Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Xenobiotica ; 53(6-7): 474-483, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819730

RESUMEN

The in vitro metabolism of hirsutine was determined using liver microsomes and human recombinant cytochrome P450 enzymes. Under the current conditions, a total of 14 phase I metabolites were tentatively identified.Ketoconazole showed significant inhibitory effect on the metabolism of hirsutine. Human recombinant cytochrome P450 enzyme analysis revealed that metabolism of hirsutine was mainly catalysed by CYP3A4.Our data revealed that hirsutine was metabolised via mono-oxygenation, di-oxygenation, N-oxygenation, dehydrogenation, demethylation and hydrolysis.In glutathione (GSH)-supplemented liver microsomes, four GSH adducts were identified. Hirsutine underwent facile P450-mediated metabolic activation, forming reactive 3-methyleneindolenine and iminoquinone intermediates.This study provided valuable information on the metabolic fates of hirsutine in liver microsomes, which would aid in understanding the hepatotoxicity caused by hirsutine or hirsutine-containing herb preparation.


Asunto(s)
Alcaloides , Antineoplásicos , Uncaria , Humanos , Alcaloides/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Antineoplásicos/metabolismo , Microsomas Hepáticos/metabolismo
2.
Clin Exp Hypertens ; 45(1): 2192444, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36951068

RESUMEN

Acute myocardial infarction (AMI) is the leading cause of death worldwide. Ischemia-reperfusion (I/R) injury is considered the most common contributor to AMI. Hirsutine has been shown to protect cardiomyocytes against hypoxic injury. The present study investigated whether hirsutine improved AMI induced by I/R injury and the underlying mechanisms. In our study, we used a rat model of myocardial I/R injury. The rats were given hirsutine daily (5, 10, 20 mg/kg) by gavage for 15 days before the myocardial I/R injury. Detectable changes were observed in myocardial infarct size, mitochondrial function, histological damage, and cardiac cell apoptosis. According to our findings, hirsutine pre-treatment reduced the myocardial infarct size, enhanced cardiac function, inhibited cell apoptosis, reduced the tissue lactate dehydrogenase (LDH) and reactive oxygen species (ROS) content, as well as enhanced myocardial ATP content and mitochondrial complex activity. In addition, hirsutine balanced mitochondrial dynamics by increasing Mitofusin2 (Mfn2) expression while decreasing dynamin-related protein 1 phosphorylation (p-Drp1), which was partially regulated by ROS and calmodulin-dependent protein kinase II phosphorylation (p-CaMKII). Mechanistically, hirsutine inhibited mitochondrial-mediated apoptosis during I/R injury by blocking the AKT/ASK-1/p38 MAPK pathway. This present study provides a promising therapeutic intervention for myocardial I/R injury.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratas , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/patología , Apoptosis
3.
Molecules ; 28(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37630393

RESUMEN

Fruits and vegetables are used not only for nutritional purposes but also as therapeutics to treat various diseases and ailments. These food items are prominent sources of phytochemicals that exhibit chemopreventive and therapeutic effects against several diseases. Hirsutine (HSN) is a naturally occurring indole alkaloid found in various Uncaria species and has a multitude of therapeutic benefits. It is found in foodstuffs such as fish, seafood, meat, poultry, dairy, and some grain products among other things. In addition, it is present in fruits and vegetables including corn, cauliflower, mushrooms, potatoes, bamboo shoots, bananas, cantaloupe, and citrus fruits. The primary emphasis of this study is to summarize the pharmacological activities and the underlying mechanisms of HSN against different diseases, as well as the biopharmaceutical features. For this, data were collected (up to date as of 1 July 2023) from various reliable and authentic literature by searching different academic search engines, including PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. Findings indicated that HSN exerts several effects in various preclinical and pharmacological experimental systems. It exhibits anti-inflammatory, antiviral, anti-diabetic, and antioxidant activities with beneficial effects in neurological and cardiovascular diseases. Our findings also indicate that HSN exerts promising anticancer potentials via several molecular mechanisms, including apoptotic cell death, induction of oxidative stress, cytotoxic effect, anti-proliferative effect, genotoxic effect, and inhibition of cancer cell migration and invasion against various cancers such as lung, breast, and antitumor effects in human T-cell leukemia. Taken all together, findings from this study show that HSN can be a promising therapeutic agent to treat various diseases including cancer.


Asunto(s)
Agaricales , Alcaloides , Productos Biológicos , Animales , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Verduras
4.
Pharmacol Res ; 177: 105917, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34597809

RESUMEN

Closely associated with type 2 diabetes mellitus (T2DM), hepatic steatosis and cardiac hypertrophy resulting from chronic excess intake can exacerbate insulin resistance (IR). The current study aims to investigate the pharmacological effects of hirsutine, one indole alkaloid isolated from Uncaria rhynchophylla, on improving hepatic and cardiac IR, and elucidate the underlying mechanism. T2DM and IR in vivo were established by high-fat diet (HFD) feeding for 3 months in C57BL/6 J mice. In vitro IR models were induced by high-glucose and high-insulin (HGHI) incubation in HepG2 and H9c2 cells. Hirsutine administration for 8 weeks improved HFD-induced peripheral hyperglycemia, glucose tolerance and IR by OGTT and ITT assays, and simultaneously attenuated hepatic steatosis and cardiac hypertrophy by pathological observation. The impaired p-Akt expression was activated by hirsutine in liver and heart tissues of HFD mice, and also in the models in vitro. Hirsutine exhibited the effects on enhancing glucose consumption and uptake in IR cell models via activating phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which was blocked by PI3K inhibitor LY294002. Moreover, the effect of hirsutine on promoting glucose uptake and GLUT4 expression in HGHI H9c2 cells was also prevented by Compound C, an inhibitor of AMP-activated protein kinase (AMPK). Enhancement of glycolysis might be another factor of hirsutine showing its effects on glycemic control. Collectively, it was uncovered that hirsutine might exert beneficial effects on regulating glucose homeostasis, thus improving hepatic and cardiac IR, and could be a promising compound for treating diet-induced T2DM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hígado Graso , Resistencia a la Insulina , Alcaloides , Animales , Cardiomegalia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Glucosa/metabolismo , Hígado , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Uncaria
5.
Phytochem Anal ; 31(1): 112-118, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31328320

RESUMEN

INTRODUCTION: Hirsutine and hirsuteine are the main pharmacological activity ingredients of Uncaria rhynchophylla (UR), playing an important role in treating mental and cardiovascular diseases, such as Alzheimer's disease, hypertension, Parkinson's disease, potential anti-cancer activities and so on. OBJECTIVE: To develop a cyclodextrin-modified micellar electrokinetic capillary chromatography (CD-MEKC) method for the simultaneous separation and determination of hirsutine and hirsuteine from UR and its formulations. METHODOLOGY: The optimal method was developed by investigating influences of significant factors on the separation, and this method was successfully applied for the determination of hirsutine and hirsuteine in UR and its formulations. RESULTS: The optimal background electrolyte (BGE) consisted of 40 mM sodium dihydrogen phosphate (pH 7.0), 150 mM 2,6-dimethyl-ß-cyclodextrin (DM-ß-CD), 3 mM mono-(6-ethylenediamine-6-deoxy)-ß-cyclodextrin (ED-ß-CD), and 30 mM sodium cholate (SC). Under these conditions, hirsutine and hirsuteine were successfully separated within 13 min at the separation voltage of 15 kV, temperature of 25°C and the detection wavelength of 224 nm. For the analytes, linear calibration curves were performed within the range 5.0-160.0 µg/mL. The limit of detection (LOD, S/N = 3) and the limit of quantitation (LOQ, S/N = 10) were 0.41, 1.42 µg/mL for hirsutine and 0.60, 2.17 µg/mL for hirsuteine, respectively. The recoveries of three samples were from 97.9% to 102.3%. CONCLUSION: The method was successfully applied to the determination of hirsutine and hirsuteine in UR and its formulations. Meanwhile, it provides an effective reference of the quality control of UR and its formulations.


Asunto(s)
Alcaloides , Cromatografía Capilar Electrocinética Micelar , Ciclodextrinas
6.
Biomed Chromatogr ; 28(3): 439-45, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24122787

RESUMEN

An ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to concurrently determine rhynchophylline and hirsutine in rat plasma. The sample preparation of rat plasma was achieved by alkalization and liquid-liquid extraction. The mass transition of precursor ion → product ion pairs were monitored at m/z 385.2 → 160.0 for rhynchophylline, m/z 369.3 → 144.0 for hirsutine and m/z 414.0 → 220.0 for noscapine (internal standard). This method revealed linear relationships from 2.5 to 50 ng/mL (r(2) > 0.997) for rhynchophylline and from 2.5 to 50 ng/mL (r(2) > 0.998) for hirsutine. The limit of quantification values for rhynchophylline and hirsutine in rat plasma were both 2.5 ng/mL. Intra-day and inter-day precisions were within 10.6% and 12.5%, respectively, for rhynchophylline and hirsutine, and the accuracy (bias) was <10%. Liquid-liquid extraction of rat plasma samples resulted in insignificant matrix effect, and the extraction recoveries were >83.6% for rhynchophylline, 73.4% for hirsutine and 90.7% for the internal standard. This method was applied successfully to a pharmacokinetic study of rhynchophylline and hirsutine in rats after oral administration.


Asunto(s)
Alcaloides/sangre , Cromatografía Líquida de Alta Presión/métodos , Alcaloides Indólicos/sangre , Extractos Vegetales/administración & dosificación , Espectrometría de Masas en Tándem/métodos , Uncaria/química , Administración Oral , Alcaloides/química , Alcaloides/farmacocinética , Animales , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacocinética , Modelos Lineales , Masculino , Oxindoles , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Comput Biol Med ; 157: 106793, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36944292

RESUMEN

Multidrug-resistant Acinetobacter baumannii (MDRAb), a priority-I pathogen declared by the World Health Organization, became a potential healthcare concern worldwide with a high mortality rate. Thus, the identification of putative molecular targets and potential lead molecules is an important concern in healthcare. The present study aimed to screen a prospective molecular target and effectual binders for the drug discovery of MDRAb by computational virtual screening approach. Based on the functional role, γ-carboxymuconolactone decarboxylase (CMD) was prioritized as the target and its three-dimensional (3D) structure was computationally modeled. Based on the availability of the 3D structure, twenty-five herbal molecules were selected by database search, and their drug-likeliness, pharmacokinetic, and toxicity features were predicted. The effectual binding of the selected molecules towards CMD was predicted by molecular docking. The stability of the best-docked complexes was predicted by molecular dynamics (MD) simulation for 100 ns and binding energy calculations were carried out by molecular mechanics generalized Born and surface area solvation (MM/GBSA) method. Out of twenty-five molecules screened, hirsutine (an indole alkaloid of Uncaria rhynchophylla) and thymoquinone (a phytochemical of Nigella sativa) were qualified for drug likeliness, pharmacokinetic, and toxicity features and demonstrated significant effectual binding to CMD when compared with the binding of co-crystallized inhibitor and CMD (control). The docked complexes of hirsutine and thymoquinone, and CMD were stabilized by the binding energies of -8. 30 and -8. 46 kcal/mol respectively. These molecules were qualified in terms of ideal drug likeliness, ADME, and toxicity properties. MD simulation studies showed that the ligand-protein complexes were stable throughout the simulation. The binding free energies of the complexes by MMGBSA were estimated to be -42.08157745 kcal/mol and -36.58618242 kcal/mol for hirsutine and thymoquinone respectively when compared with the calculated binding free energy of the control (-28.75032666 kcal/mol). This study concluded that hirsutine and thymoquinone can act as potential lead molecules against CMD and the present hypothesis can be scaled up to develop potential inhibitors against MDRAb.


Asunto(s)
Acinetobacter baumannii , Simulación del Acoplamiento Molecular , Acinetobacter baumannii/metabolismo , Simulación de Dinámica Molecular
8.
Phytomedicine ; 102: 154150, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35569185

RESUMEN

BACKGROUND: Thrombocytopenia (TP) remains a challenge in clinical hematology. TP may have serious consequences, such as recurrent skin and mucosal bleeding and increased risk of intracranial and internal organ hemorrhage. However, effective and safe therapeutic drugs for the long-term management of TP are still lacking. PURPOSE: This study aimed to identify more effective active compounds for TP therapy. METHODS: Liquid chromatography-mass spectrometry-nuclear magnetic resonance analysis was used to confirm the medicinal species and chemical structure of Hirsutine (HS). The proliferation of HS was examined by Cell Counting Kit (CCK-8) assay on cells lines. The effect of HS on megakaryocyte differentiation was analyzed by evaluating the expression of CD41, CD42b, and DNA ploidy via flow cytometry (FCM). The morphology of megakaryocytes and intermediate cells was observed using an optical microscope. K562 cells were then stained with Giemsa and benzidine. qRT-PCR was used to examine the mRNA expression of GATA-1, GATA-2, FOG-1, TAL-1, RUNX-1, NF-E2, and KLF-1 in K562 cells. Protein levels of the transcription factors were analyzed by western blotting. An MEK inhibitor was used to verify the relationship between the MEK/ERK signaling pathway and CD41/CD42b (FCM), FOG-1, and TAL-1. The Kunming thrombocytopenia mouse model was established by X-ray irradiation (4 Gy) and used to test HS activity and related hematopoietic organ index in vivo. Finally, computer simulations of molecular docking were used to predict the binding energies between HS-MEK and HS-ERK. RESULTS: We preliminarily identified HS by screening a plant-sourced compound library for natural compounds with megakaryocytic differentiation and maturation (MKD/MKM)-promoting activity. We found that HS not only enhanced MKD/MKM of K562 and Meg01 cells, but also suppressed the decline of peripheral platelet levels in X-ray-induced myelosuppressive mice. In addition, HS promoted MKD via activation of MEK-ERK-FOG1/TAL1 signaling, which may be the key molecular mechanism of HS action in TP treatment. Molecular docking simulations further verified that HS targets the signaling protein MEK with high-affinity. CONCLUSION: In this study, we report for the first time that hirsutine boosts MKD/MKM through the MEK/ERK/FOG1/TAL1 signaling pathway and thus represents a promising treatment option for TP.


Asunto(s)
Trombocitopenia , Trombopoyesis , Alcaloides , Animales , Diferenciación Celular , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo , Factores de Transcripción/metabolismo
9.
PeerJ ; 9: e10692, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33604171

RESUMEN

BACKGROUND: The bark of Uncaria rhynchophylla has been traditionally used to treat convulsion, bleeding, hypertension, auto-immune conditions, cancer, and other diseases. The main focus of this research is done for the purpose of exploring the antitumor activity and mechanism of action (MOA) for hirsutine isolated from U. rhynchophylla. METHODS: Jurkat clone E6-1 cells were treated using 10, 25 and 50 µM for 48 h. Inhibition of cell proliferation due to hirsutine treatment was evaluated by CCK8 assay. Flow cytometry was applied to ascertain Jurkat cell cycle progression and apoptosis after treatment with 10, 25 and 50 µM hirsutine for 48 h. The expression and level of the apoptosis-related genes and proteins was analyzed by Real-time Quantitative polymerase chain reaction (qPCR) and Western blotting method, respectively. RESULTS: CCK8 analyses revealed that hirsutine could significantly inhibit the proliferation of Jurkat clone E6-1 cells, in a concentration and time-dependent fashion. Flow cytometry assays revealed that hirsutine could drive apoptotic death and G0/G1 phase arrest in Jurkat cells. Apoptotic cells frequencies were 4.99 ± 0.51%, 13.69 ± 2.00% and 40.21 ± 15.19%, and respective cell cycle arrest in G0/G1 accounted for 34.85 ± 1.81%, 42.83 ± 0.70% and 49.12 ± 4.07%. Simultaneously, compared with the control group, Western blot assays indicated that the up-regulation of pro-apoptotic Bax, cleaved-caspase3, cleaved-caspase9 and Cyto c proteins, as well as the down-regulation of Bcl-2 protein which guards against cell death, might be correlated with cell death induction and inhibition of cell proliferation. QPCR analyses indicated that hirsutine could diminish BCL2 expression and, at the same time, improve Bax, caspase-3 and caspase-9 mRNA levels, thus reiterating a putative correlation of hirsutine treatment in vitro with apoptosis induction and inhibition of cell proliferation (p-value < 0.05). Excessive hirsutine damages the ultrastructure in mitochondria, leading to the release of Cyt c from the mitochondria to cytoplasm in Jurkat clone E6-1 cells, thereby inducing the activated caspase cascade apoptosis process through a mitochondria-mediated pathway. CONCLUSION: An important bioactive constituent-hirsutine-appears to have antitumor effects in human T-cell leukemia, thus enlightening the use of phytomedicines as a novel source for tumor therapy. It is speculated that hirsutine may induce apoptosis of Jurkat Clone E6-1 cells through the mitochondrial apoptotic pathway.

10.
Front Microbiol ; 8: 1674, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912773

RESUMEN

Dengue virus (DENV) is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines). In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 µM (compound) and 100 µg/mL (extract), and reduction of viral focus formation was assessed. Next, we eliminated compounds and extracts which were cytotoxic using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, was identified as a potent anti-DENV compound exhibiting high efficacy and low cytotoxicity. Hirsutine showed antiviral activity against all DENV serotypes. Time-of-drug-addition and time-of-drug-elimination assays indicated that hirsutine inhibits the viral particle assembly, budding, or release step but not the viral translation and replication steps in the DENV lifecycle. A subgenomic replicon system was used to confirm that hirsutine does not restrict viral genome RNA replication. Hirsutine is a novel DENV inhibitor and potential candidate for treating dengue fever.

11.
J Pharm Biomed Anal ; 134: 149-157, 2017 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-27915192

RESUMEN

Drug metabolites identification and construction of metabolic profile are meaningful work for the drug discovery and development. The great challenge during this process is the work of the structural clarification of possible metabolites in the complicated biological matrix, which often resulting in a huge amount data sets, especially in multi-samples in vivo. Analyzing these complex data manually is time-consuming and laborious. The object of this study was to develop a practical strategy for screening and identifying of metabolites from multiple biological samples efficiently. Using hirsutine (HTI), an active components of Uncaria rhynchophylla (Gouteng in Chinese) as a model and its plasma, urine, bile, feces and various tissues were analyzed with data processing software (Metwork), data mining tool (Progenesis QI), and HR-MSn data by ultra-high performance liquid chromatography/linear ion trap-Orbitrap mass spectrometry (U-HPLC/LTQ-Orbitrap-MS). A total of 67 metabolites of HTI in rat biological samples were tentatively identified with established library, and to our knowledge most of which were reported for the first time. The possible metabolic pathways were subsequently proposed, hydroxylation, dehydrogenation, oxidation, N-oxidation, hydrolysis, reduction and glucuronide conjugation were mainly involved according to metabolic profile. The result proved application of this improved strategy was efficient, rapid, and reliable for metabolic profiling of components in multiple biological samples and could significantly expand our understanding of metabolic situation of TCM in vivo.


Asunto(s)
Alcaloides/metabolismo , Medicamentos Herbarios Chinos/metabolismo , Espectrometría de Masas en Tándem/métodos , Uncaria , Alcaloides/análisis , Animales , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis , Masculino , Espectrometría de Masas/métodos , Redes y Vías Metabólicas/fisiología , Ratas , Ratas Wistar
12.
Oncol Lett ; 12(1): 295-300, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27347141

RESUMEN

The present authors have recently demonstrated that hirsutine, one of the major alkaloids in Uncaria species, promotes cell apoptosis by inducing DNA damage and suppresses metastasis of breast cancer cells. Despite its potent anti-cancer activity, certain types of human breast cancer cells exhibit resistance to hirsutine. To maximize the clinical utility of hirsutine therapy against breast cancer, it is critical to explore the underlying mechanism that protects hirsutine-resistant breast cancer cell lines. To identify potential targets for overcoming hirsutine-resistance, the present study investigated a library of kinase inhibitors in combination with hirsutine treatment in the hirsutine-resistant human breast carcinoma MCF-7 cell line. Amongst the 96 compounds tested, inhibitors of the ataxia telangiectasia mutated (ATM) pathway sensitized MCF-7 cells to hirsutine-induced cell death along with a sustained DNA damage response. This sensitization of MCF-7 cells to the hirsutine-induced DNA damage response by interfering with the ATM pathway did not require p53. Instead, radical oxygen species generation was significantly increased in hirsute and ATM inhibitor-treated MCF-7 cells. In conclusion, the present findings suggest the importance of the ATM pathway for optimizing the anti-cancer effect of hirsutine in breast cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA