Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Evol Comput ; 29(2): 239-268, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33047611

RESUMEN

Genetic Programming is a method to automatically create computer programs based on the principles of evolution. The problem of deceptiveness caused by complex dependencies among components of programs is challenging. It is important because it can misguide Genetic Programming to create suboptimal programs. Besides, a minor modification in the programs may lead to a notable change in the program behaviours and affect the final outputs. This article presents Grammar-Based Genetic Programming with Bayesian Classifiers (GBGPBC) in which the probabilistic dependencies among components of programs are captured using a set of Bayesian network classifiers. Our system was evaluated using a set of benchmark problems (the deceptive maximum problems, the royal tree problems, and the bipolar asymmetric royal tree problems). It was shown to be often more robust and more efficient in searching the best programs than other related Genetic Programming approaches in terms of the total number of fitness evaluation. We studied what factors affect the performance of GBGPBC and discovered that robust variants of GBGPBC were consistently weakly correlated with some complexity measures. Furthermore, our approach has been applied to learn a ranking program on a set of customers in direct marketing. Our suggested solutions help companies to earn significantly more when compared with other solutions produced by several well-known machine learning algorithms, such as neural networks, logistic regression, and Bayesian networks.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Teorema de Bayes , Aprendizaje Automático , Programas Informáticos
2.
Evol Multicriterion Optim ; 12654: 721-733, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33959730

RESUMEN

Different theoretical mechanisms have been proposed for explaining complex social phenomena. For example, explanations for observed trends in population alcohol use have been postulated based on norm theory, role theory, and others. Many mechanism-based models of phenomena attempt to translate a single theory into a simulation model. However, single theories often only represent a partial explanation for the phenomenon. The potential of integrating theories together, computationally, represents a promising way of improving the explanatory capability of generative social science. This paper presents a framework for such integrative model discovery, based on multi-objective grammar-based genetic programming (MOGGP). The framework is demonstrated using two separate theory-driven models of alcohol use dynamics based on norm theory and role theory. The proposed integration considers how the sequence of decisions to consume the next drink in a drinking occasion may be influenced by factors from the different theories. A new grammar is constructed based on this integration. Results of the MOGGP model discovery process find new hybrid models that outperform the existing single-theory models and the baseline hybrid model. Future work should consider and further refine the role of domain experts in defining the meaningfulness of models identified by MOGGP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA