RESUMEN
We present a dynamic perspective to quantify the air quality-related health impacts of the electrification of light-duty vehicles in the United States between 2022 and 2050. Using a fleet turnover model and future electricity generation mix scenarios, we compare ambitious vehicle electrification to fleet renewal relying on newer internal combustion engine vehicles, without electric vehicles. The model includes vehicle-level pollutant emission factors and a reduced complexity air quality and valuation model and covers direct (tailpipe, brake wear, and tire wear) and indirect (production of electricity and liquid fuels) emissions of NOx, SO2, PM2.5, NH3, and VOCs, with a breakdown at the county level to identify geographical disparities in the distribution of health impacts. Short-term health benefits are mostly generated by reductions in NOx emissions from newer gasoline vehicles, while fleet electrification generates further benefits in the long term. The electricity mix plays a crucial role in the success of electrification policies. With continued grid decarbonization, electrification would reduce harmful air quality-related health impacts cumulatively by 84 to 188 billion USD over the study period, compared with fleet renewal without electric vehicles. In contrast, artificially freezing the 2022 grid would make electrification responsible for 32 to 71 billion USD additional health disbenefits compared with fleet renewal. Finally, we show that while fleet electrification achieves most of its benefits over fleet renewal in the long term, delaying the implementation of such policies would sacrifice meaningful cumulative benefits.
RESUMEN
Rapidly changing wildfire regimes across the Western United States have driven more frequent and severe wildfires, resulting in wide-ranging societal threats from wildfires and wildfire-generated smoke. However, common measures of fire severity focus on what is burned, disregarding the societal impacts of smoke generated from each fire. We combine satellite-derived fire scars, air parcel trajectories from individual fires, and predicted smoke PM2.5 to link source fires to resulting smoke PM2.5 and health impacts experienced by populations in the contiguous United States from April 2006 to 2020. We quantify fire-specific accumulated smoke exposure based on the cumulative population exposed to smoke PM2.5 over the duration of a fire and estimate excess asthma-related emergency department (ED) visits as a result of this exposure. We find that excess asthma visits attributable to each fire are only moderately correlated with common measures of wildfire severity, including burned area, structures destroyed, and suppression cost. Additionally, while recent California fires contributed nearly half of the country's smoke-related excess asthma ED visits during our study period, the most severe individual fire was the 2007 Bugaboo fire in the Southeast. We estimate that a majority of smoke PM2.5 comes from sources outside the local jurisdictions where the smoke is experienced, with 87% coming from fires in other counties and 60% from fires in other states. Our approach could enable broad-scale assessment of whether specific fire characteristics affect smoke toxicity or impact, inform cost-effectiveness assessments for allocation of suppression resources, and help clarify the growing transboundary nature of local air quality.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Incendios Forestales , Humanos , Estados Unidos/epidemiología , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Asma/epidemiología , Asma/etiología , Agricultura , Material Particulado/toxicidadRESUMEN
BACKGROUND: Knowledge regarding the health impacts of daily eating frequency (DEF) and nighttime fasting duration (NFD) on mortality is very limited. OBJECTIVE: This study aimed to examine whether DEF and NFD are associated with CVD and all-cause mortality. METHODS: This was a prospective cohort study of a nationally representative sample from the United States, including 30,464 adults who participated in the National Health and Nutrition Examination Survey 2003-2014. Using 24-h dietary recall, DEF was assessed by the number of eating episodes, and NFD was calculated by the first and last eating time across a day. Death information was obtained from the National Death Index up to 2019. Weighted Cox proportional hazards regression models were used to assess survival relationships of DEF and NFD with mortality. RESULTS: During 307,686 person-years of follow-up, 4560 deaths occurred, including 1824 CVD cases. After adjustment for confounders, compared to DEF at 4-6 times, participants whose DEF was less than 3 times had greater CVD [hazard-ratio (HR) = 1.33, 95% confidence-interval (CI): 1.06-1.67] and all-cause (HR = 1.16, 95% CI: 1.01-1.33) mortality risks. Furthermore, compared to NFD of 10 to 11 h, participants whose NFD was shorter than 10 h had HRs of 1.30 (95% CI: 1.08-1.55) for CVD mortality and 1.23 (95% CI: 1.08-1.39) for all-cause mortality. NFD longer than 14 h was also related to CVD mortality (HR = 1.37, 95% CI: 1.12-1.67) and all-cause mortality (HR = 1.36, 95% CI: 1.19-1.54). Similar results for the association of NFD and DEF with heart-specific and stroke-specific mortality were observed. CONCLUSION: This study found that DEF less than 3 times and NFD shorter than 10 h or longer than 14 h were independently associated with greater cardiovascular and all-cause mortality.
Asunto(s)
Enfermedades Cardiovasculares , Carubicina/análogos & derivados , Adulto , Humanos , Estados Unidos/epidemiología , Encuestas Nutricionales , Estudios Prospectivos , Conducta Alimentaria , AyunoRESUMEN
The increasing global attention on micro(nano)plastics (MNPs) is a result of their ubiquity in the water, air, soil, and biosphere, exposing humans to MNPs on a daily basis and threatening human health. However, crucial data on MNPs in the human body, including the sources, occurrences, behaviors, and health risks, are limited, which greatly impedes any systematic assessment of their impact on the human body. To further understand the effects of MNPs on the human body, we must identify existing knowledge gaps that need to be immediately addressed and provide potential solutions to these issues. Herein, we examined the current literature on the sources, occurrences, and behaviors of MNPs in the human body as well as their potential health risks. Furthermore, we identified key knowledge gaps that must be resolved to comprehensively assess the effects of MNPs on human health. Additionally, we addressed that the complexity of MNPs and the lack of efficient analytical methods are the main barriers impeding current investigations on MNPs in the human body, necessitating the development of a standard and unified analytical method. Finally, we highlighted the need for interdisciplinary studies from environmental, biological, medical, chemical, computer, and material scientists to fill these knowledge gaps and drive further research. Considering the inevitability and daily occurrence of human exposure to MNPs, more studies are urgently required to enhance our understanding of their potential negative effects on human health.
RESUMEN
Societal benefits from climate change mitigation accrue via multiple pathways. We examine the US impacts of emission changes on several factors that are affected by both climate and air quality responses. Nationwide benefits through midcentury stem primarily from air quality improvements, which are realized rapidly, and include human health, labor productivity, and crop yield benefits. Benefits from reduced heat exposure become large around 2060, thereafter often dominating over those from improved air quality. Monetized benefits are in the tens of trillions of dollars for avoided deaths and tens of billions for labor productivity and crop yield increases and reduced hospital expenditures. Total monetized benefits this century are dominated by health and are much larger than in previous analyses due to improved understanding of the human health impacts of exposure to both heat and air pollution. Benefit-cost ratios are therefore much larger than in prior studies, especially those that neglected clean air benefits. Specifically, benefits from clean air exceed costs in the first decade, whereas benefits from climate alone exceed costs in the latter half of the century. Furthermore, monetized US benefits largely stem from US emissions reductions. Increased emphasis on the localized, near-term air quality-related impacts would better align policies with societal benefits and, by reducing the mismatch between perception of climate as a risk distant in space and time and the need for rapid action to mitigate long-term climate change, might help increase acceptance of mitigation policies.
Asunto(s)
Contaminación del Aire/efectos adversos , Cambio Climático/estadística & datos numéricos , Productos Agrícolas/crecimiento & desarrollo , Contaminantes Atmosféricos/efectos adversos , Análisis Costo-Beneficio , Política Ambiental , Humanos , Material Particulado/efectos adversos , Estados UnidosRESUMEN
Recent dramatic and deadly increases in global wildfire activity have increased attention on the causes of wildfires, their consequences, and how risk from wildfire might be mitigated. Here we bring together data on the changing risk and societal burden of wildfire in the United States. We estimate that nearly 50 million homes are currently in the wildland-urban interface in the United States, a number increasing by 1 million houses every 3 y. To illustrate how changes in wildfire activity might affect air pollution and related health outcomes, and how these linkages might guide future science and policy, we develop a statistical model that relates satellite-based fire and smoke data to information from pollution monitoring stations. Using the model, we estimate that wildfires have accounted for up to 25% of PM2.5 (particulate matter with diameter <2.5 µm) in recent years across the United States, and up to half in some Western regions, with spatial patterns in ambient smoke exposure that do not follow traditional socioeconomic pollution exposure gradients. We combine the model with stylized scenarios to show that fuel management interventions could have large health benefits and that future health impacts from climate-change-induced wildfire smoke could approach projected overall increases in temperature-related mortality from climate change-but that both estimates remain uncertain. We use model results to highlight important areas for future research and to draw lessons for policy.
Asunto(s)
Incendios Forestales/prevención & control , Incendios Forestales/estadística & datos numéricos , Contaminación del Aire/análisis , Cambio Climático , Exposición a Riesgos Ambientales , Contaminación Ambiental , Incendios , Humanos , Modelos Estadísticos , Material Particulado/análisis , Factores de Riesgo , Humo/análisis , Estados UnidosRESUMEN
This study aimed to examine the potential of soil amendment-assisted phytoremediation using ryegrass in reclaiming abandoned gold mine soil in southwestern Ghana, with a specific focus on the soil contamination hazards associated with metals and metalloids. A pot experiment lasting 60 days was carried out to assess the efficacy of soil amendments, such as compost, iron oxide, and poultry manure, in mitigating environmental hazards. Three soil contamination indices (soil contamination = CF, enrichment factor = ER, and pollution load index = PLI) were used to calculate the extent of soil contamination, enrichment, and pollution of the sites with Co, Hg, Ni, Mo, Se, Sb, and Pb. The findings show that Hg made the greatest contribution (with a maximum soil CF of 18.0) to the overall PLI, with a maximum value of 74.4. The sites were averagely and consequently enriched with toxic elements in the decreasing order: Ni (ER = 33.3) > Mo (20.5) > Sb (14.1) > Pb (11.0) > Hg (7.9) > Se (2.1). The bioaccumulation factor (BCF > 1) suggests that ryegrass has the ability to phytostabilize Co, Hg, Mo, and Ni. This means that the plant may store these elements in its roots, potentially decreasing their negative effects on the environment and human health. Ultimately, the addition of combined manure with iron oxides might have augmented the sequestration of these metals in the root. The elements may have accumulated through sorption on manure or Fe surfaces, dissolution from watering the plants in the pot, or mineralization of organic manure. Thus, ryegrass has shown potential for phytostabilisation of Co, Hg, Mo, and Ni when assisted with a combination of manure and iron oxides; and can consequently mitigate the environmental and human health impacts.
Gold mining in Ghana has caused significant environmental damage and political unrest. Research on environmentally friendly solutions to land degradation is crucial for restoring degraded lands, preserving ecosystem integrity, restoring livelihoods, and protecting public health in gold mining hotspots. However, previous studies have often overemphasized the use of trees in improving soil quality. Other past studies have merely collected plant species for heavy metal analysis without concrete pots or field experiments. Ryegrass has only been limited to arsenic remediation, and its phytoremediation ability for other toxic elements like Co, Hg, Mo, Ni, Pb, Sb, and Se has not been investigated. This work reports for the first time the phytostabilisation ability of ryegrass for potentially toxic elements in a Ghanaian context. Consequently, recommendations are made for reclaiming gold-mine-affected sites while at the same time providing evidence for widening the choice of plant species available for restoring mine-derelict lands. Ultimately, the study fills the gap in phytoremediation research within the global scientific community and Ghana in particular.
RESUMEN
The proliferation of emerging pollutants (EPs), encompassing a range of substances such as phthalates, phenolics, pharmaceuticals, pesticides, personal care products, surfactants, and disinfection agents, has become a significant global concern due to their potential risks to the environment and human well-being. Over the past two decades, numerous research studies have investigated the presence of EPs in wastewater and aquatic ecosystems, with the United States Environmental Protection Agency (USEPA) categorizing these newly introduced chemical compounds as emerging contaminants due to their poorly understood impact. EPs have been linked to adverse health effects in humans, including genotoxic and cytotoxic effects, as well as conditions such as obesity, diabetes, cardiovascular disease, and reproductive abnormalities, often associated with their estrogenic action. Microalgae have shown promise in the detoxification of both inorganic and organic contaminants, and several large-scale microalgal systems for wastewater treatment have been developed. However, the progress of algal bioremediation can be influenced by accidental contaminations and operational challenges encountered in pilot-scale research. Microalgae employ various processes, such as bioadsorption, biouptake, and biodegradation, to effectively remediate EPs. During microalgal biodegradation, complex chemical compounds are transformed into simpler substances through catalytic metabolic degradation. Integrating algal bioremediation with existing treatment methodologies offers a viable approach for efficiently eliminating EPs from wastewater. This review focuses on the use of algal-based biological remediation processes for wastewater treatment, the environmental impacts of EPs, and the challenges associated with implementing algal bioremediation systems to effectively remove emerging pollutants.
Asunto(s)
Contaminantes Ambientales , Microalgas , Contaminantes Químicos del Agua , Humanos , Contaminantes Ambientales/metabolismo , Aguas Residuales , Ecosistema , Agua/metabolismo , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Microalgas/metabolismoRESUMEN
Indoor air pollution arising from burning of biomass fuels poses a significant threat to child health in rural areas of Pakistan. This cross-sectional study aimed to assess health implications associated with indoor air pollution resulting from biomass burning among children under 12 years of age in rural Punjab. A questionnaire-based survey was conducted in six randomly selected rural districts of Punjab, characterized by their primary reliance on biomass fuels. The findings revealed that several characteristics, such as monthly household income, number of living rooms, secondary use of solid fuels, kitchen type, type of cooking stove, and presence of child in the kitchen with their mother, exhibited significant associations (p < 0.05) with negative health impacts among children. Reported health effects among the children included coughing (18.7%), watery eyes (17.7%), eye irritation (12.3%), runny nose (11.8%), breathing difficulties (8.5%), phlegm (38%), headache (25%), nausea (20.1%), dizziness (6.7%), asthma (6.4%), tuberculosis (1.8%), and pneumonia (1.5%).
RESUMEN
Plastic pollutants create health crises like physical damage to tissues, upset reproductive processes, altered behaviour, oxidative stress, neurological disorders, DNA damage, gene expression, and disrupt physiological functions, as the biosphere accumulates them inadvertently through the food web. Water resources have become the generic host of plastic wastes irrespective of their particle size, resulting in widespread distribution in aquatic environments. The pre-treatment step of the traditional water treatment process can easily remove coarse-sized plastic wastes. However, the fine plastic particles, with sizes ranging from nanometres to millimetres, are indifferent to the traditional water treatment. To address the escalating problems, the upgradation of different traditional physical, chemical, and biological remediation techniques offers a promising avenue for tackling tiny plastic particles from the water environment. Further, new techniques and hybrid incorporations to the existing water treatment techniques have been explored, specifically removing tiny plastic debris. A detailed understanding of the sources, fate, and impact of plastic wastes in the environment, as well as an evaluation of the above treatment techniques and their limitations and challenges, can only show the way for their upgradation, hybridization, and development of new techniques. This review paper provides a comprehensive overview of the current knowledge and techniques for the remediation of nanoplastics and microplastics.
Asunto(s)
Microplásticos , Plásticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Restauración y Remediación Ambiental/métodosRESUMEN
Urban environment and air quality are changing primarily due to land use land cover (LULC) changes, economic activity, and urbanization. Air pollution has been increasingly acknowledged as a major issue for cities due to its extensive effects on health and well-being. As the second most populous city in the country, Lahore faces alarming levels of air pollutants, which induced this study to focus on the pervasive issue of air pollution in Lahore. For this, the study collected air pollutants data from the Environmental Protection Department of Punjab and analyzed them using the ARIMA model. In the research results, both the observed data and predictive models uncovered concerning trends in pollutant concentrations, ultimately portraying a concerning picture for air quality management. Carbon monoxide (CO) levels show a consistent rise, surpassing Pakistan's environmental standards by 2025. Similarly, nitrogen dioxide (NO2) concentrations escalate, exceeding prescribed standards. Ground-level ozone (O3) also demonstrates a substantial increase, surpassing standards by 2025. Both PM2.5 and PM10 exhibit marked upward trends, projected to exceed recommended limits, particularly PM10 throughout the study year. The Air Quality Index exhibits an observable upward trend, fluctuating between 70 and 442 from 2015 to 2020. Similarly, a positive correlation was found between population growth and land use conversion into residential areas. Projections suggest a continuous increase, potentially hitting a severe level of 500 during winter by 2025. These findings point to an impending air pollution crisis, demanding urgent action to address the hazardous situation in the city. The study recommends that urban air pollution should be reduced, and the negative health effects of air pollution should be minimized using vegetation barriers, screens, and greening initiatives. Strict regulations and monitoring initiatives need to be put in place in big cities to monitor pollution and vegetation.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Desarrollo Sostenible , Pakistán , Contaminación del Aire/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Ozono/análisis , Dióxido de Nitrógeno/análisis , Monóxido de Carbono/análisis , Ciudades , Material Particulado/análisisRESUMEN
This project examined the impacts of the COVID-19 pandemic on grandparent caregivers, grandchildren, family dynamics, and resources to mitigate and navigate crises. Phone interviews were conducted with 24 grandparent caregivers using a semi-structured interview guide. Caregivers explained that the pandemic had impacted them and their grandchildren by increasing emotional distress, social isolation, financial difficulties, and challenges with education. Helpful resources consisted of financial support, respite care, and support for grandchildren. Thus, there is a need to provide grandparent caregivers with the same resources that foster care providers receive - particularly when faced with challenges such as the COVID-19 pandemic.
Asunto(s)
COVID-19 , Cuidadores , Abuelos , Pandemias , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Cuidadores/psicología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Abuelos/psicología , Anciano de 80 o más Años , Aislamiento Social , Apoyo Social , Entrevistas como Asunto , Cuidados Intermitentes , AdultoRESUMEN
We quantify and compare three environmental impacts from inter-regional freight transportation in the contiguous United States: total mortality attributable to PM2.5 air pollution, racial-ethnic disparities in PM2.5-attributable mortality, and CO2 emissions. We compare all major freight modes (truck, rail, barge, aircraft) and routes (â¼30,000 routes). Our study is the first to comprehensively compare each route separately and the first to explore racial-ethnic exposure disparities by route and mode, nationally. Impacts (health, health disparity, climate) per tonne of freight are the largest for aircraft. Among nonaircraft modes, per tonne, rail has the largest health and health-disparity impacts and the lowest climate impacts, whereas truck transport has the lowest health impacts and greatest climate impactsâan important reminder that health and climate impacts are often but not always aligned. For aircraft and truck, average monetized damages per tonne are larger for climate impacts than those for PM2.5 air pollution; for rail and barge, the reverse holds. We find that average exposures from inter-regional truck and rail are the highest for White non-Hispanic people, those from barge are the highest for Black people, and those from aircraft are the highest for people who are mixed/other race. Level of exposure and disparity among racial-ethnic groups vary in urban versus rural areas.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Estados Unidos , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Contaminación del Aire/análisis , Transportes , Salud Ambiental , Exposición a Riesgos AmbientalesRESUMEN
Health and livelihood impacts from ambient air pollution among populations in developing countries are disproportional. These disparities are often overlooked due to a lack of information on microlevel emission data, especially in smaller cities and rural areas. The current work in an Indian district, Saharanpur, proposes the use of novel data sets to estimate microlevel emissions from air-polluting infrastructure sectors in urban and rural areas for use in pollutant transport models. Health impacts estimated based on the surface PM2.5 concentration suggest that the rate of premature deaths is 158 (95% CI: 122-163) and 143 (95% CI: 65-151) deaths per 100â¯000 people in urban and rural areas, respectively. Sixty-eight percent of the 6372 (95% CI: 3321-6987) annual premature deaths occurs in rural areas. Depicting higher contribution-exposure disparities among socioeconomic groups, the study observed that compared to their contribution to air pollution, low socioeconomic status (SES) groups in the region experience 6,7, 7, and 26% more premature deaths from PM2.5 exposure for industries, household cooking fuel burning, open waste burning, and transportation, respectively. The majority of disability-adjusted life years (DALYs) in the study domain are observed in economically weaker worker categories. Reduced income due to the loss of these life years will significantly impact these groups due to their dependence on daily wages for basic life necessities. Microlevel pollution mitigation policies with a focus on these inequalities are critical for promoting environmental equity and justice.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Contaminación del Aire/análisis , Ciudades , Mortalidad PrematuraRESUMEN
Wildfire smoke has been associated with adverse respiratory outcomes, but the impacts of wildfire on other health outcomes and sensitive subpopulations are not fully understood. We examined associations between smoke events and emergency department visits (EDVs) for respiratory, cardiovascular, diabetes, and mental health outcomes in California during the wildfire season June-December 2016-2019. Daily, zip code tabulation area-level wildfire-specific fine particulate matter (PM2.5) concentrations were aggregated to air basins. A "smoke event" was defined as an air basin-day with a wildfire-specific PM2.5 concentration at or above the 98th percentile across all air basin-days (threshold = 13.5 µg/m3). We conducted a two-stage time-series analysis using quasi-Poisson regression considering lag effects and random effects meta-analysis. We also conducted analyses stratified by race/ethnicity, age, and sex to assess potential effect modification. Smoke events were associated with an increased risk of EDVs for all respiratory diseases at lag 1 [14.4%, 95% confidence interval (CI): (6.8, 22.5)], asthma at lag 0 [57.1% (44.5, 70.8)], and chronic lower respiratory disease at lag 0 [12.7% (6.2, 19.6)]. We also found positive associations with EDVs for all cardiovascular diseases at lag 10. Mixed results were observed for mental health outcomes. Stratified results revealed potential disparities by race/ethnicity. Short-term exposure to smoke events was associated with increased respiratory and schizophrenia EDVs. Cardiovascular impacts may be delayed compared to respiratory outcomes.
Asunto(s)
Contaminantes Atmosféricos , Incendios Forestales , Contaminantes Atmosféricos/toxicidad , Material Particulado/análisis , California , Servicio de Urgencia en Hospital , Exposición a Riesgos Ambientales/análisisRESUMEN
Road transport contributes over 70% of air pollution in urban areas and is the second largest contributor to the total carbon dioxide emissions in Malaysia at 21% in 2016. Transport-related air pollutants (TRAPs) such as NOx, SO2, CO and particulate matter (PM) pose significant threats to the urban population's health. Malaysia has targeted to deploy 885,000 EV cars on the road by 2030 in the Low Carbon Mobility Blueprint (LCMB). This study aims to quantify the health co-benefits of electric vehicle adoption from their impacts on air quality in Malaysia. Two EV uptake projections, i.e. LCMB and Revised EV Adoption (REVA) projections, and five electricity generation mix scenarios were modelled up to 2040. We used comparative health risk assessment to estimate the potential changes in mortality and burden of diseases (BoD) from the emissions in each scenario. Intake fractions and exposure-risk functions were used to calculate the burden from respiratory diseases (PM2.5, NOx, SO2, CO), cardiovascular diseases and lung cancer (PM2.5). Results showed that along with a net reduction of carbon emissions across all scenarios, there could be reduced respiratory mortality from NOx by 10,200 mortality (176,200 DALYs) and SO2 by 2600 mortality (45,400 DALYs) per year in 2040. However, there could also be additional 719 mortality (9900 DALYs) per year from PM2.5 and 329 mortality (5600 DALYs) from CO per year. The scale of reduction in mortality and BoD from NOx and SO2 are significantly larger than the scale of increase from PM2.5 and CO, indicating potential net positive health impacts from the EV adoption in the scenarios. The health cost savings from the reduced BoD of respiratory mortality could reach up to RM 7.5 billion per year in 2040. In conclusion, EV is a way forward in promoting a healthy and sustainable future transport in Malaysia.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Respiratorias , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Malasia , Contaminación del Aire/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Electricidad , Enfermedades Respiratorias/inducido químicamente , Enfermedades Respiratorias/epidemiologíaRESUMEN
Robust spatio-temporal delineation of extreme climate events and accurate identification of areas that are impacted by an event is a prerequisite for identifying population-level and health-related risks. In prior research, attributes such as temperature and humidity have often been linearly assigned to the population of the study unit from the closest weather station. This could result in inaccurate event delineation and biased assessment of extreme heat exposure. We have developed a spatio-temporal model to dynamically delineate boundaries for Extreme Heat Events (EHE) across space and over time, using a relative measure of Apparent Temperature (AT). Our surface interpolation approach offers a higher spatio-temporal resolution compared to the standard nearest-station (NS) assignment method. We show that the proposed approach can provide at least 80.8 percent improvement in identification of areas and populations impacted by EHEs. This improvement in average adjusts the misclassification of about one million Californians per day of an extreme event, who would be either unidentified or misidentified under EHEs between 2017 and 2021.
Asunto(s)
Calor Extremo , Calor Extremo/efectos adversos , Tiempo (Meteorología) , Temperatura , Clima , California , Cambio ClimáticoRESUMEN
BACKGROUND: Understanding public perceptions of the health risks of climate change is critical to inform risk communication and support the adoption of adaptive behaviours. In Canada, very few studies have explored public understandings and perceptions of climate impacts on health. The objective of this study was to address this gap by exploring perceptions of the link between climate change and health. METHODS: We conducted a survey of Canadians (n = 3,014) to address this objective. The 116-question survey measured prior consideration of the link between climate change and health, affective assessment of climate health impacts, unprompted knowledge of climate health impacts, and concern about a range of impacts. ANOVA tests were used to assess differences among sociodemographic groups. RESULTS: Overall, Canadian's have a similar level of concern about health impacts of climate change compared with concern about other impacts (e.g. biophysical, economic, and national security). Among health-related impacts, respondents were more concerned about impacts on water, food and air quality, compared with impacts on mental health, infectious diseases and heat-related illnesses. There were differences among sociodemographic groups; women were significantly more concerned than men about all of the health-related impacts; respondents with a high school level of education were significantly less concerned about all health-related impacts compared with respondents with more education; and respondents on the political left were more concerned with those in the political centre, who were more concerned than those on the political right. CONCLUSION: There is emerging literature suggesting that framing communication around climate change in terms of the health risks it poses may increase perceptions of the proximity of the risks. These results suggest that it is important to be specific in the types of health risks that are communicated, and to consider the concerns of the target sociodemographic groups. The differential knowledge, awareness, and concern of climate health impacts across segments of the Canadian population can inform targeted communication and engagement to build broader support for adaptation and mitigation measures.
Asunto(s)
Aclimatación , Cambio Climático , Masculino , Humanos , Femenino , Canadá , Escolaridad , Adaptación PsicológicaRESUMEN
BACKGROUND: Air pollution harms health across the life course. Children are at particular risk of adverse effects during development, which may impact on health in later life. Interventions that improve air quality are urgently needed both to improve public health now, and prevent longer-term increased vulnerability to chronic disease. Low Emission Zones are a public health policy intervention aimed at reducing traffic-derived contributions to urban air pollution, but evidence that they deliver health benefits is lacking. We describe a natural experiment study (CHILL: Children's Health in London and Luton) to evaluate the impacts of the introduction of London's Ultra Low Emission Zone (ULEZ) on children's health. METHODS: CHILL is a prospective two-arm parallel longitudinal cohort study recruiting children at age 6-9 years from primary schools in Central London (the focus of the first phase of the ULEZ) and Luton (a comparator site), with the primary outcome being the impact of changes in annual air pollutant exposures (nitrogen oxides [NOx], nitrogen dioxide [NO2], particulate matter with a diameter of less than 2.5micrograms [PM2.5], and less than 10 micrograms [PM10]) across the two sites on lung function growth, measured as post-bronchodilator forced expiratory volume in one second (FEV1) over five years. Secondary outcomes include physical activity, cognitive development, mental health, quality of life, health inequalities, and a range of respiratory and health economic data. DISCUSSION: CHILL's prospective parallel cohort design will enable robust conclusions to be drawn on the effectiveness of the ULEZ at improving air quality and delivering improvements in children's respiratory health. With increasing proportions of the world's population now living in large urban areas exceeding World Health Organisation air pollution limit guidelines, our study findings will have important implications for the design and implementation of Low Emission and Clean Air Zones in the UK, and worldwide. CLINICALTRIALS: GOV: NCT04695093 (05/01/2021).
Asunto(s)
Contaminación del Aire , Salud Infantil , Niño , Humanos , Contaminación del Aire/efectos adversos , Contaminación del Aire/prevención & control , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/prevención & control , Londres , Estudios Longitudinales , Material Particulado , Estudios Prospectivos , Calidad de VidaRESUMEN
Urban outdoor air pollution in the developing world, mostly due to particulate matter with diameters smaller than 2.5 µm (PM2.5), has been highlighted in recent years. It leads to millions of premature deaths. Outdoor air pollution has also been viewed mostly as an urban problem. We use satellite-derived demarcations to parse India's population into urban and nonurban regions, which agrees with the census data. We also use the satellite-derived surface PM2.5 levels to calculate the health impacts in the urban and nonurban regions. We show that outdoor air pollution is just as severe in nonurban regions as in the urban regions of India, with implications to monitoring, regulations, health, and policy.