Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 242: 120232, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352674

RESUMEN

Graphene sponge anode functionalized with two-dimensional (2D) boron, i.e., borophene, was applied for electrochemical oxidation of C4-C8 per- and polyfluoroalkyl substances (PFASs). Borophene-doped graphene sponge outperformed boron-doped graphene sponge anode in terms of PFASs removal efficiencies and their electrochemical degradation; whereas at the boron-doped graphene sponge anode up to 35% of the removed PFASs was recovered after the current was switched off, the switch to a 2D boron enabled further degradation of the electrosorbed PFASs. Borophene-doped graphene sponge anode achieved 32-77% removal of C4-C8 PFASs in one-pass flow-through mode from a 10 mM phosphate buffer at 230 A m-2 of anodic current density. Higher molarity phosphate buffer (100 mM) resulted in lower PFASs removal efficiencies (11-60%) due to the higher resistance of the graphene sponge electrode in the presence of phosphate ions, as demonstrated by the electrochemical impedance spectroscopy (EIS) analyses. Electro-oxidation of PFASs was more efficient in landfill leachate despite its high organic loading, with up to 95% and 75% removal obtained for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), versus 77% and 57% removal in the 10 mM phosphate buffer, respectively. Defluorination efficiencies as determined relative to the electrooxidized fraction of PFASs indicated up to 69% and 82% of defluorination of PFOS and PFOA in 10 mM phosphate buffer, which was decreased to 16 and 29% defluorination, respectively, for higher buffer molarity (100 mM) due to the worsened electrochemical performance of the sponge. In landfill leachate, relative defluorination efficiencies of PFOS and PFOA were 33% and 45%, respectively, indicating the inhibiting effect of complex organic and inorganic matrix of landfill leachate on the C-F bond breakage. This study demonstrates that electrochemical degradation of PFASs is possible to achieve in complex and brackish streams using a low-cost graphene sponge anode, without forming toxic chlorinated byproducts even in the presence of >7 g L-1 of chloride.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Grafito , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Boro , Fluorocarburos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA