Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.325
Filtrar
Más filtros

Intervalo de año de publicación
1.
Drug Resist Updat ; 73: 101056, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38277755

RESUMEN

BACKGROUND: The treatment of dopamine agonists (DA) resistant prolactinomas remains a formidable challenge, as the mechanism of resistance is still unclear, and there are currently no viable alternative drug therapies available. This study seeks to investigate the mechanism of DA resistance in prolactinomas and identify new potentially effective drugs. METHODS: To explore the mechanism of DA resistance in prolactinomas, this study conducted transcriptome sequencing analysis on 27 cases of DA-resistant prolactinomas and 10 cases of sensitive prolactinomas. In addition, single-cell sequencing analysis was performed on 3 cases of DA-resistant prolactinomas and 3 cases of sensitive prolactinomas. Furthermore, to screen for potential therapeutic drugs, the study successfully established an organoids model for DA-resistant prolactinomas and screened 180 small molecule compounds using 8 organoids. The efficacy of the identified drugs was verified through various assays, including CCK-8, colony formation, CTG, and flow cytometry, and their mechanisms of action were confirmed through WB and IHC. The effectiveness of the identified drugs was evaluated both in vitro and in vivo. RESULTS: The results of transcriptome sequencing and single-cell sequencing analyses showed that DA resistance in prolactinomas is associated with the upregulation of the Focal Adhesion (FA) signaling pathway. Additionally, immunohistochemical validation revealed that FAK and Paxillin were significantly upregulated in DA-resistant prolactinomas. Screening of 180 small molecule compounds using 8 organoids identified Genistein as a potentially effective drug for DA-resistant prolactinomas. Experimental validation demonstrated that Genistein inhibited the proliferation of pituitary tumor cell lines and organoids and promoted apoptosis in pituitary tumor cells. Moreover, both the cell sequencing results and WB validation results of the drug-treated cells indicated that Genistein exerts its anti-tumor effect by inhibiting the FA pathway. In vivo, experiments also showed that Genistein can inhibit subcutaneous tumor formation. CONCLUSION: DA resistance in prolactinomas is associated with upregulation of the Focal Adhesion (FA) signaling pathway, and Genistein can exert its anti-tumor effect by inhibiting the expression of the FA pathway.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias Hipofisarias , Prolactinoma , Humanos , Neoplasias Hipofisarias/tratamiento farmacológico , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Agonistas de Dopamina/farmacología , Agonistas de Dopamina/uso terapéutico , Prolactinoma/tratamiento farmacológico , Prolactinoma/genética , Prolactinoma/metabolismo , Prolactina/metabolismo , Prolactina/uso terapéutico , Genisteína/uso terapéutico , Tumores Neuroendocrinos/tratamiento farmacológico , Resistencia a Antineoplásicos/genética
2.
Curr Issues Mol Biol ; 46(3): 2166-2180, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534756

RESUMEN

The purpose of this study was to evaluate the effect of genistein in nano, micro, and macro forms on the intensity of the DMBA-induced tumor process in rats and to understand the mechanisms of this action. The effect of genistein supplementation on the content of selected eicosanoids (HETEs, HODE, and HEPE) in the serum of rats was evaluated. The levels and expression of genes encoding various pro-inflammatory cytokines (IL-1, IL-6) and MMP-9 in the blood of rats were also investigated. The biological material for the study was blood obtained from female rats of the Sprague Dawley strain (n = 32). The animals were randomly divided into four groups: animals without supplementation, and animals supplemented at a dose of 0.2 mg/kg b.w. (0.1 mg/mL) with macro, micro (587 ± 83 nm), or nano (92 ± 41 nm) genistein. To induce mammary neoplasia (adenocarcinoma), rats were given 7,12-dimethyl-1,2-benz[a]anthracene (DMBA). The content of selected eicosanoids was determined by liquid chromatography with UV detection. An immunoenzymatic method was used to determine the content of cytokines and MMP-9. The expression of the IL-6, IL-1beta, and MMP-9 genes was determined with quantitative real-time PCR (qRT-PCR) using TaqMan probes. Based on the study, it was shown that supplementation of animals with genistein in macro, micro, and nano forms increased the intensity of the tumor process in rats. It was shown that the content of 12-HEPE, HODE, and 12-HETE in the serum of genistein-supplemented rats was statistically significantly lower with respect to the content of the aforementioned markers in the serum of rats receiving only a standard diet, devoid of supplementation. It was found that animals supplemented with nano-, micro-, and macrogenistein had higher levels of metalloproteinase-9, MMP-9, compared to animals without supplementation. There was a significant increase in MMP-9 gene expression in the blood of macrogenistein-supplemented animals, relative to the other groups of rats. On the basis of the study, it was shown that supplementation of animals with nano-, micro-, and macrogenistein had an effect on the development of the tumor process. Dietary supplementation with genistein significantly decreased the level of selected eicosanoids, which may have significant impacts on cancer development and progression.

3.
Osteoporos Int ; 35(3): 413-430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875614

RESUMEN

Due to estrogen deficiency, postmenopausal women may suffer from an imbalance in bone metabolism that leads to bone fractures. Isoflavones, a type of phytoestrogen, have been suggested to improve bone metabolism and increase bone mass. Therefore, isoflavones are increasingly recognized as a promising natural alternative to hormone replacement therapy for postmenopausal women who face a heightened risk of osteoporosis and are susceptible to bone fractures. PURPOSE: This study aimed to evaluate the efficacy of isoflavone interventions on bone mineral density (BMD) in postmenopausal women by means of systematic review and meta-analysis. METHODS: The electronic database searches were performed on PubMed, Embase, Scopus, and Cochrane Library databases, covering literature up to April 20, 2023. A random-effects model was used to obtain the main effect estimates, with a mean difference (MD) and its 95% confidence interval (CI) as the effect size summary. The risk of bias assessment was conducted using the Risk of Bias 2 (RoB2) tool. RESULTS: A total of 63 randomized controlled trials comparing isoflavone interventions (n = 4,754) and placebo (n = 4,272) were included. The results indicated that isoflavone interventions significantly improved BMD at the lumbar spine (MD = 0.0175 g/cm2; 95% CI, 0.0088 to 0.0263, P < 0.0001), femoral neck (MD = 0.0172 g/cm2; 95% CI, 0.0046 to 0.0298, P = 0.0073), and distal radius (MD = 0.0138 g/cm2; 95% CI, 0.0077 to 0.0198, P < 0.0001) in postmenopausal women. Subgroup analysis showed that the isoflavone intervention was effective for improving BMD when the duration was ≥ 12 months and when the intervention contained genistein of at least 50 mg/day. CONCLUSION: This systematic review and meta-analysis suggests that isoflavone interventions, especially those containing genistein of at least 50 mg/day, can effectively enhance BMD in postmenopausal women.


Asunto(s)
Fracturas Óseas , Isoflavonas , Osteoporosis Posmenopáusica , Femenino , Humanos , Densidad Ósea , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Genisteína/farmacología , Genisteína/uso terapéutico , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/prevención & control , Posmenopausia , Ensayos Clínicos Controlados Aleatorios como Asunto , Fracturas Óseas/tratamiento farmacológico
4.
Exp Eye Res ; 240: 109806, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272381

RESUMEN

Primary open-angle glaucoma (POAG) is the most common type of glaucoma leading to blindness. The search for ways to prevent/treat this entity is one of the main challenges of today's ophthalmology. One of such solution seems to be biologically active substances of natural origin, such as genistein (GEN), which can affect the function of isolated trabecular meshwork by the inhibition of protein tyrosine kinase. However, the role of GEN in viability as well as myofibroblastic transformation in human trabecular meshwork cells stimulated by TGF-ß is unknown. Using human trabecular meshwork cells (HTMCs) we investigated the effect of genistein on cell viability and myofibroblastic transformation stimulated by TGF-ß1 and TGF-ß2. Using Real-Time PCR, western blot and immunofluorescence we determined the effect on the expression changes of αSMA, TIMP1, collagen 1 and 3 at mRNA and protein level. We found that genistein increases the viability of HTMCs (1, 2, 3 µg/ml; P < 0.05 and 4, 5, 10, 15, 20 µg/ml; P < 0.01). Moreover, we found that addition of 10, 15 and 20 µg/ml is able to prevent myofibroblastic transformation of HTMCs by decreasing αSMA, TIMP1, collagen 1 and 3 mRNA and protein expression (P < 0.01). Based on the obtained results, we can conclude that genistein is a potential factor that can prevent the myofibroblastic transformation of HTMCs accompanying glaucoma. Describing GEN influence on myofibroblastic transformation processes in HTMC allows us to conclude that it can be considered a potential therapeutic agent or a substance supporting treatment in patients with glaucoma.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Genisteína/farmacología , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Glaucoma de Ángulo Abierto/prevención & control , Glaucoma de Ángulo Abierto/genética , Malla Trabecular/metabolismo , Células Cultivadas , Factor de Crecimiento Transformador beta2/farmacología , Factor de Crecimiento Transformador beta2/metabolismo , Glaucoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Colágeno/metabolismo
5.
Pharmacol Res ; 204: 107201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704108

RESUMEN

Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like ß-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.


Asunto(s)
Estrógenos , Terapia por Ejercicio , Trastornos Mentales , Animales , Humanos , Estrógenos/metabolismo , Ejercicio Físico/fisiología , Trastornos Mentales/metabolismo , Trastornos Mentales/terapia , Receptores de Estrógenos/metabolismo , Transducción de Señal
6.
Pharmacol Res ; 203: 107150, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521285

RESUMEN

Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.


Asunto(s)
Productos Biológicos , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Animales , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Productos Biológicos/química , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/administración & dosificación , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/administración & dosificación
7.
Eur J Nutr ; 63(5): 1877-1888, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38592519

RESUMEN

OBJECTIVES: Ulcerative colitis (UC) is a colonic immune system disorder, manifested with long duration and easy relapse. Genistein has been reported to possess various biological activities. However, it remains unclear whether genistein can ameliorate UC by modulating the homeostasis of the intestinal bacterial community. METHODS: The dextran sodium sulfate (DSS)-induced UC mice were administrated with genistein (20 mg/kg/day) or genistein (40 mg/kg/day) for ten days. The general physical condition of the mice was monitored. After sacrifice, the changes in colon length and colonic pathological morphology were observed. The expression of intestinal barrier proteins, inflammatory cytokines, and macrophage markers in the colon was detected. The composition and metabolic products of the intestinal microbiota were analyzed. RESULTS: Genistein treatment visibly improved body weight change and disease activity index in DSS-induced mice. Genistein treatment ameliorated colonic pathological alterations and promoted the expression of mucin-2 and tight junction proteins. Genistein administration inhibited myeloperoxidase activity and colonic inflammatory cytokines. Furthermore, genistein administration improved the structure of the intestinal microbial community, promoted the production of short-chain fatty acids, and modulated macrophage polarization. CONCLUSIONS: These results revealed that genistein mediated macrophage polarization balance by improving intestinal microbiota and its metabolites, thereby alleviating DSS-induced colitis.


Asunto(s)
Sulfato de Dextran , Microbioma Gastrointestinal , Genisteína , Macrófagos , Ratones Endogámicos C57BL , Animales , Genisteína/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Modelos Animales de Enfermedad , Colon/efectos de los fármacos , Colon/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Citocinas/metabolismo , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Mucina 2/metabolismo
8.
J Biochem Mol Toxicol ; 38(4): e23697, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578078

RESUMEN

Genistein, an isoflavone has the potential to mimic, augment, or dysregulate the steroid hormone production pathways. We hypothesized that genistein affects the granulosa cell (GCs) functions through a series of biochemical, molecular, and genomic cascades. The present study was conducted to evaluate the impact of genistein exposure on GCs viability, apoptosis, and steroidogenesis. The present study involved 3/5 days of exposure to genistein on GCs collected from abattoir-derived ovine ovaries at doses of 0, 1, 10, 25, 50, and 100 µM. The harvested GCs were used for growth, cytotoxicity, and gene expression studies related to apoptosis, growth, and steroidogenesis. We observed that genistein had both stimulatory at 10 and 25 µM levels as well as inhibitory effects at 50 and 100 µM levels on the growth and proliferation of GCs. Genistein significantly decreased the levels of 17ß-estradiol at higher exposure (50 and 100 µM), whereas the progesterone level increased significantly as the genistein exposure increased. Additionally, genistein could also alter the mRNA expression of the steroidogenic receptor, enzymes, proteins, and growth-related genes suggesting that genistein could potentially alter the steroidogenic pathways. We conclude that genistein can interfere with cell survival and steroidogenesis by exhibiting a dose-dependent biphasic response on the viability, growth-related parameters, and the synthesis of 17ß-estradiol in the cultured GCs.


Asunto(s)
Genisteína , Isoflavonas , Femenino , Ovinos , Animales , Genisteína/farmacología , Progesterona/metabolismo , Células de la Granulosa/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Isoflavonas/farmacología , Oveja Doméstica/metabolismo , Células Cultivadas
9.
Kidney Blood Press Res ; 49(1): 137-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38266504

RESUMEN

INTRODUCTION: The process of vascular calcification has severe clinical consequences in a number of diseases, including diabetes, atherosclerosis, and end-stage renal disease. In the present study, we investigated the effect of policosanol (Poli), genistein (Gen), and vitamin D (VitD) separately and in association to evaluate the possible synergistic action on inorganic phosphate (Pi)-induced calcification of vascular smooth muscle cells (VSMCs). METHODS: Primary human VSMCs were cultured with either growth medium or growth medium supplemented with calcium and phosphorus (calcification medium) in combination with Poli, Gen, and VitD. Alizarin Red staining, mineralization, and the protein expression of RUNX2 and superoxide dismutase-2 (SOD2) were investigated. RESULTS: All three substances tested were effective at reducing osteogenic differentiation of VSMCs in a dose-dependent manner. Poli+Gen, Poli+VitD, Gen+VitD treatment induced a greater inhibition of calcification and RUNX2 expression compared to single compounds treatments. Moreover, the association of Poli+Gen+VitD (Reduplaxin®) was more effective at inhibiting VSMCs mineralization and preventing the increase in RUNX2 expression induced by calcification medium but not modified SOD2 expression. CONCLUSIONS: The association of Pol, Gen, and VitD (Reduplaxin®) has an additive inhibitory effect on the calcification process of VSMCs induced in vitro by a pro-calcifying medium.


Asunto(s)
Alcoholes Grasos , Genisteína , Músculo Liso Vascular , Calcificación Vascular , Vitamina D , Humanos , Vitamina D/farmacología , Alcoholes Grasos/farmacología , Células Cultivadas , Calcificación Vascular/prevención & control , Calcificación Vascular/inducido químicamente , Calcificación Vascular/tratamiento farmacológico , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Genisteína/farmacología , Genisteína/uso terapéutico , Superóxido Dismutasa/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo
10.
Phytopathology ; 114(6): 1196-1205, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38281161

RESUMEN

When Pseudomonas savastanoi pv. phaseolicola, the bacterium that causes halo blight, induces hypersensitive immunity in common bean leaves, salicylic acid and phytoalexins accumulate at the site of infection. Both salicylic acid and the phytoalexin resveratrol exert antibiotic activities and toxicities in vitro, adversely disrupting the P. savastanoi pv. phaseolicola proteome and metabolism and stalling replication and motility. These efficacious properties likely contribute to the cessation of bacterial spread in beans. Genistein is an isoflavonoid phytoalexin that also accumulates during bean immunity, so we tested its antibiotic potential in vitro. Quantitative proteomics revealed that genistein did not induce proteomic changes in P. savastanoi pv. phaseolicola in the same way that salicylic acid or resveratrol did. Rather, a dioxygenase that could function to metabolize genistein was among the most highly induced enzymes. Indeed, high-throughput metabolomics provided direct evidence for genistein catabolism. Metabolomics also revealed that genistein induced the bacterium to produce indole compounds, several of which had structural similarity to auxin. Additional mass spectrometry analyses proved that the bacterium produced an isomer of the auxin indole-3-acetic acid but not indole-3-acetic acid proper. These results reveal that P. savastanoi pv. phaseolicola can tolerate bean genistein and that the bacterium likely responds to bean-produced genistein during infection, using it as a signal to increase pathogenicity, possibly by altering host cell physiology or metabolism through the production of potential auxin mimics.


Asunto(s)
Genisteína , Fitoalexinas , Enfermedades de las Plantas , Pseudomonas , Sesquiterpenos , Genisteína/farmacología , Genisteína/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Pseudomonas/efectos de los fármacos , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacología , Indoles/metabolismo , Indoles/farmacología , Ácido Salicílico/metabolismo , Hojas de la Planta/microbiología , Phaseolus/microbiología , Proteómica , Ácidos Indolacéticos/metabolismo , Estilbenos/metabolismo , Estilbenos/farmacología , Resveratrol/farmacología , Resveratrol/metabolismo
11.
Endocr J ; 71(4): 317-333, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38346749

RESUMEN

Soybean is a source of protein, fibers, and phytochemical isoflavones which are considered to have numerous health benefits for children and adulthood. On the other hand, isoflavones are widely known as phytoestrogens that exert their action via the estrogen signaling pathway. With this regard, isoflavones are also considered as endocrine-disrupting chemicals. Endogenous estrogen plays a crucial role in brain development through binding to estrogen receptors (ERs) or G protein-coupled estrogen receptors 1 (GPER1) and regulates morphogenesis, migration, functional maturation, and intracellular metabolism of neurons and glial cells. Soy isoflavones can also bind to ERs, GPER1, and, furthermore, other receptors to modulate their action. Therefore, soy isoflavone consumption may affect brain development during the pre-and post-natal periods. This review summarizes the current knowledge on the mechanisms of isoflavone action, particularly in the early stages of brain development by introducing representative human, and animal models, and in vitro studies, and discusses their beneficial and adverse impact on neurobehavior. As a conclusion, the soy product consumption during the pre-and post-natal periods under proper range of dose showed beneficial effects in neurobehavior development, including improvement of anxiety, aggression, hyperactive behavior, and cognition, whereas their adverse effect by taking higher doses cannot be excluded. We also present novel research lines to further assess the effect of soy isoflavone administration during brain development.


Asunto(s)
Encéfalo , Glycine max , Isoflavonas , Transducción de Señal , Isoflavonas/farmacología , Humanos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Animales , Glycine max/química , Fitoestrógenos/farmacología , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo
12.
Metab Brain Dis ; 39(1): 199-215, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37855935

RESUMEN

Depression is one of the most prevalent severe CNS disorders, which negatively affects social lives, the ability to work, and the health of people. As per the World Health Organisation (WHO), it is a psychological disorder that is estimated to be a leading disease by 2030. Clinically, various medicines have been formulated to treat depression but they are having a setback due to their side effects, slow action, or poor bioavailability. Nowadays, flavonoids are regarded as an essential component in a variety of nutraceutical, pharmaceutical and medicinal. Isoflavones are a distinctive and important subclass of flavonoids that are generally obtained from soybean, chickpeas, and red clover. The molecules of this class have been extensively explored in various CNS disorders including depression and anxiety. Isoflavones such as genistein, daidzein, biochanin-A, formononetin, and glycitein have been reported to exert an anti-depressant effect through the modulation of different mediators. Fatty acid amide hydrolase (FAAH) mediated depletion of anandamide and hypothalamic-pituitary-adrenal (HPA) axis-mediated modulation of brain-derived neurotrophic factor (BDNF), monoamine oxidase (MAO) mediated depletion of biogenic amines and inflammatory signaling are the important underlying pathways leading to depression. Upregulation in the levels of BDNF, anandamide, antioxidants and monoamines, along with inhibition of MAO, FAAH, HPA axis, and inflammatory stress are the major modulations produced by different isoflavones in the observed anti-depressant effect. Therefore, the present review has been designed to explore the mechanistic interplay of various mediators involved in mediating the anti-depressant action of different isoflavones.


Asunto(s)
Ácidos Araquidónicos , Factor Neurotrófico Derivado del Encéfalo , Endocannabinoides , Isoflavonas , Alcamidas Poliinsaturadas , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Isoflavonas/farmacología , Flavonoides , Monoaminooxidasa/metabolismo
13.
Metab Brain Dis ; 39(5): 821-831, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795260

RESUMEN

Migraine is a widespread brain condition described by frequent, recurrent episodes of incapacitating, moderate-to-severe headaches with throbbing pain that are usually one-sided. It is the 2nd most debilitating state lived with disability in terms of years, with a prevalence rate of 15-20%. Significant drops in estrogen levels have been associated with triggering acute migraine attacks in certain cases. Phytoestrogens are plant-derived compounds that resemble estrogen in structure, enabling them to imitate estrogen's functions in the body by attaching to estrogen receptors. Thus, the study was aimed to explore the protective effect of genistein against migraine. Moreover, the role of nitric oxide was also studied in the observed effect of genistein. Nitric oxide (NO) is implicated in migraine pathophysiology due to its role in promoting cerebral vasodilation and modulation of pain perception. Exploring L-NAME, a nitric oxide synthase inhibitor in migraine research helps scientists better understand the role of NO in migraine. Nitroglycerine treatment significantly increased the facial-unilateral head pain and spontaneous pain, as evidenced by the increased number of head scratching and groomings. Nitroglycerine treatment also induced anxiogenic behavior in mice. A significant reduction in the number of entries in the light phase and open arm, respectively. Biochemical analysis indicated a significant increase in inflammatory and oxidative stress in the nitroglycerin group. A significant increase and decrease in brain TBARS and GSH were observed with nitroglycerine treatment, respectively. Moreover, nitroglycerine treatment has uplifted the serum TNF-α level. Genistein (20 mg/kg) significantly mitigated the facial-unilateral head pain, spontaneous pain, photophobia, and anxiety-like behavior induced by nitroglycerine. Biochemical analysis showed that genistein (20 mg/kg) significantly abrogated the nitroglycerine-induced lipid peroxidation and increased serum TNF-α level. Genistein treatment also upregulated the brain GSH level and downregulated the serum TNF-α level. The L-NAME-mediated alleviation of the protective effect of genistein might be attributed to the vasodilatory effect of L-NAME. Conclusively, it can be suggested that genistein might provide relief from migraine pain by inhibiting nitric oxide-mediated vasodilation and oxidative stress.


Asunto(s)
Genisteína , Trastornos Migrañosos , Óxido Nítrico , Nitroglicerina , Estrés Oxidativo , Vasodilatación , Animales , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/tratamiento farmacológico , Genisteína/farmacología , Genisteína/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Óxido Nítrico/metabolismo , Nitroglicerina/farmacología , Nitroglicerina/toxicidad , Ratones , Vasodilatación/efectos de los fármacos , Masculino , Vasodilatadores/farmacología , Vasodilatadores/uso terapéutico , Fitoestrógenos/farmacología , Fitoestrógenos/uso terapéutico
14.
Phytother Res ; 38(8): 3921-3934, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38818771

RESUMEN

Doxorubicin (Dox) is a highly effective anti-neoplastic agent. Still, its utility in the clinic has been hindered by toxicities, including vomiting, hematopoietic suppression and nausea, with cardiotoxicity being the most serious side effect. Genistein (Gen) is a natural product with extensive biological effects, including anti-oxidation, anti-tumor, and cardiovascular protection. This study evaluated whether Gen protected the heart from Dox-induced cardiotoxicity and explored the underlying mechanisms. Male Sprague-Dawley (SD) rats were categorized into control (Ctrl), genistein (Gen), doxorubicin (Dox), genistein 20 mg/kg/day + doxorubicin (Gen20 + Dox) and genistein 40 mg/kg/day + doxorubicin (Gen40 + Dox) groups. Six weeks after injection, immunohistochemistry (IHC), transmission electron microscopy (TEM), and clinical cardiac function analyses were performed to evaluate the effects of Dox on cardiac function and structural alterations. Furthermore, each heart histopathological lesions were given a score of 0-3 in compliance with the articles for statistical analysis. In addition, molecular and cellular response of H9c2 cells toward Dox were evaluated through western blotting, Cell Counting Kit-8 (CCK8), AO staining and calcein AM/PI assay. Dox (5 µM in vitro and 18 mg/kg in vivo) was used in this study. In vivo, low-dose Gen pretreatment protected the rat against Dox-induced cardiac dysfunction and pathological remodeling. Gen inhibited extracellular signal-regulated kinase1/2 (ERK1/2)'s phosphorylation, increased the protein levels of STAT3 and c-Myc, and decreased the autophagy and apoptosis of cardiomyocytes. U0126, a MEK1/2 inhibitor, can mimic the effect of Gen in protecting against Dox-induced cytotoxicity both in vivo and in vitro. Molecular docking analysis showed that Gen forms a stable complex with ERK1/2. Gen protected the heart against Dox-induced cardiomyocyte autophagy and apoptosis through the ERK/STAT3/c-Myc signaling pathway.


Asunto(s)
Apoptosis , Autofagia , Doxorrubicina , Genisteína , Miocitos Cardíacos , Ratas Sprague-Dawley , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Doxorrubicina/efectos adversos , Genisteína/farmacología , Ratas , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Apoptosis/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , Cardiotoxicidad/prevención & control , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Línea Celular
15.
Phytother Res ; 38(8): 3935-3953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38831683

RESUMEN

Genistein, a potent phytoconstituent, has garnered significant attention for its diverse bioactivities, making it a subject of extensive research and exploration. This review delves into the multifaceted properties of genistein, encompassing its antioxidant and anticancer potential. Its ability to modulate various cellular pathways and interact with diverse molecular targets has positioned it as a promising candidate in the prevention and treatment of various diseases. This review provides a comprehensive examination of Genistein, covering its chemical properties, methods of isolation, synthesis, therapeutic attributes with regard to cancer management, and the proposed mechanisms of action as put forth by researchers.


Asunto(s)
Antioxidantes , Genisteína , Genisteína/farmacología , Genisteína/química , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Neoplasias/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoquímicos/química
16.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397051

RESUMEN

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by α-L-iduronidase deficiency. The standard treatment, enzyme replacement therapy with laronidase, has limited effectiveness in treating neurological symptoms due to poor blood-brain barrier penetration. An alternative is substrate reduction therapy using molecules, such as genistein, which crosses this barrier. This study evaluated the effectiveness of a combination of laronidase and genistein in a mouse model of MPS I. Over 12 weeks, MPS I and wild-type mice received laronidase, genistein, or both. Glycosaminoglycan (GAG) storage in visceral organs and the brain, its excretion in urine, and the serum level of the heparin cofactor II-thrombin (HCII-T) complex, along with behavior, were assessed. The combination therapy resulted in reduced GAG storage in the heart and liver, whereas genistein alone reduced the brain GAG storage. Laronidase and combination therapy decreased liver and spleen weights and significantly reduced GAG excretion in the urine. However, this therapy negated some laronidase benefits in the HCII-T levels. Importantly, the combination therapy improved the behavior of female mice with MPS I. These findings offer valuable insights for future research to optimize MPS I treatments.


Asunto(s)
Mucopolisacaridosis I , Femenino , Ratones , Animales , Mucopolisacaridosis I/tratamiento farmacológico , Iduronidasa/uso terapéutico , Genisteína/farmacología , Genisteína/uso terapéutico , Encéfalo , Barrera Hematoencefálica , Glicosaminoglicanos/uso terapéutico , Trombina/uso terapéutico , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático/métodos
17.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791595

RESUMEN

The most common malignancy in women is breast cancer. During the development of cancer, oncogenic transcription factors facilitate the overproduction of inflammatory cytokines and cell adhesion molecules. Antiapoptotic proteins are markedly upregulated in cancer cells, which promotes tumor development, metastasis, and cell survival. Promising findings have been found in studies on the cell cycle-mediated apoptosis pathway for medication development and treatment. Dietary phytoconstituents have been studied in great detail for their potential to prevent cancer by triggering the body's defense mechanisms. The underlying mechanisms of action may be clarified by considering the role of polyphenols in important cancer signaling pathways. Phenolic acids, flavonoids, tannins, coumarins, lignans, lignins, naphthoquinones, anthraquinones, xanthones, and stilbenes are examples of natural chemicals that are being studied for potential anticancer drugs. These substances are also vital for signaling pathways. This review focuses on innovations in the study of polyphenol genistein's effects on breast cancer cells and presents integrated chemical biology methods to harness mechanisms of action for important therapeutic advances.


Asunto(s)
Neoplasias de la Mama , Genisteína , Transducción de Señal , Humanos , Genisteína/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Animales , Polifenoles/farmacología , Polifenoles/química
18.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473712

RESUMEN

Canine-mammary-gland tumors (CMTs) are prevalent in female dogs, with approximately 50% of them being malignant and often presenting as inoperable owing to their size or metastasis. Owing to poor outcomes, effective alternatives to conventional chemotherapy for humans are necessary. Two estrogen receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERß), which act in opposition to each other, are involved, and CMT growth involves ERα through the phosphoinositide 3-kinases (PI3K)/AKT pathway. In this study, we aimed to identify the synergistic anti-cancer effects of ERB-041, an ERß agonist, and genistein, an isoflavonoid from soybeans known to have ERß-specific pseudo-estrogenic actions, on CMT-U27 and CF41.Mg CMT cell lines. ERB-041 and genistein synergistically inhibited cell proliferation and increased the number of annexin V-positive cells in both cell lines. Furthermore, we observed a synergistic increase in the Bax/Bcl-2 ratio and cleaved caspase-3 expression. Additionally, cell-cycle arrest occurred through the synergistic regulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). We also found a synergistic decrease in the expression of ERα, and the expression of proteins involved in the PI3K/AKT pathway, including p-PI3K, phosphatase and tensin homolog (PTEN), AKT, and mechanistic target of rapamycin (mTOR). In conclusion, ERB-041 and genistein exhibited a synergistic anticancer effect on CMTs, suggesting that cotreatment with ERB-041 and genistein is a promising treatment for CMTs.


Asunto(s)
Glándulas Mamarias Humanas , Oxazoles , Receptores de Estrógenos , Perros , Animales , Femenino , Humanos , Receptores de Estrógenos/metabolismo , Genisteína/farmacología , Receptor beta de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Regulación hacia Abajo , Glándulas Mamarias Humanas/metabolismo , Estrógenos/metabolismo
19.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928362

RESUMEN

The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates the immune system through complicated transcriptional programs. Genistein, an AhR ligand, exhibits anti-inflammatory properties. However, its role in modulating immune responses via the AhR signaling pathway remains unclear. In this study, 360 male Arbor Acre broilers (1-day-old) were fed a basal diet supplemented with 40 or 80 mg/kg genistein and infected with or without Clostridium perfringens (Cp). Our results demonstrated that genistein ameliorated Cp-induced intestinal damage, as reflected by the reduced intestinal lesion scores and improved intestinal morphology and feed-to-gain ratio. Moreover, genistein increased intestinal sIgA, TGF-ß, and IL-10, along with elevated serum IgG, IgA, and lysozyme levels. Genistein improved intestinal AhR and cytochrome P450 family 1 subfamily A member 1 (CYP1A1) protein levels and AhR+ cell numbers in Cp-challenged broilers. The increased number of AhR+CD163+ cells in the jejunum suggested a potential association between genistein-induced AhR activation and anti-inflammatory effects mediated through M2 macrophage polarization. In IL-4-treated RAW264.7 cells, genistein increased the levels of AhR, CYP1A1, CD163, and arginase (Arg)-1 proteins, as well as IL-10 mRNA levels. This increase was attenuated by the AhR antagonist CH223191. In summary, genistein activated the AhR signaling pathway in M2 macrophages, which enhanced the secretion of anti-inflammatory cytokines and attenuated intestinal damage in Cp-infected broilers Cp.


Asunto(s)
Pollos , Enteritis , Genisteína , Macrófagos , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Genisteína/farmacología , Genisteína/uso terapéutico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Enteritis/tratamiento farmacológico , Enteritis/metabolismo , Masculino , Células RAW 264.7 , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/metabolismo , Intestinos/efectos de los fármacos , Intestinos/patología , Clostridium perfringens , Infecciones por Clostridium/tratamiento farmacológico , Necrosis , Activación de Macrófagos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731403

RESUMEN

Food supplements have become beneficial as adjuvant therapies for many chronic disorders, including cancer. Genistein, a natural isoflavone enriched in soybeans, has gained potential interest as an anticancer agent for various cancers, primarily by modulating apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. However, in lung cancer, the exact impact and mechanism of action of genistein still require clarification. To provide more insight into the mechanism of action of genistein, network pharmacology was employed to identify the key targets and their roles in lung cancer pathogenesis. Based on the degree score, the hub genes AKT1, CASP3, EGFR, STAT3, ESR1, SRC, PTGS2, MMP9, PRAG, and AR were significantly correlated with genistein treatment. AKT1, EGFR, and STAT3 were enriched in the non-small cell lung cancer (NSCLC) pathway according to Kyoto Encyclopedia of Genes and Genomes analysis, indicating a significant connection to lung cancer development. Moreover, the binding affinity of genistein to NSCLC target proteins was further verified by molecular docking and molecular dynamics simulations. Genistein exhibited potential binding to AKT1, which is involved in apoptosis, cell migration, and metastasis, thus holding promise for modulating AKT1 function. Therefore, this study aimed to investigate the mechanism of action of genistein and its therapeutic potential for the treatment of NSCLC.


Asunto(s)
Genisteína , Neoplasias Pulmonares , Simulación de Dinámica Molecular , Farmacología en Red , Genisteína/farmacología , Genisteína/química , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Simulación del Acoplamiento Molecular , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA