing not only reduced tumor growth but also considerably increased the anti-tumor effect of gefitinib. CONCLUSIONS: In conclusion, our study presents compelling evidence indicating that PCK2 plays a pivotal role in gefitinib resistance in NSCLC. The modulation of ferroptosis-related proteins and the involvement of Akt activation further elucidate the mechanisms underlying this resistance. Consequently, PCK2 emerges as a promising therapeutic target for overcoming gefitinib resistance in NSCLC, offering a new avenue for the development of more effective treatment strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Ferroptosis , Gefitinib , Neoplasias Pulmonares , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Gefitinib/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Animales , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Antineoplásicos/farmacología , Ratones , Ratones Desnudos , Apoptosis/efectos de los fármacos
2.
Toxicol Appl Pharmacol ; 485: 116907, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521369

RESUMEN

Adenocarcinoma, the predominant subtype of non-small cell lung cancer (NSCLC), poses a significant clinical challenge due to its prevalence and aggressive nature. Gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor is often susceptible to development of resistance despite being the preferred treatment option for NSCLC. In this study, we investigated the potential of L-Methionine in enhancing the cytotoxicity of Gefitinib and preventing resistance development. In vitro experiment employing the H1975 cell line demonstrated a notable enhancement in cytotoxic efficacy when L-Methionine (10 mM) was combined with Gefitinib, as indicated by a substantial reduction in IC50 values (155.854 ± 1.87 µM vs 45.83 ± 4.83 µM). Complementary in vivo investigations in a lung cancer model corroborated these findings. Co-administration of L-Methionine (100 mg/kg and 400 mg/kg) with Gefitinib (15 mg/kg) for 21 days exhibited marked improvements in therapeutic efficacy, which was observed by macroscopic and histopathological assessments. Mechanistic insights revealed that the enhanced cytotoxicity of the combination stemmed from the inhibition of the EGFR, modulating the downstream cascade of ERK/AKT and AMPK pathways. Concurrently inhibition of p-AMPK-α by the combination also disrupted metabolic homeostasis, leading to the increased production of reactive oxygen species (ROS). Notably, L-Methionine, functioning as a methyl group donor, elevated the expression of H3K36me2 (an activation mark), while reducing the p-ERK activity. Our study provides the first evidence supporting L-Methionine supplementation as a novel strategy to enhance Gefitinib chemosensitivity against pulmonary adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Resistencia a Antineoplásicos , Receptores ErbB , Gefitinib , Histonas , Neoplasias Pulmonares , Metionina , Proteínas Proto-Oncogénicas c-akt , Gefitinib/farmacología , Humanos , Receptores ErbB/metabolismo , Metionina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Animales , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Histonas/metabolismo , Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Sinergismo Farmacológico , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
3.
Toxicol Appl Pharmacol ; 486: 116938, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642809

RESUMEN

Drug resistance is a serious problem for gefitinib in the treatment of lung cancer. Ginsenoside CK, a metabolite of diol ginsenosides, have many excellent pharmacological activities, but whether ginsenoside CK can overcome gefitinib resistance remains unclear. In our study, the sensitizing activity of ginsenoside CK on gefitinib-resistant non-small cell lung cancer (NSCLC) in vitro and in vivo was investigated. Ginsenoside CK was confirmed to enhance the anti-proliferation, pro-apoptotic and anti-migration effects of gefitinib in primary and acquired resistant NSCLC. Furthermore, the combined administration of CK and gefitinib effectively promoted the sensitivity of lung cancer xenograft to gefitinib in vivo, and the tumor inhibition rate reached 70.97% (vs. gefitinib monotherapy 32.65%). Subsequently, tubule formation experiment and western blot results showed that co-treatment of ginsenoside CK inhibited the angiogenesis ability of HUVEC cells, and inhibited the expression of HIF-1α, VEGF, FGF and MMP2/9. More interestingly, ginsenoside CK co-treatment enhanced the expression of anti-angiogenic factor PF4, increased pericellular envelope, and promoted the normalization of vascular structure. In conclusion, ginsenoside CK improved the resistance of gefitinib by regulating the balance of angiogenic factors through down-regulating the HIF-1α/VEGF signaling pathway, providing a theoretical basis for improving the clinical efficacy of gefitinib and applying combined strategies to overcome drug resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Gefitinib , Ginsenósidos , Células Endoteliales de la Vena Umbilical Humana , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Pulmonares , Ratones Desnudos , Factor A de Crecimiento Endotelial Vascular , Gefitinib/farmacología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ginsenósidos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/farmacología , Ratones , Ratones Endogámicos BALB C , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células A549 , Neovascularización Patológica/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Femenino
4.
Cell Commun Signal ; 22(1): 303, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831321

RESUMEN

BACKGROUND: While previous studies have primarily focused on Glucose transporter type 1 (GLUT1) related glucose metabolism signaling, we aim to discover if GLUT1 promotes tumor progression through a non-metabolic pathway. METHODS: The RNA-seq and microarray data were comprehensively analyzed to evaluate the significance of GLUT1 expression in lung adenocarcinoma (LUAD). The cell proliferation, colony formation, invasion, and migration were used to test GLUT1 's oncogenic function. Co-immunoprecipitation and mass spectrum (MS) were used to uncover potential GLUT1 interacting proteins. RNA-seq, DIA-MS, western blot, and qRT-PCR to probe the change of gene and cell signaling pathways. RESULTS: We found that GLUT1 is highly expressed in LUAD, and higher expression is related to poor patient survival. GLUT1 knockdown caused a decrease in cell proliferation, colony formation, migration, invasion, and induced apoptosis in LUAD cells. Mechanistically, GLUT1 directly interacted with phosphor-epidermal growth factor receptor (p-EGFR) and prevented EGFR protein degradation via ubiquitin-mediated proteolysis. The GLUT1 inhibitor WZB117 can increase the sensitivity of LUAD cells to EGFR-tyrosine kinase inhibitors (TKIs) Gefitinib. CONCLUSIONS: GLUT1 expression is higher in LUAD and plays an oncogenic role in lung cancer progression. Combining GLUT1 inhibitors and EGFR-TKIs could be a potential therapeutic option for LUAD treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Proliferación Celular , Receptores ErbB , Transportador de Glucosa de Tipo 1 , Neoplasias Pulmonares , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Fosforilación , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Unión Proteica , Apoptosis , Estabilidad Proteica
5.
Pharmacol Res ; 200: 107082, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38280440

RESUMEN

Lenvatinib is a frontline tyrosine kinase inhibitor for patients with advanced hepatocellular carcinoma (HCC). However, just 25% of patients benefit from the treatment, and acquired resistance always develops. To date, there are neither effective medications to combat lenvatinib resistance nor accurate markers that might predict how well a patient would respond to the lenvatinib treatment. Thus, novel strategies to recognize and deal with lenvatinib resistance are desperately needed. In the current study, a robust Lenvatinib Resistance index (LRi) model to predict lenvatinib response status in HCC was first established. Subsequently, five candidate drugs (Mercaptopurine, AACOCF3, NU1025, Fasudil, and Exisulind) that were capable of reversing lenvatinib resistance signature were initially selected by performing the connectivity map (CMap) analysis, and fasudil finally stood out by conducting a series of cellular functional assays in vitro and xenograft mouse model. Transcriptomics revealed that the co-administration of lenvatinib and fasudil overcame lenvatinib resistance by remodeling the hedgehog signaling pathway. Mechanistically, the feedback activation of EGFR by lenvatinib led to the activation of the GLI2-ABCC1 pathway, which supported the HCC cell's survival and proliferation. Notably, co-administration of lenvatinib and fasudil significantly inhibited IHH, the upstream switch of the hedgehog pathway, to counteract GLI2 activation and finally enhance the effectiveness of lenvatinib. These findings elucidated a novel EGFR-mediated mechanism of lenvatinib resistance and provided a practical approach to overcoming drug resistance in HCC through meaningful drug repurposing strategies.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Compuestos de Fenilurea , Quinolinas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Proteínas Hedgehog , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Receptores ErbB , Proteína Gli2 con Dedos de Zinc , Proteínas Nucleares
6.
Artículo en Inglés | MEDLINE | ID: mdl-38594878

RESUMEN

Gefitinib (GET) is a revolutionary targeted treatment inhibiting the epidermal growth factor receptor's tyrosine kinase action by competitively inhibiting the ATP binding site. In preclinical trials, several lung cancer cell lines and xenografts have demonstrated potential activity with GET. Response rates neared 25% in preclinical trials for non-small cell lung cancer. Here, we describe the one-pot synthesis of GET@ZIF-8 nanocomposites (NCs) in pure water, encapsulating zeolitic imidazolate framework 8 (ZIF-8). This method developed NCs with consistent morphology and a loading efficiency of 9%, resulting in a loading capacity of 20 wt%. Cell proliferation assay assessed the anticancer effect of GET@ZIF-8 NCs on A549 and H1299 cells. The different biochemical staining (Calcein-AM and PI and 4',6-Diamidino-2-phenylindole nuclear staining) assays assessed the cell death and morphological examination. Additionally, the mode of apoptosis was evaluated by mitochondrial membrane potential (∆ψm) and reactive oxygen species. Therefore, the study concludes that GET@ZIF-8 NCs are pledged to treat lung cancer cells.

7.
Cell Mol Life Sci ; 80(9): 272, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37646890

RESUMEN

BACKGROUND: Oxidative stress induced growth inhibitor 1 (OSGIN1) regulates cell death. The role and underlying molecular mechanism of OSGIN1 in non-small cell lung cancer (NSCLC) are uncharacterized. METHODS: OSGIN1 expression in NSCLC samples was detected using immunohistochemistry and Western blotting. Growth of NSCLC cells and gefitinib-resistant cells expressing OSGIN1 or TUBB3 knockdown was determined by MTT, soft agar, and foci formation assays. The effect of OSGIN1 knockdown on in vivo tumor growth was assessed using NSCLC patient-derived xenograft models and gefitinib-resistant patient-derived xenograft models. Potentially interacting protein partners of OSGIN1 were identified using IP-MS/MS, immunoprecipitation, PLA, and Western blotting assays. Microtubule dynamics were explored by tubulin polymerization assay and immunofluorescence. Differential expression of signaling molecules in OSGIN1 knockdown cells was investigated using phospho-proteomics, KEGG analysis, and Western blotting. RESULTS: We found that OSGIN1 is highly expressed in NSCLC tissues and is positively correlated with low survival rates and tumor size in lung cancer patients. OSGIN1 knockdown inhibited NSCLC cell growth and patient-derived NSCLC tumor growth in vivo. Knockdown of OSGIN1 strongly increased tubulin polymerization and re-established gefitinib sensitivity in vitro and in vivo. Additionally, knockdown of TUBB3 strongly inhibited NSCLC cell proliferation. Mechanistically, we found that OSGIN1 enhances DYRK1A-mediated TUBB3 phosphorylation, which is critical for inducing tubulin depolymerization. The results of phospho-proteomics and ontology analysis indicated that knockdown of OSGIN1 led to reduced propagation of the MKK3/6-p38 signaling axis. CONCLUSIONS: We propose that OSGIN1 modulates microtubule dynamics by enhancing DYRK1A-mediated phosphorylation of TUBB3 at serine 172. Moreover, elevated OSGIN1 expression promotes NSCLC tumor growth and gefitinib resistance through the MKK3/6-p38 signaling pathway. Our findings unveil a new mechanism of OSGIN1 and provide a promising therapeutic target for NSCLC treatment in the clinic.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Gefitinib/farmacología , Gefitinib/uso terapéutico , Tubulina (Proteína)/genética , Espectrometría de Masas en Tándem , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
8.
Xenobiotica ; 54(1): 38-44, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38085693

RESUMEN

Gefitinib is the first-generation drug of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) metabolised by the cytochrome P450 and transported by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). In the present study, the pharmacokinetics of gefitinib in healthy Chinese volunteers was investigated and the effect of genetic polymorphisms on its variability was evaluted.Forty-five healthy volunteers were administered a single dose of gefitinib and the blood samples were used for quantifying the concentration of gefitinib and genotyping fifteen single-nucleotide polymorphisms of cytochrome P450 enzymes (CYP3A4, CYP3A5, CYP2D6, CYP2C9 and CYP2C19) and drug transporters (ABCB1 and ABCG2).CYP3A5*3 (rs776746) polymorphism showed a significant influence, with higher gefitinib AUC0-t in carrier of CC genotype than in CT/TT genotype (BH-adjusted p value <0.05). For CYP2C9*3 (rs1057910), significant differences in pharmacokinetics of gefitinib were detected between carriers of AA and AC genotypes, with higher AUC0-t, AUC0-∞ and Cmax in carrier of AC genotype than in AA gen-otype (BH-adjusted p value <0.05). No associations were found between SNPs in CYP3A4, CYP2D6, CYP2C19, ABCB1, ABCG2 and the pharmacokinetics of gefitinib.The SNPs in CYP3A5*3 (rs776746) and CYP2C9*3 (rs1057910) were found to be associated with altered gefitinib pharmacokinetics in healthy Chinese volunteers.


Asunto(s)
Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Gefitinib , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Voluntarios Sanos , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Polimorfismo de Nucleótido Simple , Genotipo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , China
9.
Drug Resist Updat ; 66: 100908, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493511

RESUMEN

Non-small cell lung cancer is the leading cause of cancer related mortality worldwide, and lung adenocarcinoma (LUAD) is one of the most common subtypes. The role of N6-methyladenosine (m6A) modification in tumorigenesis and drug resistance in LUAD remains unclear. In this study, we evaluated the effects of vir-like m6A methyltransferase-associated protein (KIAA1429) depletion on proliferation, migration, invasion, and drug resistance of LUAD cells, and identified m6A-dependent downstream genes influenced by KIAA1429. We found that KIAA1429 activated Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway as a novel signaling event, which is responsible for tumorigenesis and resistance to gefitinib in LUAD cells. KIAA1429 and MAP3K2 showed high expression in LUAD patients' tissues. Knockdown of KIAA1429 inhibited MAP3K2 expression in an m6A methylation-dependent manner, restraining the progression of LUAD cells and inhibiting growth of gefitinib-resistant HCC827 cells. KIAA1429 positively regulated MAP3K2 expression, activated JNK/ MAPK pathway, and promoted drug resistance in gefitinib-resistant HCC827 cells. We reproduced the in vitro results in nude mouse xenografted with KIAA1429 knockdown cells. Our study showed that the mechanism of m6A KIAA1429-mediated gefitinib resistance in LUAD cells occurs by activating JNK/ MAPK signaling pathway. These findings provide potential targets for molecular therapy and clinical treatment in LUAD patients with gefitinib resistance.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Gefitinib/farmacología , Gefitinib/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Transformación Celular Neoplásica/genética , Carcinogénesis/genética , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
10.
Drug Resist Updat ; 70: 100987, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37392558

RESUMEN

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been widely used for human non-small-cell lung cancer (NSCLC) treatment. However, acquired resistance to EGFR-TKIs is the major barrier of treatment success, and new resistance mechanism remains to be elucidated. In this study, we found that elevated NADPH oxidase 4 (NOX4) expression was associated with acquired EGFR-TKIs resistance. Gefitinib is the first-generation FDA-approved EGFR-TKI, and osimertinib is the third-generation FDA-approved EGFR-TKI. We demonstrated that NOX4 knockdown in the EGFR-TKI resistant cells enabled the cells to become sensitive to gefitinib and osimertinib treatment, while forced expression of NOX4 in the sensitive parental cells was sufficient to induce resistance to gefitinib and osimertinib in the cells. To elucidate the mechanism of NOX4 upregulation in increasing TKIs resistance, we found that knockdown of NOX4 significantly down-regulated the expression of transcription factor YY1. YY1 bound directly to the promoter region of IL-8 to transcriptionally activate IL-8 expression. Interestingly, knockdown of NOX4 and IL-8 decreased programmed death ligand 1 (PD-L1) expression, which provide new insight on TKIs resistance and immune escape. We found that patients with higher NOX4 and IL-8 expression levels showed a shorter survival time compared to those with lower NOX4 and IL-8 expression levels in response to the anti-PD-L1 therapy. Knockdown of NOX4, YY1 or IL-8 alone inhibited angiogenesis and tumor growth. Furthermore, the combination of NOX4 inhibitor GKT137831 and gefitinib had synergistic effect to inhibit cell proliferation and tumor growth and to increase cellular apoptosis. These findings demonstrated that NOX4 and YY1 were essential for mediating the acquired EGFR-TKIs resistance. IL-8 and PD-L1 are two downstream targets of NOX4 to regulate TKIs resistance and immunotherapy. These molecules may be used as potential new biomarkers and therapeutic targets for overcoming TKIs resistance in the future.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinogénesis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB , Gefitinib/farmacología , Gefitinib/uso terapéutico , Interleucina-8/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , NADPH Oxidasa 4/genética , /farmacología
11.
Phytother Res ; 38(3): 1574-1588, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38282115

RESUMEN

BACKGROUND AND AIM: Gefitinib resistance is an urgent problem to be solved in the treatment of non-small cell lung cancer (NSCLC). Tanshinone IIA (Tan IIA) is one of the main active components of Salvia miltiorrhiza, which exhibits significant antitumor effects. The aim of this study is to explore the reversal effect of Tan IIA on gefitinib resistance in the epidermal growth factor receptor (EGFR)-mutant NSCLC and the underlying mechanism. EXPERIMENTAL PROCEDURE: CCK-8, colony formation assay, and flow cytometry were applied to detect the cytotoxicity, proliferation, and apoptosis, respectively. The changes in lipid profiles were measured by electrospray ionization-mass spectrometry (MS)/MS. Western blot, real-time q-PCR, and immunohistochemical were used to detect the protein and the corresponding mRNA levels. The in vivo antitumor effect was validated by the xenograft mouse model. KEY RESULTS: Co-treatment of Tan IIA enhanced the sensitivity of resistant NSCLC cells to gefitinib. Mechanistically, Tan IIA could downregulate the expression of sterol regulatory element binding protein 1 (SREBP1) and its downstream target genes, causing changes in lipid profiles, thereby reversing the gefitinib-resistance in EGFR-mutant NSCLC cells in vitro and in vivo. CONCLUSIONS AND IMPLICATIONS: Tan IIA improved gefitinib sensitivity via SREBP1-mediated lipogenesis. Tan IIA could be a potential candidate to enhance sensitivity for gefitinib-resistant NSCLC patients.


Asunto(s)
Abietanos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Neoplasias Pulmonares/patología , Gefitinib/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Lipogénesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proliferación Celular , Resistencia a Antineoplásicos , Receptores ErbB , Apoptosis , Lípidos , Línea Celular Tumoral
12.
Environ Toxicol ; 39(3): 1283-1293, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37948135

RESUMEN

BACKGROUND: Nonsmall-cell lung cancer (NSCLC) has emerged as one of the dreadful lung cancers globally due to its increased mortality rates. Concerning chemotherapy, gefitinib has been employed as an effective first-line treatment drug for NSCLC. Nonetheless, the acquired resistance to gefitinib has remained one of the treatment obstacles of NSCLC, requiring improvement in the therapeutic effect of gefitinib. METHODS: Initially, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Western blotting (WB) analyses were conducted to measure micro-ribose nucleic acid (miRNA, specifically miR-578) and suppressor of cytokine signaling 2 (SOCS2) levels in the clinical samples. Further, NSCLC cell lines resistance to gefitinib, established in vitro, were transfected by miR-578 inhibitor, miR-578 mimic, and si-SOCS2. Similarly, the xenograft mouse model in vivo was constructed to validate the reversing effect of miR-578. RESULTS: Our findings indicated the increased miR-578 expression levels in the gefitinib resistance group. Further, inhibiting the miR-578 expression substantially reversed the gefitinib resistance. In addition, the miR-578 effect was modulated via the SOCS2 expression level. The decreased gefitinib resistance effect of miR-578 was weakened by inhibiting the SOCS2 expression. CONCLUSION: These findings demonstrated that miR-578 effectively abolished gefitinib resistance by regulating the SOCS2 expression within NSCLC cells in vitro and in vivo. Together, these results will undoubtedly support a reference to provide potential molecular therapeutic targets and clinical treatments for treating NSCLC patients.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Animales , Ratones , Gefitinib/farmacología , Gefitinib/uso terapéutico , Resistencia a Antineoplásicos , Línea Celular Tumoral , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Antineoplásicos/farmacología , Proliferación Celular , Proteínas Supresoras de la Señalización de Citocinas
13.
Mikrochim Acta ; 191(5): 279, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647729

RESUMEN

The therapeutic effect of gefitinib on colorectal cancer (CRC) is unclear, but it has been reported that stromal cells in the tumor microenvironment may have an impact on drug sensitivity. Herein, we established a microfluidic co-culture system and explored the sensitivity of CRC cells co-cultured with cancer-associated fibroblasts (CAFs) to gefitinib. The system consisted of a multichannel chip and a Petri dish. The chambers in the chip and dish were designed to continuously supply nutrients for long-term cell survival and create chemokine gradients for driving cell invasion without any external equipment. Using this system, the proliferation and invasiveness of cells were simultaneously evaluated by quantifying the area of cells and the migration distance of cells. In addition, the system combined with live cell workstation could evaluate the dynamic drug response of co-cultured cells and track individual cell trajectories in real-time. When CRC cells were co-cultured with CAFs, CAFs promoted CRC cell proliferation and invasion and reduced the sensitivity of cells to gefitinib through the exosomes secreted by CAFs. Furthermore, the cells that migrated out of the chip were collected, and EMT-related markers were determined by immunofluorescent and western blot assays. The results demonstrated that CAFs affected the response of CRC cells to gefitinib by inducing EMT, providing new ideas for further research on the resistance mechanism of gefitinib. This suggests that targeting CAFs or exosomes might be a new approach to enhance CRC sensitivity to gefitinib, and our system could be a novel platform for investigating the crosstalk between tumor cells and CAFs and understanding multiple biological changes of the tumor cells in the tumor microenvironment.


Asunto(s)
Antineoplásicos , Proliferación Celular , Técnicas de Cocultivo , Neoplasias Colorrectales , Gefitinib , Gefitinib/farmacología , Humanos , Técnicas de Cocultivo/instrumentación , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Línea Celular Tumoral , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Exosomas/metabolismo , Exosomas/química , Exosomas/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos
14.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397056

RESUMEN

The development of acquired resistance to small molecule tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) signaling has hindered their efficacy in treating non-small cell lung cancer (NSCLC) patients. Our previous study showed that constitutive activation of the 70 kDa ribosomal protein S6 kinase 1 (S6K1) contributes to the acquired resistance to EGFR-TKIs in NSCLC cell lines and xenograft tumors in nude mice. However, the regulatory mechanisms underlying S6K1 constitutive activation in TKI-resistant cancer cells have not yet been explored. In this study, we recapitulated this finding by taking advantage of a gefitinib-resistant patient-derived xenograft (PDX) model established through a number of passages in mice treated with increasing doses of gefitinib. The dissociated primary cells from the resistant PDX tumors (PDX-R) displayed higher levels of phosphor-S6K1 expression and were resistant to gefitinib compared to cells from passage-matched parental PDX tumors (PDX-P). Both genetic and pharmacological inhibition of S6K1 increased sensitivity to gefitinib in PDX-R cells. In addition, both total and phosphorylated mechanistic target of rapamycin kinase (MTOR) levels were upregulated in PDX-R and gefitinib-resistant PC9G cells. Knockdown of MTOR by siRNA decreased the expression levels of total and phosphor-S6K1 and increased sensitivity to gefitinib in PDX-R and PC9G cells. Moreover, a transcription factor ELK1, which has multiple predicted binding sites on the MTOR promoter, was also upregulated in PDX-R and PC9G cells, while the knockdown of ELK1 led to decreased expression of MTOR and S6K1. The chromatin immunoprecipitation (ChIP)-PCR assay showed the direct binding between ELK1 and the MTOR promoter, and the luciferase reporter assay further indicated that ELK1 could upregulate MTOR expression through tuning up its transcription. Silencing ELK1 via siRNA transfection improved the efficacy of gefitinib in PDX-R and PC9G cells. These results support the notion that activation of ELK1/MTOR/S6K1 signaling contributes to acquired resistance to gefitinib in NSCLC. The findings in this study shed new light on the mechanism for acquired EGFR-TKI resistance and provide potential novel strategies by targeting the ELK1/MTOR/S6K1 pathway.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Gefitinib , Neoplasias Pulmonares , Proteína Elk-1 con Dominio ets , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones Desnudos , Proteínas Quinasas S6 Ribosómicas , ARN Interferente Pequeño/farmacología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , /uso terapéutico
15.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791602

RESUMEN

The prognosis for metastatic gastric adenocarcinoma (mGAC) remains poor. Gene alterations in receptor tyrosine kinases (RTKs) such as epidermal growth factor receptor (EGFR) and their downstream effectors including catalytic subunit alpha of the phosphatidylinositol 3-kinase (PIK3CA) are common in mGAC. Targeted RTK and phosphatidylinositol-3-kinase (PI3K) treatments have demonstrated clinical benefits in other solid tumours and are key potential targets for clinical development against mGAC given the presence of recurrent alterations in these pathways. Furthermore, combination RTK/PI3K treatments may overcome compensatory mechanisms that arise using monotherapies, leading to improved patient outcomes. Herein, we investigated RTK/PI3K single and combination drug responses against our unique human mGAC-derived PIK3CA gain-of-function mutant, human epidermal growth factor receptor 2 (HER2)-negative, EGFR-expressing circulating tumour cell line, UWG02CTC, under two- and three-dimensional culture conditions to model different stages of metastasis. UWG02CTCs were highly responsive to the PI3K p110α-subunit targeted drugs PIK-75 (IC50 = 37.0 ± 11.1 nM) or alpelisib (7.05 ± 3.7 µM). Drug sensitivities were significantly increased in 3D conditions. Compensatory MAPK/ERK pathway upregulation by PI3K/Akt suppression was overcome by combination treatment with the EGFR inhibitor gefitinib, which was strongly synergistic. PIK-75 plus gefitinib significantly impaired UWG02CTC invasion in an organotypic assay. In conclusion, UWG02CTCs are a powerful ex vivo mGAC drug responsiveness model revealing EGFR/PI3K-targeted drugs as a promising combination treatment option for HER2-negative, RAS wild-type mGAC patients.


Asunto(s)
Adenocarcinoma , Fosfatidilinositol 3-Quinasa Clase I , Receptores ErbB , Células Neoplásicas Circulantes , Transducción de Señal , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Receptores ErbB/metabolismo , Transducción de Señal/efectos de los fármacos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenocarcinoma/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/efectos de los fármacos , Células Neoplásicas Circulantes/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Metástasis de la Neoplasia , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Tiazoles
16.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338651

RESUMEN

The epidermal growth factor receptor (EGFR) is a common driver of non-small cell lung cancer (NSCLC). Clathrin-mediated internalization (CMI) sustains EGFR signaling. AXL is associated with resistance to EGFR-tyrosine kinase inhibitors (TKIs) in EGFR-mutated (EGFRM) NSCLC. We investigated the effects of Leucine zipper downregulated in cancer-1 (LDOC1) on EGFR CMI and NSCLC treatment. Coimmunoprecipitation, double immunofluorescence staining, confocal microscopy analysis, cell surface labelling assays, and immunohistochemistry studies were conducted. We revealed that LDOC1 interacts with clathrin adaptors through binding motifs. LDOC1 depletion promotes internalization and plasma membrane recycling of EGFR in EGFRM NSCLC PC9 and HCC827 cells. Membranous and cytoplasmic EGFR decreased and increased, respectively, in LDOC1 (-) NSCLC tumors. LDOC1 depletion enhanced and sustained activation of EGFR, AXL, and HER2 and enhanced activation of HER3 in PC9 and HCC827 cells. Sensitivity to first-generation EGFR-TKIs (gefitinib and erlotinib) was significantly reduced in LDOC1-depleted PC9 and HCC827 cells. Moreover, LDOC1 downregulation was significantly associated (p < 0.001) with poor overall survival in patients with EGFRM NSCLC receiving gefitinib (n = 100). In conclusion, LDOC1 may regulate the efficacy of first-generation EGFR-TKIs by participating in the CMI of EGFR. Accordingly, LDOC1 may function as a prognostic biomarker for EGFRM NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Leucina Zippers , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Línea Celular Tumoral , Mutación , Resistencia a Antineoplásicos , Antineoplásicos/farmacología , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo
17.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339194

RESUMEN

Exposure to hydrochloric acid (HCl) can provoke acute and chronic lung injury. Because of its extensive production for industrial use, frequent accidental exposures occur, making HCl one of the top five chemicals causing inhalation injuries. There are no Food and Drug Administration (FDA)-approved treatments for HCl exposure. Heat shock protein 90 (HSP90) inhibitors modulate transforming growth factor-ß (TGF-ß) signaling and the development of chemical-induced pulmonary fibrosis. However, little is known on the role of Heat Shock Protein 70 (HSP70) during injury and treatment with HSP90 inhibitors. We hypothesized that administration of geranylgeranyl-acetone (GGA), an HSP70 inducer, or gefitinib (GFT), an HSP70 suppressant, alone or in combination with the HSP90 inhibitor, TAS-116, would improve or worsen, respectively, HCl-induced chronic lung injury in vivo and endothelial barrier dysfunction in vitro. GGA, alone, improved HCl-induced human lung microvascular endothelial cells (HLMVEC) barrier dysfunction and, in combination with TAS-116, improved the protective effect of TAS-116. In mice, GGA reduced HCl toxicity and while TAS-116 alone blocked HCl-induced chronic lung injury, co-administration with GGA, resulted in further improvement. Conversely, GFT potentiated HCl-induced barrier dysfunction and impaired the antidotal effects of TAS-116. We conclude that combined treatments with HSP90 inhibitors and HSP70 inducers may represent a novel therapeutic approach to manage HCl-induced chronic lung injury and pulmonary fibrosis.


Asunto(s)
Antineoplásicos , Benzamidas , Lesión Pulmonar , Fibrosis Pulmonar , Pirazoles , Ratones , Humanos , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Ácido Clorhídrico/toxicidad , Proteínas HSP70 de Choque Térmico/metabolismo , Células Endoteliales/metabolismo , Antineoplásicos/efectos adversos , Gefitinib/efectos adversos , Proteínas HSP90 de Choque Térmico/metabolismo
18.
Molecules ; 29(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38398589

RESUMEN

In this study, 14 structurally novel gefitinib-1,2,3-triazole derivatives were synthesized using a click chemistry approach and characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry (HRMS). Preliminary cell counting kit-8 results showed that most of the compounds exhibit excellent antitumor activity against epidermal growth factor receptor wild-type lung cancer cells NCI-H1299, A549 and NCI-H1437. Among them, 4b and 4c showed the most prominent inhibitory effects. The half maximal inhibitory concentration (IC50) values of 4b were 4.42 ± 0.24 µM (NCI-H1299), 3.94 ± 0.01 µM (A549) and 1.56 ± 0.06 µM (NCI-1437). The IC50 values of 4c were 4.60 ± 0.18 µM (NCI-H1299), 4.00 ± 0.08 µM (A549) and 3.51 ± 0.05 µM (NCI-H1437). Furthermore, our results showed that 4b and 4c could effectively inhibit proliferation, colony formation and cell migration in a concentration-dependent manner, as well as induce apoptosis in H1299 cells. In addition, 4b and 4c exerted its anti-tumor effects by inducing cell apoptosis, upregulating the expression of cleaved-caspase 3 and cleaved-PARP and downregulating the protein levels of Bcl-2. Based on these results, it is suggested that 4b and 4c be developed as potential new drugs for lung cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Gefitinib/farmacología , Proliferación Celular , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Apoptosis , Triazoles/farmacología , Triazoles/uso terapéutico , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad
19.
Saudi Pharm J ; 32(6): 102070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38645413

RESUMEN

Cancer is the leading cause of mortality worldwide. In patients with metastatic non-small cell lung cancer, epidermal growth factor receptor (EGFR) is often overexpressed. Gefitinib (GEF), an inhibitor of EGFR, is approved for the treatment of patients with metastatic non-small cell lung cancer (NSCLC). However, the low solubility and dissolution of GEF limits its bioavailability. Numerous methods, including solid dispersion (SD) and complexation, have been reported to enhance the dissolution of poorly soluble drugs. In this study, GEF complexes were prepared using methyl-ß-cyclodextrin (MßCD) and hydroxypropyl-ß-cyclodextrin (HPßCD) in two molar ratios (1:1 and 1:2), furthermore, GEF SDs were prepared using polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and poloxamer-188(PXM) in three different ratios (1:2, 1:4 and 1:6 w/w). Dissolution studies were conducted on the prepared formulations. Dissolution results showed a 1.22-2.17-fold enhancement in drug dissolution after one hour compared to untreated GEF. Two formulations that showed higher dissolution enhancement were subsequently evaluated for in-vitro cytotoxicity and were formulated into tablets. The selected PVP-GEF (1:4 w/w) and MßCD-GEF (1:1M) formulas displayed improved cytotoxicity compared to untreated GEF. The IC50 values of the PVP-GEF and MßCD-GEF were 4.33 ± 0.66 and 4.84 ± 0.38 µM, respectively which are significantly lower (p < 0.05) than free GEF. In addition, the formulated tablets exhibited enhanced dissolution compared to pure GEF tablets. PVP-GEF SD tablets released (35.1 %±0.4) of GEF after one hour, while GEF-MßCD tablets released (42.2 % ± 0.7) after one hour. In the meantime, tablets containing pure GEF showed only 15 % ± 0.5 release at the same time. The findings of this study offer valuable insights for optimizing the dissolution and hence therapeutic capabilities of GEF while mitigating its limitations.

20.
Zhongguo Zhong Yao Za Zhi ; 49(1): 175-184, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403350

RESUMEN

The occurrence and development of tumors are associated with the cell energy metabolism. Inhibiting energy metabolism of lung cancer cells is an important strategy to overcome drug resistance. Based on the cellular energy metabolism pathway, this study observed the effect of combination of shikonin(SKN) and gefitinib(GFB) on the drug resistance in non-small cell lung cancer and explored the underlying mechanism. The human non-small cell lung cancer line HCC827/GR resistant to gefitinib was used as the cell model in vitro. The CCK-8 assay and flow cytometry were employed to investigate the cell viability and apoptosis, respectively. The high performance liquid chromatography was employed to measure the intracellular accumulation of GFB. A Seahorse XFe96 Analyzer was used to detect the changes of cellular energy metabolism. Western blot was employed to determine the expression of the proteins involved in the drug resistance. The tumor-bearing nude mouse model was used to verify the efficacy of SKN+GFB in overcoming drug resistance in vivo. The results showed that SKN+GFB significantly reduced the IC_(50) of GFB on HCC827/GR cells, with the combination index of 0.628, indicating that the combination of the two drugs had a synergistic effect and promoted cell apoptosis. SKN increased the intracellular accumulation of GFB. SKN+GFB lowered the oxygen consumption rate(OCR) and glycolytic proton efflux rate(GlycoPER) in cell energy metabolism, and down-regulated the overexpression of PKM2, p-EGFR, P-gp, and HIF-1α in drug resistance. The results of reversing drug resistance test in vivo showed that GFB or SKN alone had no significant antitumor effect, while the combination at different doses induced the apoptosis of the tumor tissue and inhibited the expression of PKM2 and P-gp, demonstrating a significant antitumor effect. Moreover, the tumor inhibition rate in the high-dose combination group reached 64.01%. In summary, SKN+GFB may interfere with the energy metabolism to limit the function of HCC827/GR cells, thus reversing the GFB resistance in non-small cell lung cancer.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Naftoquinonas , Animales , Ratones , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quinazolinas/farmacología , Resistencia a Antineoplásicos , Proliferación Celular , Línea Celular Tumoral , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA