Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Entropy (Basel) ; 23(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073201

RESUMEN

The automated classification of heart sounds plays a significant role in the diagnosis of cardiovascular diseases (CVDs). With the recent introduction of medical big data and artificial intelligence technology, there has been an increased focus on the development of deep learning approaches for heart sound classification. However, despite significant achievements in this field, there are still limitations due to insufficient data, inefficient training, and the unavailability of effective models. With the aim of improving the accuracy of heart sounds classification, an in-depth systematic review and an analysis of existing deep learning methods were performed in the present study, with an emphasis on the convolutional neural network (CNN) and recurrent neural network (RNN) methods developed over the last five years. This paper also discusses the challenges and expected future trends in the application of deep learning to heart sounds classification with the objective of providing an essential reference for further study.

2.
Comput Commun ; 162: 31-50, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32843778

RESUMEN

Objective of this study is to introduce a secure IoHT system, which acts as a clinical decision support system with the diagnosis of cardiovascular diseases. In this sense, it was emphasized that the accuracy rate of diagnosis (classification) can be improved via deep learning algorithms, by needing no hybrid-complex models, and a secure data processing can be achieved with a multi-authentication and Tangle based approach. In detail, heart sounds were classified with Autoencoder Neural Networks (AEN) and the IoHT system was built for supporting doctors in real-time. For developing the diagnosis infrastructure by the AEN, PASCAL B-Training and Physiobank-PhysioNet A-Training heart sound datasets were used accordingly. For the PASCAL dataset, the AEN provided a diagnosis-classification performance with the accuracy of 100%, sensitivity of 100%, and the specificity of 100% whereas the rates were respectively 99.8%, 99.65%, and 99.13% for the PhysioNet dataset. It was seen that the findings by the developed AEN based solution were better than the alternative solutions from the literature. Additionally, usability of the whole IoHT system was found positive by the doctors, and according to the 479 real-case applications, the system was able to achieve accuracy rates of 96.03% for normal heart sounds, 91.91% for extrasystole, and 90.11% for murmur. In terms of security approach, the system was also robust against several attacking methods including synthetic data impute as well as trying to penetrating to the system via central system or mobile devices.

3.
Front Cardiovasc Med ; 9: 809301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694672

RESUMEN

Background: Calcific aortic valve disease (CAVD) is often undiagnosed in asymptomatic patients, especially in underserved populations. Although artificial intelligence has improved murmur detection in auscultation exams, murmur manifestation depends on hemodynamic factors that can be independent of aortic valve (AoV) calcium load and function. The aim of this study was to determine if the presence of AoV calcification directly influences the S2 heart sound. Methods: Adult C57BL/6J mice were assigned to the following 12-week-long diets: (1) Control group (n = 11) fed a normal chow, (2) Adenine group (n = 4) fed an adenine-supplemented diet to induce chronic kidney disease (CKD), and (3) Adenine + HP (n = 9) group fed the CKD diet for 6 weeks, then supplemented with high phosphate (HP) for another 6 weeks to induce AoV calcification. Phonocardiograms, echocardiogram-based valvular function, and AoV calcification were assessed at endpoint. Results: Mice on the Adenine + HP diet had detectable AoV calcification (9.28 ± 0.74% by volume). After segmentation and dimensionality reduction, S2 sounds were labeled based on the presence of disease: Healthy, CKD, or CKD + CAVD. The dataset (2,516 S2 sounds) was split subject-wise, and an ensemble learning-based algorithm was developed to classify S2 sound features. For external validation, the areas under the receiver operating characteristic curve of the algorithm to classify mice were 0.9940 for Healthy, 0.9717 for CKD, and 0.9593 for CKD + CAVD. The algorithm had a low misclassification performance of testing set S2 sounds (1.27% false positive, 1.99% false negative). Conclusion: Our ensemble learning-based algorithm demonstrated the feasibility of using the S2 sound to detect the presence of AoV calcification. The S2 sound can be used as a marker to identify AoV calcification independent of hemodynamic changes observed in echocardiography.

4.
Ann Transl Med ; 9(24): 1752, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35071446

RESUMEN

BACKGROUND: Heart sound auscultation, due to it being a non-invasive, convenient, and relatively low-cost technique, remains the dominant method for detection of cardiovascular disease. METHODS: In this paper, we present a method for identifying abnormal heart sounds based on a novel Dense Feature Selection Convolution Network framework (Dense-FSNet). The Dense-FSNet is comprised of multiple, circular dense connectivity modules, called Clique Blocks. These Clique Blocks can allow low-level and high-level features to stimulate each other for cyclic updates, which subsequently enhances the information flow among layers. Inspired by the channel-wise attention mechanism from Squeeze-and-Excitation Networks (SENet), we adopted squeeze-and-excitation block to avoid the progressive growth of parameters. The effect of the model was assessed using the accuracy, specificity, sensitivity, and area under the curve (AUC) values. To improve model performance, in addition to the structures mentioned above, we incorporated a multi-scale attention mechanism into our framework. RESULTS: Using this attention mechanism, our model was able to achieve adaptively spatial feature fusion by adjusting a hyper-feature that contains higher level visual information and lower-level features including edge details and context information. It is worth noting that data balance technology was also used in the process of building the model, and notable results have been achieved. CONCLUSIONS: Experience using the PhysioNet/CinC 2016 dataset shows that our proposed Dense-FSNet models achieve state of the art levels in the classification and detection of abnormal heart sounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA