Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.907
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Rev ; 100(2): 673-694, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31751167

RESUMEN

The central dogma of molecular biology illustrates the importance of mRNAs as critical mediators between genetic information encoded at the DNA level and proteomes/metabolomes that determine the diverse functional outcome at the cellular and organ levels. Although the total number of protein-producing (coding) genes in the mammalian genome is ~20,000, it is evident that the intricate processes of cardiac development and the highly regulated physiological regulation in the normal heart, as well as the complex manifestation of pathological remodeling in a diseased heart, would require a much higher degree of complexity at the transcriptome level and beyond. Indeed, in addition to an extensive regulatory scheme implemented at the level of transcription, the complexity of transcript processing following transcription is dramatically increased. RNA processing includes post-transcriptional modification, alternative splicing, editing and transportation, ribosomal loading, and degradation. While transcriptional control of cardiac genes has been a major focus of investigation in recent decades, a great deal of progress has recently been made in our understanding of how post-transcriptional regulation of mRNA contributes to transcriptome complexity. In this review, we highlight some of the key molecular processes and major players in RNA maturation and post-transcriptional regulation. In addition, we provide an update to the recent progress made in the discovery of RNA processing regulators implicated in cardiac development and disease. While post-transcriptional modulation is a complex and challenging problem to study, recent technological advancements are paving the way for a new era of exciting discoveries and potential clinical translation in the context of cardiac biology and heart disease.


Asunto(s)
Cardiopatías/metabolismo , Corazón/embriología , Miocardio/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Cardiopatías/tratamiento farmacológico , Cardiopatías/genética , Cardiopatías/patología , Humanos , Morfogénesis , Miocardio/patología , Estabilidad del ARN , ARN Mensajero/genética , Transcripción Genética
2.
Circulation ; 149(14): 1121-1138, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38152931

RESUMEN

BACKGROUND: Progressive remodeling of cardiac gene expression underlies decline in cardiac function, eventually leading to heart failure. However, the major determinants of transcriptional network switching from normal to failed hearts remain to be determined. METHODS: In this study, we integrated human samples, genetic mouse models, and genomic approaches, including bulk RNA sequencing, single-cell RNA sequencing, chromatin immunoprecipitation followed by high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, to identify the role of chromatin remodeling complex INO80 in heart homeostasis and dysfunction. RESULTS: The INO80 chromatin remodeling complex was abundantly expressed in mature cardiomyocytes, and its expression further increased in mouse and human heart failure. Cardiomyocyte-specific overexpression of Ino80, its core catalytic subunit, induced heart failure within 4 days. Combining RNA sequencing, chromatin immunoprecipitation followed by high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, we revealed INO80 overexpression-dependent reshaping of the nucleosomal landscape that remodeled a core set of transcription factors, most notably the MEF2 (Myocyte Enhancer Factor 2) family, whose target genes were closely associated with cardiac function. Conditional cardiomyocyte-specific deletion of Ino80 in an established mouse model of heart failure demonstrated remarkable preservation of cardiac function. CONCLUSIONS: In summary, our findings shed light on the INO80-dependent remodeling of the chromatin landscape and transcriptional networks as a major mechanism underlying cardiac dysfunction in heart failure, and suggest INO80 as a potential preventative or interventional target.


Asunto(s)
Redes Reguladoras de Genes , Insuficiencia Cardíaca , Humanos , Animales , Ratones , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , ARN/metabolismo , Transposasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo
3.
Circulation ; 149(7): 545-555, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38284249

RESUMEN

BACKGROUND: Up to 50% of women report sleep problems in midlife, and cardiovascular disease (CVD) is the leading cause of death in women. How chronic poor sleep exposure over decades of midlife is related to CVD risk in women is poorly understood. We tested whether trajectories of insomnia symptoms or sleep duration over midlife were related to subsequent CVD events among SWAN (Study of Women's Health Across the Nation) participants, whose sleep was assessed up to 16 times over 22 years. METHODS: At baseline, SWAN participants (n=2964) were 42 to 52 years of age, premenopausal or early perimenopausal, not using hormone therapy, and free of CVD. They completed up to 16 visits, including questionnaires assessing insomnia symptoms (trouble falling asleep, waking up several times a night, or waking earlier than planned ≥3 times/week classified as insomnia), typical daily sleep duration, vasomotor symptoms, and depressive symptoms; anthropometric measurements; phlebotomy; and CVD event ascertainment (ie, fatal or nonfatal myocardial infarction, stroke, heart failure, revascularization). Sleep trajectories (ie, insomnia, sleep duration) were determined by means of group-based trajectory modeling. Sleep trajectories were tested in relation to CVD in Cox proportional hazards models (multivariable models: site, age, race and ethnicity, education, CVD risk factors averaged over visits; additional covariates: vasomotor symptoms, snoring, depression). RESULTS: Four trajectories of insomnia symptoms emerged: low insomnia symptoms (n=1142 [39% of women]), moderate insomnia symptoms decreasing over time (n=564 [19%]), low insomnia symptoms increasing over time (n=590 [20%]), and high insomnia symptoms that persisted (n=668 [23%]). Women with persistently high insomnia symptoms had higher CVD risk (hazard ratio, 1.71 [95% CI, 1.19, 2.46], P=0.004, versus low insomnia; multivariable). Three trajectories of sleep duration emerged: persistently short (~5 hours: n=363 [14%]), moderate (~6 hours: n=1394 [55%]), and moderate to long (~8 hours: n=760 [30%]). Women with persistent short sleep had marginally higher CVD risk (hazard ratio, 1.51 [95% CI, 0.98, 2.33], P=0.06, versus moderate; multivariable). Women who had both persistent high insomnia and short sleep had significantly elevated CVD risk (hazard ratio, 1.75 [95% CI, 1.03, 2.98], P=0.04, versus low insomnia and moderate or moderate to long sleep duration; multivariable). Relations of insomnia to CVD persisted when adjusting for vasomotor symptoms, snoring, or depression. CONCLUSIONS: Insomnia symptoms, when persistent over midlife or occurring with short sleep, are associated with higher CVD risk among women.


Asunto(s)
Enfermedades Cardiovasculares , Trastornos del Inicio y del Mantenimiento del Sueño , Femenino , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/diagnóstico , Ronquido , Sueño , Salud de la Mujer
4.
Circulation ; 149(14): e1028-e1050, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38415358

RESUMEN

A major focus of academia, industry, and global governmental agencies is to develop and apply artificial intelligence and other advanced analytical tools to transform health care delivery. The American Heart Association supports the creation of tools and services that would further the science and practice of precision medicine by enabling more precise approaches to cardiovascular and stroke research, prevention, and care of individuals and populations. Nevertheless, several challenges exist, and few artificial intelligence tools have been shown to improve cardiovascular and stroke care sufficiently to be widely adopted. This scientific statement outlines the current state of the art on the use of artificial intelligence algorithms and data science in the diagnosis, classification, and treatment of cardiovascular disease. It also sets out to advance this mission, focusing on how digital tools and, in particular, artificial intelligence may provide clinical and mechanistic insights, address bias in clinical studies, and facilitate education and implementation science to improve cardiovascular and stroke outcomes. Last, a key objective of this scientific statement is to further the field by identifying best practices, gaps, and challenges for interested stakeholders.


Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , Accidente Cerebrovascular , Estados Unidos , Humanos , Inteligencia Artificial , American Heart Association , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/prevención & control , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/prevención & control
5.
Circ Res ; 132(12): 1570-1583, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37289908

RESUMEN

Since it was first defined by the American Heart Association in 2010, cardiovascular health (CVH) has been extensively studied across the life course. In this review, we present the current literature examining early life predictors of CVH, the later life outcomes of child CVH, and the relatively few interventions which have specifically addressed how to preserve and promote CVH across populations. We find that research on CVH has demonstrated that prenatal and childhood exposures are consistently associated with CVH trajectories from childhood through adulthood. CVH measured at any point in life is strongly predictive of future cardiovascular disease, dementia, cancer, and mortality as well as a variety of other health outcomes. This speaks to the importance of intervening early to prevent the loss of optimal CVH and the accumulation of cardiovascular risk. Interventions to improve CVH are not common but those that have been published most often address multiple modifiable risk factors among individuals within the community. Relatively few interventions have been focused on improving the construct of CVH in children. Future research is needed that will be both effective, scalable, and sustainable. Technology including digital platforms as well as implementation science will play key roles in achieving this vision. In addition, community engagement at all stages of this research is critical. Lastly, prevention strategies that are tailored to the individual and their context may help us achieve the promise of personalized prevention and help promote ideal CVH in childhood and across the life course.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Niño , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Acontecimientos que Cambian la Vida , Factores de Riesgo , Estados Unidos
6.
Circ Res ; 132(9): 1246-1253, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104562

RESUMEN

In recent years, the lymphatic system has received increasing attention due to the fast-growing number of findings about its diverse novel functional roles in health and disease. It is well documented that the lymphatic vasculature plays major roles in the maintenance of tissue-fluid balance, the immune response, and in lipid absorption. However, recent studies have identified an additional growing number of novel and sometimes unexpected functional roles of the lymphatic vasculature in normal and pathological conditions in different organs. Among those, cardiac lymphatics have been shown to play important roles in heart development, ischemic cardiac disease, and cardiac disorders. In this review, we will discuss some of those novel functional roles of cardiac lymphatics, as well as the therapeutic potential of targeting lymphatics for the treatment of cardiovascular diseases.


Asunto(s)
Cardiopatías , Vasos Linfáticos , Isquemia Miocárdica , Humanos , Linfangiogénesis , Corazón , Isquemia Miocárdica/patología
7.
Cell Mol Life Sci ; 81(1): 197, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664263

RESUMEN

Congenital heart defects are associated with significant health challenges, demanding a deep understanding of the underlying biological mechanisms and, thus, better devices or platforms that can recapitulate human cardiac development. The discovery of human pluripotent stem cells has substantially reduced the dependence on animal models. Recent advances in stem cell biology, genetic editing, omics, microfluidics, and sensor technologies have further enabled remarkable progress in the development of in vitro platforms with increased fidelity and efficiency. In this review, we provide an overview of advancements in in vitro cardiac development platforms, with a particular focus on technological innovation. We categorize these platforms into four areas: two-dimensional solid substrate cultures, engineered substrate architectures that enhance cellular functions, cardiac organoids, and embryos/explants-on-chip models. We conclude by addressing current limitations and presenting future perspectives.


Asunto(s)
Evaluación Preclínica de Medicamentos , Corazón , Ingeniería de Tejidos , Humanos , Animales , Evaluación Preclínica de Medicamentos/métodos , Ingeniería de Tejidos/métodos , Organoides/metabolismo , Organoides/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Cardiopatías Congénitas/genética , Dispositivos Laboratorio en un Chip
8.
Circulation ; 148(2): 174-195, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37288568

RESUMEN

This scientific statement from the American Heart Association focuses on treatment strategies and modalities for cardiomyopathy (heart muscle disease) in children and serves as a companion scientific statement for the recent statement on the classification and diagnosis of cardiomyopathy in children. We propose that the foundation of treatment of pediatric cardiomyopathies is based on these principles applied as personalized therapy for children with cardiomyopathy: (1) identification of the specific cardiac pathophysiology; (2) determination of the root cause of the cardiomyopathy so that, if applicable, cause-specific treatment can occur (precision medicine); and (3) application of therapies based on the associated clinical milieu of the patient. These clinical milieus include patients at risk for developing cardiomyopathy (cardiomyopathy phenotype negative), asymptomatic patients with cardiomyopathy (phenotype positive), patients with symptomatic cardiomyopathy, and patients with end-stage cardiomyopathy. This scientific statement focuses primarily on the most frequent phenotypes, dilated and hypertrophic, that occur in children. Other less frequent cardiomyopathies, including left ventricular noncompaction, restrictive cardiomyopathy, and arrhythmogenic cardiomyopathy, are discussed in less detail. Suggestions are based on previous clinical and investigational experience, extrapolating therapies for cardiomyopathies in adults to children and noting the problems and challenges that have arisen in this experience. These likely underscore the increasingly apparent differences in pathogenesis and even pathophysiology in childhood cardiomyopathies compared with adult disease. These differences will likely affect the utility of some adult therapy strategies. Therefore, special emphasis has been placed on cause-specific therapies in children for prevention and attenuation of their cardiomyopathy in addition to symptomatic treatments. Current investigational strategies and treatments not in wide clinical practice, including future direction for investigational management strategies, trial designs, and collaborative networks, are also discussed because they have the potential to further refine and improve the health and outcomes of children with cardiomyopathy in the future.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Restrictiva , Cardiopatías , Humanos , American Heart Association , Cardiomiopatías/diagnóstico , Cardiomiopatías/terapia , Cardiomiopatías/etiología , Cardiopatías/complicaciones , Fenotipo , Niño
9.
Circulation ; 148(19): 1490-1504, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37712250

RESUMEN

BACKGROUND: Cardiovascular diseases are the main cause of worldwide morbidity and mortality, highlighting the need for new therapeutic strategies. Autophosphorylation and subsequent overactivation of the cardiac stress-responsive enzyme CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) serves as a central driver of multiple cardiac disorders. METHODS: To develop a comprehensive therapy for heart failure, we used CRISPR-Cas9 adenine base editing to ablate the autophosphorylation site of CaMKIIδ. We generated mice harboring a phospho-resistant CaMKIIδ mutation in the germline and subjected these mice to severe transverse aortic constriction, a model for heart failure. Cardiac function, transcriptional changes, apoptosis, and fibrosis were assessed by echocardiography, RNA sequencing, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and standard histology, respectively. Specificity toward CaMKIIδ gene editing was assessed using deep amplicon sequencing. Cellular Ca2+ homeostasis was analyzed using epifluorescence microscopy in Fura-2-loaded cardiomyocytes. RESULTS: Within 2 weeks after severe transverse aortic constriction surgery, 65% of all wild-type mice died, and the surviving mice showed dramatically impaired cardiac function. In contrast to wild-type mice, CaMKIIδ phospho-resistant gene-edited mice showed a mortality rate of only 11% and exhibited substantially improved cardiac function after severe transverse aortic constriction. Moreover, CaMKIIδ phospho-resistant mice were protected from heart failure-related aberrant changes in cardiac gene expression, myocardial apoptosis, and subsequent fibrosis, which were observed in wild-type mice after severe transverse aortic constriction. On the basis of identical mouse and human genome sequences encoding the autophosphorylation site of CaMKIIδ, we deployed the same editing strategy to modify this pathogenic site in human induced pluripotent stem cells. It is notable that we detected a >2000-fold increased specificity for editing of CaMKIIδ compared with other CaMKII isoforms, which is an important safety feature. While wild-type cardiomyocytes showed impaired Ca2+ transients and an increased frequency of arrhythmias after chronic ß-adrenergic stress, CaMKIIδ-edited cardiomyocytes were protected from these adverse responses. CONCLUSIONS: Ablation of CaMKIIδ autophosphorylation by adenine base editing may offer a potential broad-based therapeutic concept for human cardiac disease.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Ratones , Humanos , Animales , Edición Génica , Sistemas CRISPR-Cas , Ratones Noqueados , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Fibrosis , Adenina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo
10.
Circulation ; 148(20): 1636-1664, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37807920

RESUMEN

A growing appreciation of the pathophysiological interrelatedness of metabolic risk factors such as obesity and diabetes, chronic kidney disease, and cardiovascular disease has led to the conceptualization of cardiovascular-kidney-metabolic syndrome. The confluence of metabolic risk factors and chronic kidney disease within cardiovascular-kidney-metabolic syndrome is strongly linked to risk for adverse cardiovascular and kidney outcomes. In addition, there are unique management considerations for individuals with established cardiovascular disease and coexisting metabolic risk factors, chronic kidney disease, or both. An extensive body of literature supports our scientific understanding of, and approach to, prevention and management for individuals with cardiovascular-kidney-metabolic syndrome. However, there are critical gaps in knowledge related to cardiovascular-kidney-metabolic syndrome in terms of mechanisms of disease development, heterogeneity within clinical phenotypes, interplay between social determinants of health and biological risk factors, and accurate assessments of disease incidence in the context of competing risks. There are also key limitations in the data supporting the clinical care for cardiovascular-kidney-metabolic syndrome, particularly in terms of early-life prevention, screening for risk factors, interdisciplinary care models, optimal strategies for supporting lifestyle modification and weight loss, targeting of emerging cardioprotective and kidney-protective therapies, management of patients with both cardiovascular disease and chronic kidney disease, and the impact of systematically assessing and addressing social determinants of health. This scientific statement uses a crosswalk of major guidelines, in addition to a review of the scientific literature, to summarize the evidence and fundamental gaps related to the science, screening, prevention, and management of cardiovascular-kidney-metabolic syndrome.


Asunto(s)
Enfermedades Cardiovasculares , Síndrome Metabólico , Insuficiencia Renal Crónica , Estados Unidos/epidemiología , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/epidemiología , Síndrome Metabólico/terapia , American Heart Association , Factores de Riesgo , Riñón , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia
11.
Curr Issues Mol Biol ; 46(4): 3134-3163, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38666927

RESUMEN

This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic ß-cells, liver cells, and hypoxic tissues, such as cancer endothelial cells and atherosclerotic plaques. TXNDC5 plays a crucial role in regulating cell proliferation, apoptosis, migration, and antioxidative stress. Its potential significance in cancer warrants further investigation, given the altered and highly adaptable metabolism of tumor cells. It has been reported that both high and low levels of TXNDC5 expression are associated with multiple diseases, such as arthritis, cancer, diabetes, brain diseases, and infections, as well as worse prognoses. TXNDC5 has been attributed to both oncogenic and tumor-suppressive features. It has been concluded that in cancer, TXNDC5 acts as a foe and responds to metabolic and cellular stress signals to promote the survival of tumor cells against apoptosis. Conversely, in normal cells, TXNDC5 acts as a friend to safeguard cells against oxidative and endoplasmic reticulum stress. Therefore, TXNDC5 could serve as a viable biomarker or even a potential pharmacological target.

12.
Funct Integr Genomics ; 24(3): 102, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760573

RESUMEN

Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.


Asunto(s)
Biomarcadores , Exosomas , Insuficiencia Cardíaca , ARN Circular , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Biomarcadores/metabolismo , Exosomas/metabolismo , Exosomas/genética , Animales , MicroARNs/genética , MicroARNs/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 326(4): H1045-H1052, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38363583

RESUMEN

The magnitude of exercise-induced cardiac troponin (cTn) elevations is dependent on cardiovascular health status, and previous studies have shown that occult coronary atherosclerosis is highly prevalent among amateur athletes. We tested the hypothesis that middle-aged and older athletes with coronary atherosclerosis demonstrate greater cTn elevations following a controlled endurance exercise test compared with healthy peers. We included 59 male athletes from the Measuring Athletes' Risk of Cardiovascular events 2 (MARC-2) study and stratified them as controls [coronary artery calcium score (CACS) = 0, n = 20], high CACS [≥300 Agatston units or ≥75th Multi-Ethnic Study of Atherosclerosis (MESA) percentile, n = 20] or significant stenosis (≥50% in any coronary artery, n = 19). Participants performed a cycling test with incremental workload until volitional exhaustion. Serial high-sensitivity cTn (hs-cTn) T and I concentrations were measured (baseline, after 30-min warm-up, and 0, 30, 60, 120, and 180 min postexercise). There were 58 participants (61 [58-69] yr) who completed the exercise test (76 ± 14 min) with a peak heart rate of 97.7 [94.8-101.8]% of their estimated maximum. Exercise duration and workload did not differ across groups. High-sensitivity cardiac troponin T (Hs-cTnT) and high-sensitivity cardiac troponin I (hs-cTnI) concentrations significantly increased (1.55 [1.33-2.14]-fold and 2.76 [1.89-3.86]-fold, respectively) over time, but patterns of cTn changes and the incidence of concentrations >99th percentile did not differ across groups. Serial sampling of hs-cTnT and hs-cTnI concentrations during and following an exhaustive endurance exercise test did not reveal differences in exercise-induced cTn release between athletes with versus without coronary atherosclerosis. These findings suggest that a high CACS or a >50% stenosis in any coronary artery does not aggravate exercise-induced cTn release in middle-aged and older athletes.NEW & NOTEWORTHY Exercise-induced cardiac troponin (cTn) release is considered to be dependent on cardiovascular health status. We tested whether athletes with coronary atherosclerosis demonstrate greater exercise-induced cTn release compared with healthy peers. Athletes with coronary atherosclerosis did not differ in cTn release following exercise compared with healthy peers. Our findings suggest that a high CACS or a >50% stenosis in any coronary artery does not aggravate exercise-induced cTn release in middle-aged and older athletes.


Asunto(s)
Enfermedad de la Arteria Coronaria , Persona de Mediana Edad , Humanos , Masculino , Anciano , Enfermedad de la Arteria Coronaria/diagnóstico , Constricción Patológica , Troponina I , Troponina T , Atletas , Biomarcadores
14.
Biochem Biophys Res Commun ; 694: 149468, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38183876

RESUMEN

Heart diseases are a major cause of morbidity and mortality worldwide. Understanding the molecular mechanisms underlying these diseases is essential for the development of effective diagnostic and therapeutic strategies. The FHL family consists of five members: FHL1, FHL2, FHL3, FHL4, and FHL5/Act. These members exhibit different expression patterns in various tissues including the heart. FHL family proteins are implicated in cardiac remodeling, regulation of metabolic enzymes, and cardiac biomechanical stress perception. A large number of studies have explored the link between FHL family proteins and cardiac disease, skeletal muscle disease, and ovarian metabolism, but a comprehensive and in-depth understanding of the specific molecular mechanisms targeting FHL on cardiac disease is lacking. The aim of this review is to explore the structure and function of FHL family members, to comprehensively elucidate the mechanisms by which they regulate the heart, and to explore in depth the changes in FHL family members observed in different cardiac disorders, as well as the effects of mutations in FHL proteins on heart health.


Asunto(s)
Cardiopatías , Enfermedades Musculares , Humanos , Proteínas Musculares/metabolismo , Enfermedades Musculares/genética , Cardiopatías/genética , Mutación , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética
15.
Clin Genet ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837338

RESUMEN

In the last decade, an incredible improvement has been made in elucidating the genetic bases of cardiomyopathies. Here we report the impact of either the European Society of Cardiology (ESC) guidelines or the use of whole exome sequencing (WES) in terms of a number of variants of uncertain significance (VUS) and missed diagnoses in a series of 260 patients affected by inherited cardiac disorders. Samples were analyzed using a targeted gene panel of 128 cardiac-related genes and/or WES in a subset of patients, with a three-tier approach. Analyzing (i) only a subset of genes related to the clinical presentation, strictly following the ESC guidelines, 20.77% positive test were assessed. The incremental diagnostic rate for (ii) the whole gene panel, and (iii) the WES was 4.71% and 11.67%, respectively. The diverse analytical approaches increased the number of VUSs and incidental findings. Indeed, the use of WES highlights that there is a small percentage of syndromic conditions that standard analysis would not have detected. Moreover, the use of targeted sequencing coupled with "narrow" analytical approach prevents the detection of variants in actionable genes that could allow for preventive treatment. Our data suggest that genetic testing might aid clinicians in the diagnosis of inheritable cardiac disorders.

16.
Cytokine ; 175: 156479, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38199086

RESUMEN

Congestive heart failure (CHF) is a complex multistage syndrome that has a great financial burden on human societies. It was known that the damaged myocardium sends a signal to stimulate the immune system and proliferation of leukocytes. In continuous, cytokine storm can be initiated and causes the probability of CHF. Persistent inflammation by increasing the levels of pro-inflammatory cytokines, plays an important role in the pathogenesis of CHF and causes remodeling, which is a progressive processs. Although treatment by drugs can reduce mortality and partially control the symptoms of heart failure patients, but complications and mortality are still high. Therefore, other treatment options such as Cardiac Resynchronization Therapy (CRT) are necessary. Today, it is known that CRT can be an effective treatment for many patients with heart failure. CRT is novel, non-pharmacological, and device-based therapy that would be beneficial to know more about its performance in the management of heart failure. In this study, we have reviewed the immunological processes involved in heart failure and the effect of CRT in controlling of the cytokine storm.


Asunto(s)
Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca , Humanos , Citocinas , Síndrome de Liberación de Citoquinas/terapia , Insuficiencia Cardíaca/terapia , Resultado del Tratamiento
17.
Exp Eye Res ; 242: 109885, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574944

RESUMEN

The retinal microcirculation system constitutes a unique terminal vessel bed of the systemic circulation, and its perfusion status is directly associated with the neural function of the retina. This vascular network, essential for nourishing various layers of the retina, comprises two primary microcirculation systems: the retinal microcirculation and the choroidal microcirculation, with each system supplying blood to distinct retinal layers and maintaining the associated neural function. The blood flow of those capillaries is regulated via different mechanisms. However, a range of internal and external factors can disrupt the normal architecture and blood flow within the retinal microcirculation, leading to several retinal pathologies, including diabetic retinopathy, macular edema, and vascular occlusions. Metabolic disturbances such as hyperglycemia, hypertension, and dyslipidemia are known to modify retinal microcirculation through various pathways. These alterations are observable in chronic metabolic conditions like diabetes, coronary artery disease, and cerebral microvascular disease due to advances in non-invasive or minimally invasive retinal imaging techniques. Thus, examination of the retinal microcirculation can provide insights into the progression of numerous chronic metabolic disorders. This review discusses the anatomy, physiology and pathophysiology of the retinal microvascular system, with a particular emphasis on the connections between retinal microcirculation and systemic circulation in both healthy states and in the context of prevalent chronic metabolic diseases.


Asunto(s)
Enfermedades Metabólicas , Microcirculación , Vasos Retinianos , Humanos , Microcirculación/fisiología , Vasos Retinianos/fisiopatología , Enfermedades Metabólicas/fisiopatología , Enfermedades de la Retina/fisiopatología , Flujo Sanguíneo Regional/fisiología
18.
Circ Res ; 130(12): 1803-1826, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679360

RESUMEN

Heart disease is the leading cause of death worldwide. Despite decades of research, most heart pathologies have limited treatments, and often the only curative approach is heart transplantation. Thus, there is an urgent need to develop new therapeutic approaches for treating cardiac diseases. Animal models that reproduce the human pathophysiology are essential to uncovering the biology of diseases and discovering therapies. Traditionally, mammals have been used as models of cardiac disease, but the cost of generating and maintaining new models is exorbitant, and the studies have very low throughput. In the last decade, the zebrafish has emerged as a tractable model for cardiac diseases, owing to several characteristics that made this animal popular among developmental biologists. Zebrafish fertilization and development are external; embryos can be obtained in high numbers, are cheap and easy to maintain, and can be manipulated to create new genetic models. Moreover, zebrafish exhibit an exceptional ability to regenerate their heart after injury. This review summarizes 25 years of research using the zebrafish to study the heart, from the classical forward screenings to the contemporary methods to model mutations found in patients with cardiac disease. We discuss the advantages and limitations of this model organism and introduce the experimental approaches exploited in zebrafish, including forward and reverse genetics and chemical screenings. Last, we review the models used to induce cardiac injury and essential ideas derived from studying natural regeneration. Studies using zebrafish have the potential to accelerate the discovery of new strategies to treat cardiac diseases.


Asunto(s)
Cardiopatías , Pez Cebra , Animales , Modelos Animales de Enfermedad , Corazón/fisiología , Cardiopatías/genética , Cardiopatías/terapia , Humanos , Mamíferos , Medicina de Precisión , Pez Cebra/genética
19.
Circ Res ; 131(7): 601-615, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36052690

RESUMEN

BACKGROUND: Racial differences in metabolomic profiles may reflect underlying differences in social determinants of health by self-reported race and may be related to racial disparities in coronary heart disease (CHD) among women in the United States. However, the magnitude of differences in metabolomic profiles between Black and White women in the United States has not been well-described. It also remains unknown whether such differences are related to differences in CHD risk. METHODS: Plasma metabolomic profiles were analyzed using liquid chromatography-tandem mass spectrometry in the WHI-OS (Women's Health Initiative-Observational Study; 138 Black and 696 White women), WHI-HT trials (WHI-Hormone Therapy; 156 Black and 1138 White women), MESA (Multi-Ethnic Study of Atherosclerosis; 114 Black and 219 White women), JHS (Jackson Heart Study; 1465 Black women with 107 incident CHD cases), and NHS (Nurses' Health Study; 2506 White women with 136 incident CHD cases). First, linear regression models were used to estimate associations between self-reported race and 472 metabolites in WHI-OS (discovery); findings were replicated in WHI-HT and validated in MESA. Second, we used elastic net regression to construct a racial difference metabolomic pattern (RDMP) representing differences in the metabolomic patterns between Black and White women in the WHI-OS; the RDMP was validated in the WHI-HT and MESA. Third, using conditional logistic regressions in the WHI (717 CHD cases and 719 matched controls), we examined associations of metabolites with large differences in levels by race and the RDMP with risk of CHD, and the results were replicated in Black women from the JHS and White women from the NHS. RESULTS: Of the 472 tested metabolites, levels of 259 (54.9%) metabolites, mostly lipid metabolites and amino acids, significantly differed between Black and White women in both WHI-OS and WHI-HT after adjusting for baseline characteristics, socioeconomic status, lifestyle factors, baseline health conditions, and medication use (false discovery rate <0.05); similar trends were observed in MESA. The RDMP, composed of 152 metabolites, was identified in the WHI-OS and showed significantly different distributions between Black and White women in the WHI-HT and MESA. Higher RDMP quartiles were associated with an increased risk of incident CHD (odds ratio=1.51 [0.97-2.37] for the highest quartile comparing to the lowest; Ptrend=0.02), independent of self-reported race and known CHD risk factors. In race-stratified analyses, the RDMP-CHD associations were more pronounced in White women. Similar patterns were observed in Black women from the JHS and White women from the NHS. CONCLUSIONS: Metabolomic profiles significantly and substantially differ between Black and White women and may be associated with CHD risk and racial disparities in US women.


Asunto(s)
Enfermedad Coronaria , Aminoácidos , Enfermedad Coronaria/diagnóstico , Enfermedad Coronaria/epidemiología , Femenino , Hormonas , Humanos , Lípidos , Factores de Riesgo , Estados Unidos/epidemiología
20.
Circ Res ; 130(11): 1723-1741, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35617359

RESUMEN

Heart disease remains the leading cause of morbidity and mortality worldwide. With the advancement of modern technology, the role(s) of microtubules in the pathogenesis of heart disease has become increasingly apparent, though currently there are limited treatments targeting microtubule-relevant mechanisms. Here, we review the functions of microtubules in the cardiovascular system and their specific adaptive and pathological phenotypes in cardiac disorders. We further explore the use of microtubule-targeting drugs and highlight promising druggable therapeutic targets for the future treatment of heart diseases.


Asunto(s)
Cardiopatías , Tubulina (Proteína) , Cardiopatías/tratamiento farmacológico , Humanos , Microtúbulos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA