RESUMEN
The research was done to examine the impact of dietary silymarin on growth performance, total tract digestibility, faecal microbial, faecal gas emission and absorption rate in blood of growing pigs. Experiment 1: a total of 140 growing pigs (24.47 ± 2.49 kg) were used in a 6-week trial. There were four dietary treatment groups (seven replicate pens/treatment, five pigs/pen) and treatment diets composed of corn, soybean meal (SBM), distillers dried grains with solubles (DDGS), and rapeseed meal-based basal diets with 0%, 0.025%, 0.050% and 0.10% of micelle silymarin respectively. Experiment 2: A total of 18 pigs were divided into six treatment groups. Treatment diets: TRT1, TRT2 and TRT3 were basal diets with 30, 150 and 300 g powdered silymarin respectively; and TRT4, TRT5 and TRT6 were basal diets with 30, 150 and 300 g micelle-type silymarin respectively. Average daily gain (ADG) tended to increase (p < 0.10) at Week 3 and overall experiment after silymarin addition. Overall ADG and average daily feed intake are also intended to improve (p < 0.10) linearly in this study. During Week 6, growing pigs fed silymarin showed linearly increased (p < 0.05) apparent total tract digestibility (ATTD) of dry matter, nitrogen and energy. Dietary silymarin supplementation increased (p < 0.10) linearly the faecal Lactobacillus count at Week 3 while Escherichia coli count was linearly decreased at both the 3rd week (p < 0.05) and 6th week (p < 0.10). Silymarin supplementation showed no effect on faecal gas emissions. A higher (p < 0.05) absorption rate in the blood was found in micelle-type silymarin compared to powdered silymarin after the 1st, 2nd, 4th, 8th, 12th and 24th h of feeding. Results suggest that silymarin in a corn-SBM-DDGS-rapeseed meal-based diet may help to improve ADG, FI, ATTD and faecal microflora in growing pigs. And absorption rate in the blood of pig is higher in micelle-type silymarin.
Asunto(s)
Digestión , Micelas , Porcinos , Animales , Alimentación Animal/análisis , Dieta/veterinaria , Heces , Zea mays , Glycine max , Fenómenos Fisiológicos Nutricionales de los AnimalesRESUMEN
BACKGROUND: How starch-based food structure can affect the rate and extent of digestion in the small intestine and resulting glycemic response is not properly understood. One possible explanation is that food structure influences gastric digestion, which subsequently determines digestion kinetics in the small intestine and glucose absorption. However, this possibility has not been investigated in detail. OBJECTIVES: Using growing pigs as a digestion model for adult humans, this study aimed to investigate how physical structure of starch-rich foods affects small intestinal digestion and glycemic response. METHODS: Male growing pigs (21.7 ± 1.8 kg, Large White × Landrace) were fed one of the 6 cooked diets (250-g starch equivalent) with varying initial structures (rice grain, semolina porridge, wheat or rice couscous, or wheat or rice noodle). The glycemic response, small intestinal content particle size and hydrolyzed starch content, ileal starch digestibility, and portal vein plasma glucose were measured. Glycemic response was measured as plasma glucose concentration collected from an in-dwelling jugular vein catheter for up to 390 min postprandial. Portal vein blood samples and small intestinal content were measured after sedation and euthanasia of the pigs at 30, 60, 120, or 240 min postprandial. Data were analyzed with a mixed-model ANOVA. RESULTS: The plasma glucose Δmaxoverall and iAUCoverall for couscous and porridge diets (smaller-sized diets) were higher than that of intact grain and noodle diets (larger-sized diets): 29.0 ± 3.2 compared with 21.7 ± 2.6 mg/dL and 5659 ± 727 compared with 2704 ± 521 mg/dLâ min, for the smaller-sized and larger-sized diets, respectively (P < 0.05). Ileal starch digestibility was not significantly different between the diets (P ≥ 0.05). The iAUCoverall was inversely related to the starch gastric emptying half-time of the diets (r = -0.90, P = 0.015). CONCLUSIONS: Starch-based food structure affected the glycemic response and starch digestion kinetics in the small intestine of growing pigs.
Asunto(s)
Glucemia , Oryza , Humanos , Adulto , Porcinos , Masculino , Animales , Glucemia/análisis , Oryza/química , Triticum , Digestión/fisiología , Almidón/química , Grano Comestible/químicaRESUMEN
Tribasic zinc sulfate (TBZ) is insoluble in water and chemically less active than zinc sulfate, making it more suitable to be used in pig diet. To investigate the effects of TBZ on the growth performance, gut morphology, and zinc transporter expression levels, we performed a single-factor experiment and 168 pigs were allocated to three groups with seven pens per treatment. Pigs were either fed a basal diet without zinc supplementation (control group), or a basal diet supplemented with TBZ at 100 mg/kg diet (LTBZ group) or 1000 mg/kg diet (HTBZ group). We found that daily weight gain and feed intake were higher in the LTBZ group than in the HTBZ and control groups. The pigs in the LTBZ group had a higher villus height and villus height/crypt depth ratio when compared with other pigs. Moreover, the pigs in the LTBZ group exhibited higher mRNA expression levels of solute carrier family 39 and lower expression levels of solute carrier family 30 than those fed the HTBZ-supplemented diet. Together, these results indicate that TBZ may potentially be used as a dietary zinc source for young growing pigs and that dietary supplementation with LTBZ benefits growth performance and gut morphology.
Asunto(s)
Sulfatos , Sulfato de Zinc , Porcinos , Animales , Dieta/veterinaria , Zinc/farmacología , Zinc/metabolismo , Suplementos Dietéticos , Alimentación Animal/análisisRESUMEN
The purpose of this study is to explore the potential plasma metabolism biomarkers reflecting the maintenance status of growing pigs. The repeated measurement design was used in this experiment, and six barrows (28.6 ± 0.5 kg BW) were selected and kept in metabolism crates. The feeding level in growing pigs close to ad libitum was 2400 kJ ME/kg BW0.6 ·day-1 during Day 1 to Day 7, while a feeding level of 782 kJ ME/kg BW0.6 ·day-1 was provided as energy requirement for maintenance during Day 8 to Day 14. Plasma samples of each pig were collected from the anterior vena cava on the morning of Day 8 and Day 15. The metabolites of plasma were determined by high-resolution mass spectrometry using a metabolomics approach. Results showed that metabolomics analysis between ad libitum-fed state and maintained status revealed differences in 16 compounds. Identified compounds were enriched in metabolic pathways related to linoleic acid metabolism, tryptophan metabolism, and alanine, aspartate and glutamate metabolism. In conclusion, linoleic acid metabolism, tryptophan metabolism, alanine, aspartate and glutamic acid metabolism pathways played a major regulatory role in the maintenance status of growing pigs. The potential metabolism biomarkers of maintenance in growing pigs were linoleic acid, glutamine and tyrosine.
Asunto(s)
Ácido Aspártico , Ácido Linoleico , Porcinos , Animales , Cromatografía Líquida de Alta Presión/veterinaria , Cromatografía Liquida/veterinaria , Triptófano , Espectrometría de Masas en Tándem/veterinaria , Metabolismo Energético , Metabolómica , Alanina , Biomarcadores , Alimentación Animal/análisisRESUMEN
The aim of this study was to evaluate the effects of fermented broccoli stem and leaf residue (FBR) on the growth performance, serum biochemical characteristics, and meat quality of growing pigs. A total of 72 growing pigs (Durox × Landrace × Yorkshire) were subjected to three dietary treatments with different levels (0%, 5% and 10%) of FBR with three replicates for an experimental period of 70 day. The average daily feed intake of growing pigs was higher (p < 0.05) in the 5% FBR treatment compared with the control group (0% FBR). The serum urea nitrogen content in growing pigs was lower (p < 0.05) in the 5% and 10% FBR treatments. The lightness value was higher (p < 0.05) in the longissimus dorsi muscle of pigs fed 5% and 10% FBR diets compared with the control group, and the yellowness value was increased in pigs fed the 10% FBR diet compared with pigs fed the control diet. Overall, the beneficial effects of FBR supplementation on serum biochemical parameters, and meat colour without undermining the growth performance indicate that up to 10% FBR could be used in diets to enhance the production of growing pigs.
Asunto(s)
Brassica , Suplementos Dietéticos , Porcinos , Animales , Dieta/veterinaria , Carne/análisis , Hojas de la Planta , Alimentación Animal/análisisRESUMEN
This experiment was conducted to investigate the effects of different starch source diets on growth performance, intestinal health, and, microbiota of growing pigs. Eighteen healthy "Duroc × Landrace × Yorkshire" pigs (50 ± 0.61 kg, Castrated boar) were randomly divided into three groups with six replicates and one pig per replicate. The pigs in the three treatments were fed diets prepared with cassava flour (CF), rice bran (RB) and sorghum flour (SF), respectively, and the nutritional levels of the three treatments were the same. The experiment lasted for 28 days. The results showed that pigs in the RB group had significantly increased average daily gain (ADG, p < 0.05) compared with pigs in CF and SF groups. Compared with pigs in the CF group, the final body weight (FBW) of growing pigs in the RB group was increased and the ratio of feed to gain (F: G) was decreased (p < 0.05). There was no significant difference between FBW and F: G between the SF group and the other two groups. Compared with the CF group, the RB group significantly increased the jejunum amylase activity (p < 0.05), and there was no significant difference between the SF group and the other two groups. Compared with growing pigs in the CF group and SF group, the duodenal villus height and villus height/crypt depth ratio of growing pigs in the RB group were significantly increased (p < 0.05). The concentrations of acetic acid, propionic acid, and total VFA in the colon and caecum of piglets in the SF group were significantly increased (p < 0.05) compared to piglets in CF and RB groups, and there was no significant difference between the CF group and RB group. Compared with the RB group, caecal butyric acid concentration was significantly increased in SF and CF groups (p < 0.05). Seven dominant phyla were identified at the phylum level, among which Firmicutes, Bacteroidota and Spirochaetota were dominant phyla, accounting for 74.18%, 14.87% and 6.56% of the RB group respectively. Cassava flour group accounted for 80.22%, 9.64% and 3.71%; Accounting for 65.33%, 17.34% and 13.07% of the SF group. Through the comparative analysis of microbial differences among the treatment groups, it was found that at the phylum level, compared with the SF group, the abundance of Synergistota in the diet of the CF group and the diet of the RB group was significantly increased (p < 0.05). The abundance decreased significantly (p < 0.05). The quantity of Desulfobacterota in the RB group was significantly higher than that in the CF group (p < 0.05). In conclusion, compared with sorghum starch and cassava starch, RB starch can improve the activity of digestive enzymes and villus height in the small intestine of growing pigs and promote the growth of pigs by protecting the intestinal health of growing pigs.
Asunto(s)
Microbiota , Almidón , Animales , Masculino , Alimentación Animal/análisis , Peso Corporal , Dieta/veterinaria , Intestinos , PorcinosRESUMEN
BACKGROUND: The approach to matching appropriate carbohydrates alongside free amino acids to achieve optimal muscle growth remains unclear. OBJECTIVES: We investigated whether the consumption of a diet containing rapidly digested carbohydrate and free amino acids can enhance intestinal absorption and muscular uptake of amino acids in pigs. METHOD: Twelve barrows (28 kg; 11 wk old) with catheters installed in the portal vein, mesenteric vein, femoral artery, and femoral vein were randomly assigned to consume 1 of 2 free amino acid-enriched diets (3.34%) containing rapidly [waxy corn starch (WCS)] or slowly [pea starch (PS)] digested carbohydrate for 27 d. Blood was collected to determine the fluxes of plasma glucose and amino acids across the portal vein and the hindlimb muscle. Dietary in vitro carbohydrate digestive rates were also determined. Data were analyzed using repeated-measures (time × group) ANOVA. RESULTS: Carbohydrate in vitro cumulative digestibility at 30 and 240 min was 69.00% and 95.25% for WCS and 23.25% and 81.15% for PS, respectively. The animal experiment presented WCS increased individual amino acids (lysine, 0.67 compared with 0.53 mmol/min; threonine, 0.40 compared with 0.29 mmol/min; isoleucine, 0.33 compared with 0.22 mmol/min; glutamate, 0.51 compared with 0.35 mmol/min; and proline, 0.51 compared with 0.27 mmol/min), essential amino acid (EAA; 3.26 compared with 2.65 mmol/min), and branched-chain amino acid (BCAA; 0.86 compared with 0.65 mmol/min) fluxes across the portal vein during 8 h postprandial, as well as individual amino acids (isoleucine, 0.08 compared with 0.02 mmol/min; leucine, 0.06 compared with 0.02 mmol/min; and glutamine, 0.44 compared with 0.25 mmol/min), EAA (0.50 compared with 0.21 mmol/min), and BCAA (0.17 compared with 0.06 mmol/min) net fluxes across the hindlimb muscle during 8 h postprandial compared with PS (P < 0.05). CONCLUSIONS: A diet containing rapidly digested carbohydrate and free amino acids can promote intestinal absorption and net fluxes across hindlimb muscle of amino acids in pigs.
Asunto(s)
Aminoácidos , Isoleucina , Porcinos , Animales , Aminoácidos/metabolismo , Dieta/veterinaria , Carbohidratos de la Dieta/metabolismo , Almidón , Intestinos , Músculo Esquelético/metabolismoRESUMEN
BACKGROUND: Heat stress (HS) has a negative impact on the intestinal barrier and immune function of pigs. Selenium (Se) may improve intestinal health through affecting selenoproteins. Thus we investigate the protective effect of new organic Se (2-hydroxy-4-methylselenobutanoic acid, HMSeBA) on jejunal damage in growing pigs upon HS and integrate potential roles of corresponding selenoproteins. RESULTS: HS decreased the villus height and increased (P < 0.05) the protein abundance of HSP70, and downregulated (P < 0.05) protein levels of tight junction-related proteins (CLDN-1 and OCLD). HS-induced jejunal damage was associated with the upregulation of four inflammation-related genes and ten selenoprotein-encoding genes, downregulation (P < 0.05) of four selenoprotein-encoding genes and decreased (P < 0.05) the protein abundance of GPX4 and SELENOS. Compared with the HS group, HMSeBA supplementation not only elevated the villus height and the ratio of V/C (P < 0:05), but also reduced (P < 0.05) the protein abundance of HSP70 and MDA content, and increased (P < 0.05) the protein abundance of OCLD. HMSeBA supplementation downregulated the expression of seven inflammation-related genes, changed the expression of 12 selenoprotein-encoding genes in jejunum mucosa affected by HS, and increased the protein abundance of GPX4, TXNRD1 and SELENOS. CONCLUSION: Organic Se supplementation beyond nutritional requirement alleviates the negative effect of HS on the jejunum of growing pigs, and its protective effect is related to the response of corresponding selenoproteins. © 2021 Society of Chemical Industry.
Asunto(s)
Trastornos de Estrés por Calor/veterinaria , Mucosa Intestinal/inmunología , Yeyuno/inmunología , Sustancias Protectoras/administración & dosificación , Selenio/administración & dosificación , Enfermedades de los Porcinos/prevención & control , Animales , Suplementos Dietéticos/análisis , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/inmunología , Trastornos de Estrés por Calor/genética , Trastornos de Estrés por Calor/inmunología , Trastornos de Estrés por Calor/prevención & control , Respuesta al Choque Térmico/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Yeyuno/efectos de los fármacos , Selenoproteínas/genética , Selenoproteínas/inmunología , Porcinos , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/inmunologíaRESUMEN
From the veterinarian point of view, the precise assessment of the phosphorus (P) supply of pigs is of great interest, especially in cases of clinical disorders like 'leg weakness' or lameness when bone mineralisation may be disturbed. Thus, the question arises which bone is most suitable for diagnostic purposes and is reflecting changes in dietary P supply most clearly. Thirty-six growing pigs (BHZP db.Viktoria x Piétrain, about eleven weeks old, mean bw: 28.3 ± 3.44 kg) were allotted to three groups differently supplied with P by receiving a diet either supplemented with inorganic P (iP) and phytase (500 FTU/kg; controls/group C), without iP but phytase added (500 FTU/kg; group 1) or containing only endogenous phytase (group 2). The inclusion of iP resulted in total P contents in diets for group C of 4.76 and 4.23 g/kg as fed from 28 to 57 and >57 kg body weight (bw), respectively. In diets for group 1 and 2, the corresponding P contents were 3.08/2.72 g/kg as fed (group 1) and 3.08/2.88 g/kg as fed (group 2). On days 26, 47 and 82 of the dietary treatment, four pigs of each group were euthanised. Furthermore, four additional pigs were euthanised one day before starting the experiment. Standardised samples of the femur (distal part), tibia/fibula (proximal part) and os metatarsale III (MT III, in toto) were taken during dissection and submitted to chemical analysis. At all time points, pigs of group C had significantly higher ash contents in all types of bone samples compared to pigs from group 1 and 2. Relative differences between means of groups (C = 100%) were less for the ash content in MT III (reduction by up to -9.1%) compared to the distal femur and the proximal tibia/fibula (reduction by up to -23.2 resp. -22.7%). Variation coefficient (irrespective of group and time point) was lower for ash content in MT III (4.29%) compared to the distal femur and the proximal tibia/fibula (both: 11.8%). Under the conditions of this study, ash contents of the distal femur and the proximal tibia/fibula reflected the different P supply more pronounced indicating higher sensitivity compared to MT III.
Asunto(s)
6-Fitasa , Fósforo Dietético , Alimentación Animal/análisis , Animales , Huesos , Dieta/veterinaria , Fósforo , PorcinosRESUMEN
The present study was conducted to evaluate the effect of two Zn supplemented levels and two Zn and Cu sources (sulphate and hydroxychloride) on growing-finishing pigs. An in vitro study and an in vivo study were conducted. In the in vitro study, Zn solubility from each source at different Zn supplementation levels was evaluated, as well as the phytic phosphorus (PP) solubility derived from the interaction or not with phytic acid at similar conditions to those found in digestive tract. The most critical interaction of Zn with phytic acid was at pH 6.5 and with Zn sulphate, resulting in the reduction in PP solubility. In the in vivo experiment, a total of 444 pigs ([Duroc × Landrace]×Pietrain; initial BW: 18.7 ± 0.20 kg) were allotted to 36 pens in a randomized complete block design (2 × 2) factorial arrangement with two Zn and Cu sources and two Zn supplemental levels (20 and 80 mg/kg). The Cu supplementation was fixed at 15 mg/kg for all diets. There was no effect of the interaction between mineral source × Zn level or Zn level on growth performance or carcass characteristics (p > .10). Apparent total digestibility of Zn and Cu along with carcass yield was higher for pigs fed hydroxychloride than pigs fed the sulphate counterparts (p < .05). Feeding low levels of Zn decreased Zn (45.5%; p < .0001) and Cu(18.5%; p = .018) faecal excretion. In conclusion, under commercial conditions, feeding growing-finishing pigs with Zn levels below those established by the European Union regulation did not affect growth performance and carcass characteristics. Reducing dietary mineral (Zn and Cu) diet content resulted in a lower faecal mineral excretion. Pigs fed sulphate minerals had an improved performance during grower period, while pigs fed hydroxychloride minerals showed an improved performance during finishing period and a greater carcass yield and mineral digestibility than those fed sulphates.
Asunto(s)
Cobre , Zinc , Alimentación Animal/análisis , Animales , Composición Corporal , Cobre/farmacología , Dieta/veterinaria , Suplementos Dietéticos , Solubilidad , PorcinosRESUMEN
Insect meal (IM) produced from edible insects, such as Tenebrio molitor, has been recognised as a potentially suitable protein component in feeding rations for monogastric livestock. While several studies with broilers have shown that animal´s health is not negatively affected by IM, less is known with regard to the influence of IM on metabolism of pigs. The present study investigates whether IM from Tenebrio molitor larvae causes oxidative stress and activates oxidative stress-sensitive signalling pathways in key metabolic tissues of pigs. To address this question, male 5-week-old crossbred pigs were randomly assigned to three groups of 10 pigs each and fed nutrient-adequate, isonitrogenous diets either without (CON) or with 5% IM or 10% IM from Tenebrio molitor larvae for 4 weeks. Concentrations of thiobarbituric acid reactive substances, tocopherols and glutathione in liver, gastrocnemius muscle and/or plasma did not differ between groups. Activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD) in the liver and of GPX and SOD in gastrocnemius muscle were not different between groups, whereas the activity of CAT in skeletal muscle was increased in the two IM-fed groups compared to group CON (p < 0.05). The mRNA levels of most of the target genes of oxidative stress-sensitive signalling pathways, such as nuclear factor-κB, nuclear factor erythroid 2-related factor 2 and endoplasmic reticulum stress-induced unfolded protein response, in liver and gastrocnemius muscle did not differ between the three groups. The present study shows that feeding a diet containing adequate levels of antioxidants, such as vitamin E and selenium, and Tenebrio molitor larvae meal as a protein component neither causes oxidative stress nor activates oxidative stress-sensitive signalling pathways in key metabolic tissues of growing pigs. Based on these observations, IM from Tenebrio molitor larvae can be regarded as a safe source of protein in growing pigs.
Asunto(s)
Tenebrio , Alimentación Animal/análisis , Animales , Antioxidantes , Pollos , Dieta/veterinaria , Larva , Masculino , PorcinosRESUMEN
BACKGROUND: This study evaluated the effects of early antibiotic exposure (EAE) on subsequent amino acid (AA) profiles and small intestinal AA transporter and receptor expression level in pigs with different dietary crude protein (CP) levels. Eighteen litters of piglets were fed creep feed diets, either with or without antibiotics while with sow on day 7. The pigs were weaned at day 23 and fed the same diets until day 42, when random pigs within each group were offered a normal- or low-CP diet, thereby creating four groups. On day 120, the pigs were euthanized, and jejunal and ileal mucosa and digesta were collected for gene-expression and AA-concentration analysis. RESULTS: With the normal-CP diet, EAE increased (P < 0.05) the concentrations of six essential amino acids (EAA) and three non-essential amino acids (NEAA) in serum, four EAAs and four NEAAs in jejunal mucosa, one EAA and two NEAAs in ileal mucosa, five EAAs and three NEAAs in jejunal digesta, and three EAAs and two NEAAs in ileal digesta. Early antibiotic exposure upregulated (P < 0.05) CAT1, ASCT2, ATB0,+ , CaSR, T1R1, and T1R3 expression in the jejunum, downregulated PepT1 expression with a normal-CP diet. It upregulated (P < 0.05) the expressions of CAT1, ATB0,+ , ATP1A1, and T1R3 in the ileum with a normal-CP diet. CONCLUSION: These results suggest that EAE has long-term effects on AA profiles, mainly in the jejunum and serum, by increasing AA transporter expression in the intestine, and that these effects may be influenced by dietary CP levels. © 2019 Society of Chemical Industry.
Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Antibacterianos/efectos adversos , Mucosa Intestinal/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Porcinos/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/química , Alimentación Animal/análisis , Animales , Antibacterianos/administración & dosificación , Proteínas en la Dieta/análisis , Proteínas en la Dieta/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Masculino , Distribución Aleatoria , Receptores Acoplados a Proteínas G/metabolismo , Porcinos/genética , Porcinos/crecimiento & desarrollo , Factores de TiempoRESUMEN
Different analytical (enzyme system and near-infrared spectroscopy (NIRS)) and statistical (single and multiple regressions) approaches were used to predict in vivo standardized pre-caecal digestibility (PCD) of crude protein (CP) and amino acids (AA) in cereal grains for growing pigs as well as in vitro nitrogen (N) solubility. Furthermore, different chemical and physical characteristics were categorized (e.g. crude nutrients, AA, minerals, fibre components or combinations of these) and used for generating prediction equations. There were strong linear relationships (p < .05) between in vivo PCD of CP and essential AA and in vitro N solubility when grain species was considered as covariate in the model. Predicting in vivo PCD values using various chemical and physical characteristics produced inconsistent results among different grain species and AA and could therefore not be used for predicting PCD. It is possible to predict in vitro N solubility from chemical and physical characteristics for some grain species. However, the relationships between some of these categories and the in vitro N solubility were not consistent and not always causative or physiologically explainable. The R2 of NIRS for predicting in vitro N solubility was at a relatively high level (up to R2 = 0.80). This level of R2 indicates that a classification of the grain samples in, for example, high, medium and low in vitro N solubility levels is possible, but it does not allow for a quantitative prediction of the in vitro N solubility. In conclusion, the present database can be used for establishing a ranking of different cereal grain species for PCD of CP and essential AA values. However, it was not possible to create clear prediction equations for in vivo or in vitro digestibility values. Therefore, greater variation within grain species, for example due to different growing and harvesting conditions, is warranted for predicting PCD values of individual grain samples.
Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Digestión/fisiología , Grano Comestible/química , Nitrógeno/metabolismo , Porcinos/crecimiento & desarrollo , Animales , Grano Comestible/metabolismo , Genu Valgum , Nitrógeno/química , Espectrofotometría Infrarroja/métodosRESUMEN
OBJECTIVE: To investigate effect of mealworm (Tenebrio molitor) larvae hydrolysate on nutrient ileal digestibility compared to those of dried mealworm larvae meal, fermented poultry by-product, and hydrolyzed fish soluble in growing pigs. METHODS: A total of 12 crossbred ([Landrace×Yorkshire]×Duroc) growing pigs with average body weight of 28.70±0.32 kg were surgically equipped with simple T-cannulas. A total of 12 pigs were assigned to individual metabolic crates and allotted to one of four treatments with 3 replicates in a fully randomized design. RESULTS: Apparent ileal digestibility (AID) of dry matter (DM) was the highest in pigs fed HML diet. AIDs of crude protein (CP) were higher in pigs fed HML and DMLM diets than those in pigs fed the other two diets. AID of total amino acid was higher (p = 0.06) in pigs fed HML diet. AIDs of lysine (Lys), methionine (Met), and threonine (Thr) were similar in pigs fed DMLM and HML diets, but were higher (p = 0.05, p<0.05, and p = 0.05, respectively) than those in pigs fed FPBM or HFS diet. Pigs fed HML diet had higher standardized ileal digestibilities (SIDs) of DM and CP (p<0.05 and p<0.05, respectively) compared to pigs fed the other FPBM and HFS diets. SIDs of total amino acid were not different (p = 0.06) between treatments. For SIDs of Lys, Met, and Thr, pigs fed HML and DMLM diets showed higher SIDs (p = 0.05, p<0.05, and p<0.05, respectively) than pigs fed FPBM and HFS diets. SIDs of non-essential amino acids (aspartic acid, glycine, and alanine) were higher (p<0.05, p< 0.05, and p<0.05, respectively) in pigs fed HML, FPBM, and DMLM diets than those in pigs fed the HFS diet. AID and SID of glutamic acid were higher in pigs fed HML and FPBM diets. CONCLUSION: In conclusion, dietary supplementation of mealworm larvae hydrolysate had higher digestibility in DM, CP, Lys, Met, and Thr compared to dietary supplementation with fermented poultry by-product and hydrolyzed fish soluble.
RESUMEN
OBJECTIVE: The objective of this study was to determine the digestible energy (DE) and metabolizable energy (ME) of yellow dent corn sourced from different meteorological origins fed to growing pigs and develop equations to predict the DE and ME of yellow dent corn from southwestern China. METHODS: Sixty crossbred barrows were allotted to 20 treatments in a triplicate 20×2 incomplete Latin square design with 3 replicated pigs per dietary treatment during 2 consecutive periods. Each period lasted for 12 days, and total feces and urine during the last 5 days of each period were collected to calculate the energy contents. RESULTS: On dry matter (DM) basis, the DE and ME in 20 corn grain samples ranged from 15.38 to 16.78 MJ/kg and from 14.93 to 16.16 MJ/kg, respectively. Selected best-fit prediction equations for DE and ME (MJ/kg DM basis) for yellow dent corn (n = 16) sourced from southwestern China were as follows: DE = 28.58-(0.12×% hemicellulose)+(0.35×% ether extract)-(0.83×MJ/kg gross energy)+(0.20×% crude protein)+(0.49×% ash); ME = 30.42- (0.11×% hemicellulose)+(0.31×% ether extract)-(0.81×MJ/kg gross energy). CONCLUSION: Our results indicated that the chemical compositions, but not the meteorological conditions or physical characteristics could explain the variation of energy contents in yellow dent corn sourced from southwestern China fed to growing pigs.
RESUMEN
OBJECTIVE: This study was conducted to investigate the effect of zinc aspartic acid chelate (Zn-ASP) on growth performance, nutrient digestibility, blood profiles, fecal microbial and fecal gas emission in growing pigs. METHODS: A total of 160 crossbred ([Landrace×Yorkshire]×Duroc) growing pigs with an initial body weight (BW) of 25.56±2.22 kg were used in a 6-wk trial. Pigs were randomly allocated into 1 of 4 treatments according to their sex and BW (8 replicates with 2 gilts and 3 barrows per replication pen). Treatments were as follows: i) CON, basal diet, ii) TRT1, CON+0.1% Zn-ASP, iii) TRT2, CON+0.2% Zn-ASP, and iv) TRT3, CON+0.3% Zn-ASP. Pens were assigned in a randomized complete block design to compensate for known position effects in the experimental facility. RESULTS: In the current study, BW, average daily gain, and gain:feed ratio showed significant improvement as dietary Zn-ASP increased (p<0.05) in growing pigs. Apparent total tract digestibility (ATTD) of dry matter was increased linearly (p<0.05) in pigs fed with Zn-ASP diets. A linear effect (p<0.05) was detected for the Zn concentration in blood with the increasing levels of Zn-ASP supplementation. Lactic acid bacteria and coliform bacteria were affected linearly (p<0.05) in pigs fed with Zn-ASP diets. However, no significant differences were observed in the ATTD of nitrogen, energy and Zn. And dietary Zn-ASP supplementation did not affect fecal ammonia, hydrogen sulfide and total mercaptans emissions in growing pigs. CONCLUSION: In conclusion, dietary supplementation with Zn-ASP of diet exerted beneficial effects on the growth performance, nutrient digestibility, blood profiles and fecal microbes in growing pigs.
RESUMEN
Sixty Duroc × Large White × Landrace pigs with an average initial body weight (BW) of 77.1 ± 1.3 kg were selected to investigate the effects of dietary supplementation with arginine (Arg) and/or glutamic acid (Glu) on free amino acid (FAA) profiles, expression of AA transporters, and growth-related genes in skeletal muscle. The animals were randomly assigned to one of five treatment groups (basic diet, iso-nitrogenous, Arg, Glu, and Arg + Glu groups). The results showed that plasma Glu concentration was lowest in the Arg + Glu group and highest in the Glu group (P < 0.05). In the longissimus dorsi (LD) muscle, the concentrations of histidine, Arg, and taurine in the Arg + Glu group were higher, and the concentrations of 3-methylhistidine was lower, than in the basic diet group (P < 0.05). The mRNA levels of ASC amino acid transporter-2 (ASCT2), L-type AA transporter 1, and sodium-coupled neutral amino acid transporter 2 in the LD muscle, as well as the mRNA levels of ASCT2 and proton-assisted amino acid transporter in the biceps femoris (BF) muscle, were higher in the Arg + Glu group compared to the basic diet group (P < 0.05). The mRNA levels of the muscle-specific RING finger-1 and muscle atrophy F-box genes in the LD muscle were downregulated in the Glu and Arg + Glu groups compared to the basic diet group (P < 0.05). Collectively, these findings suggest that dietary supplementation with both Arg and Glu increases intramuscular FAA concentrations and decreases the mRNA levels of genes involved in protein degradation in skeletal muscle.
Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Arginina/farmacología , Ácido Glutámico/farmacología , Músculo Esquelético/metabolismo , Porcinos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animales , Arginina/administración & dosificación , Dieta , Suplementos Dietéticos , Ácido Glutámico/administración & dosificación , ARN Mensajero/metabolismo , Porcinos/genética , Porcinos/crecimiento & desarrolloRESUMEN
Physicochemical properties of diets are believed to play a major role in the regulation of digesta transit in the gastrointestinal tract. Starch, being the dominant nutrient in pig diets, strongly influences these properties. We studied transport of digesta solids and liquids through the upper gastrointestinal tract of ninety pigs in a 3 × 3 factorial arrangement. Dietary treatments varied in starch source (barley, maize and high-amylose maize) and form (isolated starch, ground cereal and extruded cereal). Mean retention times (MRT) of digesta solids ranged 129-225 min for the stomach and 86-124 min for the small intestine (SI). The MRT of solids consistently exceeded that of liquids in the stomach, but not in the SI. Solid digesta of pigs fed extruded cereals remained 29-75 min shorter in the stomach compared with pigs fed ground cereals (P < 0·001). Shear stress of whole digesta positively correlated with solid digesta MRT in the stomach (r 0·33, P < 0·001), but not in the SI. The saturation ratio (SR), the actual amount of water in stomach digesta as a fraction of the theoretical maximum held by the digesta matrix, explained more variation in digesta MRT than shear stress. The predictability of SR was hampered by the accumulation of large particles in the stomach. In addition, the water-holding capacity of gelatinised starch leads to a decreased SR of diets, but not of stomach digesta, which was caused by gastric hydrolysis of starch. Both of these phenomena hinder the predictability of gastric retention times based on feed properties.
Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Digestión/fisiología , Tránsito Gastrointestinal/fisiología , Sus scrofa/fisiología , Animales , Fenómenos Químicos , Contenido Digestivo/química , Hordeum/química , Hordeum/metabolismo , Reología , Almidón/química , Almidón/metabolismo , Zea mays/química , Zea mays/metabolismoRESUMEN
The passage rate of solids and liquids through the gastrointestinal tract differs. Increased dietary nutrient solubility causes nutrients to shift from the solid to the liquid digesta fraction and potentially affect digesta passage kinetics. We quantified: (1) the effect of three levels of dietary nutrient solubility (8, 19 and 31 % of soluble protein and sucrose in the diet) at high feed intake level (S) and (2) the effect of low v. high feed intake level (F), on digesta passage kinetics in forty male growing pigs. The mean retention time (MRT) of solids and liquids in the stomach and small intestine was assessed using TiO2 and Cr-EDTA, respectively. In addition, physicochemical properties of digesta were evaluated. Overall, solids were retained longer than liquids in the stomach (2·0 h, P<0·0001) and stomach+small intestine (1·6 h, P<0·001). When S increased, MRT in stomach decreased by 1·3 h for solids (P=0·01) and 0·7 h for liquids (P=0·002) but only at the highest level of S. When F increased using low-soluble nutrients, MRT in stomach increased by 0·8 h for solids (P=0·041) and 0·7 h for liquids (P=0·0001). Dietary treatments did not affect water-binding capacity and viscosity of digesta. In the stomach of growing pigs, dietary nutrient solubility affects digesta MRT in a non-linear manner, while feed intake level increases digesta MRT depending on dietary nutrient solubility. Results can be used to improve predictions on the kinetics of nutrient passage and thereby of nutrient digestion and absorption in the gastrointestinal tract.
RESUMEN
Bile acids (BAs) are critical for cholesterol homeostasis and new roles in metabolism and endocrinology have been demonstrated recently. It remains unknown whether BA metabolism can be affected by heat stress (HS). The objective of this study was to describe the shifts in serum, hepatic and intestinal BA profiles induced by chronic HS. Twenty-seven Large White pigs weighing 40.8⯱â¯2.7â¯kg were assigned to one of the three treatments: a control group (CON, 23⯰C), a HS group (33⯰C), or a pair-fed group (PF, 23⯰C and fed the same amount as HS group) for 21â¯d. The concentrations of taurine-conjugated BAs (TUDCA and THDCA in serum and TCDCA, TUDCA, THDCA and THCA in liver) were decreased in HS and PF pigs. However, in HS pigs, a reduction in taurine-conjugated BAs (TCBA) correlated with decreased liver genes expression of BA synthesis, conjugation and uptake transport. BA regulated-genes (FXR, TGR5 and FGFR4) in HS pigs and TGR5, FGFR4 and KLß in PF pigs were down-regulated in liver. In ileum, total BAs and glycoursodeoxycholic acid concentrations were higher in HS pigs than other groups and PF group, respectively (Pâ¯<â¯0.05). TCBA (Pâ¯=â¯0.01) and tauroursodeoxycholic acid (Pâ¯<â¯0.01) were decreased in PF group. BA transporters (OSTα and MRP3) were up-regulated in HS pigs compared with CON and PF pigs, respectively (Pâ¯<â¯0.01). In cecum, ursodeoxycholic acid was higher in HS (Pâ¯=â¯0.02) group than CON group. The expression of apical sodium-coupled bile acid transporter (Pâ¯=â¯0.04) was lower in HS pigs than CON pigs, while OSTß (Pâ¯<â¯0.01) was greater in HS group than PF group. These results suggest that chronic HS suppressed liver activity of synthesis and uptake of TCBA, at least in part, which was independent of reduced feed intake.