Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Cell ; 69(2): 214-226, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29351843

RESUMEN

Both acute proteotoxic stresses that unfold proteins and expression of disease-causing mutant proteins that expose aggregation-prone regions can promote protein aggregation. Protein aggregates can interfere with cellular processes and deplete factors crucial for protein homeostasis. To cope with these challenges, cells are equipped with diverse folding and degradation activities to rescue or eliminate aggregated proteins. Here, we review the different chaperone disaggregation machines and their mechanisms of action. In all these machines, the coating of protein aggregates by Hsp70 chaperones represents the conserved, initializing step. In bacteria, fungi, and plants, Hsp70 recruits and activates Hsp100 disaggregases to extract aggregated proteins. In the cytosol of metazoa, Hsp70 is empowered by a specific cast of J-protein and Hsp110 co-chaperones allowing for standalone disaggregation activity. Both types of disaggregation machines are supported by small Hsps that sequester misfolded proteins.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Agregado de Proteínas/fisiología , Citosol/metabolismo , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas HSP70 de Choque Térmico/fisiología , Chaperonas Moleculares/metabolismo , Unión Proteica , Pliegue de Proteína , Desplegamiento Proteico , Proteolisis
2.
J Exp Bot ; 74(5): 1705-1722, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36576197

RESUMEN

J-domain proteins (JDPs) are critical components of the cellular protein quality control machinery, playing crucial roles in preventing the formation and, solubilization of cytotoxic protein aggregates. Bacteria, yeast, and plants additionally have large, multimeric heat shock protein 100 (Hsp100)-class disaggregases that resolubilize protein aggregates. JDPs interact with aggregated proteins and specify the aggregate-remodeling activities of Hsp70s and Hsp100s. However, the aggregate-remodeling properties of plant JDPs are not well understood. Here we identify eight orthologs of Sis1 (an evolutionarily conserved Class II JDP of budding yeast) in Arabidopsis thaliana with distinct aggregate-remodeling functionalities. Six of these JDPs associate with heat-induced protein aggregates in vivo and co-localize with Hsp101 at heat-induced protein aggregate centers. Consistent with a role in solubilizing cytotoxic protein aggregates, an atDjB3 mutant had defects in both solubilizing heat-induced aggregates and acquired thermotolerance as compared with wild-type seedlings. Next, we used yeast prions as protein aggregate models to show that the six JDPs have distinct aggregate-remodeling properties. Results presented in this study, as well as findings from phylogenetic analysis, demonstrate that plants harbor multiple, evolutionarily conserved JDPs with capacity to process a variety of protein aggregate conformers induced by heat and other stressors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico/metabolismo , Filogenia , Agregado de Proteínas
3.
J Exp Bot ; 74(12): 3714-3728, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-36951384

RESUMEN

In the cytosol of plant cells, heat-induced protein aggregates are resolved by the CASEIN LYTIC PROTEINASE/HEAT SHOCK PROTEIN 100 (CLP/HSP100) chaperone family member HSP101, which is essential for thermotolerance. For the chloroplast family member CLPB3 this is less clear, with controversial reports on its role in conferring thermotolerance. To shed light on this issue, we have characterized two clpb3 mutants in Chlamydomonas reinhardtii. We show that chloroplast CLPB3 is required for resolving heat-induced protein aggregates containing stromal TRIGGER FACTOR (TIG1) and the small heat shock proteins 22E/F (HSP22E/F) in vivo, and for conferring thermotolerance under heat stress. Although CLPB3 accumulation is similar to that of stromal HSP70B under ambient conditions, we observed no prominent constitutive phenotypes. However, we found decreased accumulation of the PLASTID RIBOSOMAL PROTEIN L1 (PRPL1) and increased accumulation of the stromal protease DEG1C in the clpb3 mutants, suggesting that a reduction in chloroplast protein synthesis capacity and an increase in proteolytic capacity may compensate for loss of CLPB3 function. Under ambient conditions, CLPB3 was distributed throughout the chloroplast, but reorganized into stromal foci upon heat stress, which mostly disappeared during recovery. CLPB3 foci were localized next to HSP22E/F, which accumulated largely near the thylakoid membranes. This suggests a possible role for CLPB3 in disentangling protein aggregates from the thylakoid membrane system.


Asunto(s)
Chlamydomonas , Termotolerancia , Agregado de Proteínas , Chlamydomonas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo
4.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37895124

RESUMEN

Small heat shock proteins (sHSPs) represent a first line of stress defense in many bacteria. The primary function of these molecular chaperones involves preventing irreversible protein denaturation and aggregation. In Escherichia coli, fibrillar EcIbpA binds unfolded proteins and keeps them in a folding-competent state. Further, its structural homologue EcIbpB induces the transition of EcIbpA to globules, thereby facilitating the substrate transfer to the HSP70-HSP100 system for refolding. The phytopathogenic Acholeplasma laidlawii possesses only a single sHSP, AlIbpA. Here, we demonstrate non-trivial features of the function and regulation of the chaperone-like activity of AlIbpA according to its interaction with other components of the mycoplasma multi-chaperone network. Our results show that the efficiency of the A. laidlawii multi-chaperone system is driven with the ability of AlIbpA to form both globular and fibrillar structures, thus combining functions of both IbpA and IbpB when transferring the substrate proteins to the HSP70-HSP100 system. In contrast to EcIbpA and EcIbpB, AlIbpA appears as an sHSP, in which the competition between the N- and C-terminal domains regulates the shift of the protein quaternary structure between a fibrillar and globular form, thus representing a molecular mechanism of its functional regulation. While the C-terminus of AlIbpA is responsible for fibrils formation and substrate capture, the N-terminus seems to have a similar function to EcIbpB through facilitating further substrate protein disaggregation using HSP70. Moreover, our results indicate that prior to the final disaggregation process, AlIbpA can directly transfer the substrate to HSP100, thereby representing an alternative mechanism in the HSP interaction network.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Choque Térmico Pequeñas , Proteínas de Choque Térmico/metabolismo , Acholeplasma laidlawii/química , Acholeplasma laidlawii/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo
5.
Proteins ; 90(6): 1242-1246, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35122310

RESUMEN

Hsp100 is an ATP-dependent unfoldase that promotes protein disaggregation or facilitates the unfolding of aggregation-prone polypeptides marked for degradation. Recently, new Hsp100 functions are emerging. In Plasmodium, an Hsp100 drives malaria protein export, presenting a novel drug target. Whether Hsp100 has a similar function in other protists is unknown. We present the 1.06 Å resolution crystal structure of the Hsp100 N-domain from Leishmania spp., the causative agent of leishmaniasis in humans. Our structure reveals a network of methionines and aromatic amino acids that define the putative substrate-binding site and likely evolved to protect Hsp100 from oxidative damage in host immune cells.


Asunto(s)
Proteínas de Choque Térmico , Leishmania , Sitios de Unión , Proteínas de Choque Térmico/química , Humanos , Leishmania/metabolismo , Chaperonas Moleculares/química , Péptidos/química
6.
Biochem Soc Trans ; 50(6): 1725-1736, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36454589

RESUMEN

Hsp100 chaperones, also known as Clp proteins, constitute a family of ring-forming ATPases that differ in 3D structure and cellular function from other stress-inducible molecular chaperones. While the vast majority of ATP-dependent molecular chaperones promote the folding of either the nascent chain or a newly imported polypeptide to reach its native conformation, Hsp100 chaperones harness metabolic energy to perform the reverse and facilitate the unfolding of a misfolded polypeptide or protein aggregate. It is now known that inside cells and organelles, different Hsp100 members are involved in rescuing stress-damaged proteins from a previously aggregated state or in recycling polypeptides marked for degradation. Protein degradation is mediated by a barrel-shaped peptidase that physically associates with the Hsp100 hexamer to form a two-component system. Notable examples include the ClpA:ClpP (ClpAP) and ClpX:ClpP (ClpXP) proteases that resemble the ring-forming FtsH and Lon proteases, which unlike ClpAP and ClpXP, feature the ATP-binding and proteolytic domains in a single polypeptide chain. Recent advances in electron cryomicroscopy (cryoEM) together with single-molecule biophysical studies have now provided new mechanistic insight into the structure and function of this remarkable group of macromolecular machines.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Especificidad por Sustrato , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico/metabolismo , Péptidos , Adenosina Trifosfato/metabolismo
7.
EMBO J ; 36(6): 783-796, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28219929

RESUMEN

Small heat shock proteins (sHsps) are an evolutionary conserved class of ATP-independent chaperones that protect cells against proteotoxic stress. sHsps form assemblies with aggregation-prone misfolded proteins, which facilitates subsequent substrate solubilization and refolding by ATP-dependent Hsp70 and Hsp100 chaperones. Substrate solubilization requires disruption of sHsp association with trapped misfolded proteins. Here, we unravel a specific interplay between Hsp70 and sHsps at the initial step of the solubilization process. We show that Hsp70 displaces surface-bound sHsps from sHsp-substrate assemblies. This Hsp70 activity is unique among chaperones and highly sensitive to alterations in Hsp70 concentrations. The Hsp70 activity is reflected in the organization of sHsp-substrate assemblies, including an outer dynamic sHsp shell that is removed by Hsp70 and a stable core comprised mainly of aggregated substrates. Binding of Hsp70 to the sHsp/substrate core protects the core from aggregation and directs sequestered substrates towards refolding pathway. The sHsp/Hsp70 interplay has major impact on protein homeostasis as it sensitizes substrate release towards cellular Hsp70 availability ensuring efficient refolding of damaged proteins under favourable folding conditions.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Agregado de Proteínas , Replegamiento Proteico
8.
FASEB J ; 34(11): 14353-14370, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32910525

RESUMEN

AAA+ (ATPases associated with diverse cellular activities) chaperones are involved in a plethora of cellular activities to ensure protein homeostasis. The function of AAA+ chaperones is mostly modulated by their hexameric/dodecameric quaternary structures. Here we report the structural and biochemical characterizations of a tetradecameric AAA+ chaperone, ClpL from Streptococcus pneumoniae. ClpL exists as a tetradecamer in solution in the presence of ATP. The cryo-EM structure of ClpL at 4.5 Å resolution reveals a striking tetradecameric arrangement. Solution structures of ClpL derived from small-angle X-ray scattering data suggest that the tetradecameric ClpL could assume a spiral conformation found in active hexameric/dodecameric AAA+ chaperone structures. Vertical positioning of the middle domain accounts for the head-to-head arrangement of two heptameric rings. Biochemical activity assays with site-directed mutagenesis confirmed the critical roles of residues both in the integrity of the tetradecameric arrangement and activities of ClpL. Non-conserved Q321 and R670 are crucial in the heptameric ring assembly of ClpL. These results establish that ClpL is a functionally active tetradecamer, clearly distinct from hexameric/dodecameric AAA+ chaperones.


Asunto(s)
Proteínas Bacterianas/química , Chaperonas Moleculares/química , Multimerización de Proteína , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dominios Proteicos , Streptococcus pneumoniae/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(2): E273-E282, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29263094

RESUMEN

AAA+ disaggregases solubilize aggregated proteins and confer heat tolerance to cells. Their disaggregation activities crucially depend on partner proteins, which target the AAA+ disaggregases to protein aggregates while concurrently stimulating their ATPase activities. Here, we report on two potent ClpG disaggregase homologs acquired through horizontal gene transfer by the species Pseudomonas aeruginosa and subsequently abundant P. aeruginosa clone C. ClpG exhibits high, stand-alone disaggregation potential without involving any partner cooperation. Specific molecular features, including high basal ATPase activity, a unique aggregate binding domain, and almost exclusive expression in stationary phase distinguish ClpG from other AAA+ disaggregases. Consequently, ClpG largely contributes to heat tolerance of P. aeruginosa primarily in stationary phase and boosts heat resistance 100-fold when expressed in Escherichia coli This qualifies ClpG as a potential persistence and virulence factor in P. aeruginosa.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Calor , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Transferencia de Gen Horizontal , Filogenia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
10.
J Struct Biol ; 201(1): 52-62, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29129755

RESUMEN

Regulated proteolysis is required in all organisms for the removal of misfolded or degradation-tagged protein substrates in cellular quality control pathways. The molecular machines that catalyze this process are known as ATP-dependent proteases with examples that include ClpAP and ClpCP. Clp/Hsp100 subunits form ring-structures that couple the energy of ATP binding and hydrolysis to protein unfolding and subsequent translocation of denatured protein into the compartmentalized ClpP protease for degradation. Copies of the clpA, clpC, clpE, clpK, and clpL genes are present in all characterized bacteria and their gene products are highly conserved in structure and function. However, the evolutionary relationship between these proteins remains unclear. Here we report a comprehensive phylogenetic analysis that suggests divergent evolution yielded ClpA from an ancestral ClpC protein and that ClpE/ClpL represent intermediates between ClpA/ClpC. This analysis also identifies a group of proteobacterial ClpC proteins that are likely not functional in regulated proteolysis. Our results strongly suggest that bacterial ClpC proteins should not be assumed to all function identically due to the structural differences identified here.


Asunto(s)
Proteínas Bacterianas/genética , Variación Genética , Proteínas de Choque Térmico/genética , Filogenia , Proteobacteria/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Hidrólisis , Unión Proteica , Dominios Proteicos , Desplegamiento Proteico , Proteobacteria/clasificación , Proteobacteria/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie
11.
Cell Mol Life Sci ; 74(4): 617-629, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27522545

RESUMEN

Protein misfolding under stressful environmental conditions cause several cellular problems owing to the disturbed cellular protein homeostasis, which may further lead to neurological disorders like Parkinson's disease (PD), Alzheimer's disease (AD), Amyloid lateral sclerosis and Huntington disease (HD). The presence of cellular defense mechanisms like molecular chaperones and proteasomal degradation systems prevent protein misfolding and aggregation. Molecular chaperones plays primary role in preventing protein misfolding by mediating proper native folding, unfolding and refolding of the polypeptides along with vast number of cellular functions. In past few years, the understanding of molecular chaperone mechanisms has been expanded enormously although implementation to prevent protein aggregation diseases is still deficient. We in this review evaluated major classes of molecular chaperones and their mechanisms relevant for preventing protein aggregation, specific case of α-synuclein aggregation. We also evaluate the molecular chaperone function as a novel therapeutic approach and the chaperone inhibitors or activators as small molecular drug targets.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas/metabolismo , Pliegue de Proteína , alfa-Sinucleína/metabolismo , Animales , Humanos , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas/patología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , alfa-Sinucleína/química
12.
Int J Mol Sci ; 19(11)2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30463272

RESUMEN

ClpC1 hexamers couple the energy of ATP hydrolysis to unfold and, subsequently, translocate specific protein substrates into the associated ClpP protease. Substrate recognition by ATPases associated with various cellular activities (AAA+) proteases is driven by the ATPase component, which selectively determines protein substrates to be degraded. The specificity of these unfoldases for protein substrates is often controlled by an adaptor protein with examples that include MecA regulation of Bacillus subtilis ClpC or ClpS-mediated control of Escherichia coli ClpA. No adaptor protein-mediated control has been reported for mycobacterial ClpC1. Using pulldown and stopped-flow fluorescence methods, we report data demonstrating that Mycobacterium tuberculosis ClpC1 catalyzed unfolding of an SsrA-tagged protein is negatively impacted by association with the ClpS adaptor protein. Our data indicate that ClpS-dependent inhibition of ClpC1 catalyzed SsrA-dependent protein unfolding does not require the ClpC1 N-terminal domain but instead requires the presence of an interaction surface located in the ClpC1 Middle Domain. Taken together, our results demonstrate for the first time that mycobacterial ClpC1 is subject to adaptor protein-mediated regulation in vitro.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Mycobacterium tuberculosis/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Biocatálisis , Cinética , Simulación de Dinámica Molecular , Dominios Proteicos , Desplegamiento Proteico
13.
Crit Rev Biotechnol ; 36(5): 862-74, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26121931

RESUMEN

High-temperature stress can disrupt cellular proteostasis, resulting in the accumulation of insoluble protein aggregates. For survival under stressful conditions, it is important for cells to maintain a pool of native soluble proteins by preventing and/or dissociating these aggregates. Chaperones such as GroEL/GroES (Hsp60/Hsp10) and DnaK/DnaJ/GrpE (Hsp70/Hsp40/nucleotide exchange factor) help cells minimize protein aggregation. Protein disaggregation is accomplished by chaperones belonging to the Caseinolytic Protease (Clp) family of proteins. ClpB/Hsp100 proteins are strikingly ubiquitous and are found in bacteria, yeast and multi-cellular plants. The expression of these proteins is regulated by heat stress (HS) and developmental cues. Bacteria and yeast contain one and two forms of ClpB proteins, respectively. Plants possess multiple forms of these proteins that are localized to different cellular compartments (i.e. cytoplasm/nucleus, chloroplast or mitochondria). Overwhelming evidence suggests that ClpB/Hsp100 proteins play decisive roles in cell adaptation to HS. Mutant bacteria and yeast cells lacking active ClpB/Hsp100 proteins are critically sensitive to high-temperature stress. Likewise, Arabidopsis, maize and rice mutants lacking cytoplasmic ClpB proteins are very sensitive to heat. In this study, we present the structural and functional attributes of plant ClpB forms.


Asunto(s)
Endopeptidasa Clp/genética , Proteínas de Choque Térmico/genética , Plantas Modificadas Genéticamente/genética , Termotolerancia/genética , Calentamiento Global , Chaperonas Moleculares , Mutación , Filogenia , Estrés Fisiológico/genética
14.
Proc Natl Acad Sci U S A ; 110(21): 8513-8, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23650362

RESUMEN

Heat shock protein (Hsp) 104 is a ring-forming, protein-remodeling machine that harnesses the energy of ATP binding and hydrolysis to drive protein disaggregation. Although Hsp104 is an active ATPase, the recovery of functional protein requires the species-specific cooperation of the Hsp70 system. However, like Hsp104, Hsp70 is an active ATPase, which recognizes aggregated and aggregation-prone proteins, making it difficult to differentiate the mechanistic roles of Hsp104 and Hsp70 during protein disaggregation. Mapping the Hsp70-binding sites in yeast Hsp104 using peptide array technology and photo-cross-linking revealed a striking conservation of the primary Hsp70-binding motifs on the Hsp104 middle-domain across species, despite lack of sequence identity. Remarkably, inserting a Strep-Tactin binding motif at the spatially conserved Hsp70-binding site elicits the Hsp104 protein disaggregating activity that now depends on Strep-Tactin but no longer requires Hsp70/40. Consistent with a Strep-Tactin-dependent activation step, we found that full-length Hsp70 on its own could activate the Hsp104 hexamer by promoting intersubunit coordination, suggesting that Hsp70 is an activator of the Hsp104 motor.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Mapeo Peptídico , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
J Biol Chem ; 288(24): 17597-608, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23595989

RESUMEN

The MecA-ClpC complex is a bacterial type II AAA(+) molecular machine responsible for regulated unfolding of substrates, such as transcription factors ComK and ComS, and targeting them to ClpP for degradation. The six subunits of the MecA-ClpC complex form a closed barrel-like structure, featured with three stacked rings and a hollow passage, where substrates are threaded and translocated through successive pores. Although the general concepts of how polypeptides are unfolded and translocated by internal pore loops of AAA(+) proteins have long been conceived, the detailed mechanistic model remains elusive. With cryoelectron microscopy, we captured four different structures of the MecA-ClpC complexes. These complexes differ in the nucleotide binding states of the two AAA(+) rings and therefore might presumably reflect distinctive, representative snapshots from a dynamic unfolding cycle of this hexameric complex. Structural analysis reveals that nucleotide binding and hydrolysis modulate the hexameric complex in a number of ways, including the opening of the N-terminal ring, the axial and radial positions of pore loops, the compactness of the C-terminal ring, as well as the relative rotation between the two nucleotide-binding domain rings. More importantly, our structural and biochemical data indicate there is an active allosteric communication between the two AAA(+) rings and suggest that concerted actions of the two AAA(+) rings are required for the efficiency of the substrate unfolding and translocation. These findings provide important mechanistic insights into the dynamic cycle of the MecA-ClpC unfoldase and especially lay a foundation toward the complete understanding of the structural dynamics of the general type II AAA(+) hexamers.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/ultraestructura , Proteínas de Choque Térmico/ultraestructura , Adenosina Trifosfato/química , Regulación Alostérica , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Microscopía por Crioelectrón , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Hidrólisis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Desplegamiento Proteico
16.
Microbiol Spectr ; 12(1): e0345723, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38051052

RESUMEN

IMPORTANCE: Cytoplasmic Clp-related proteases play a major role in maintaining cellular proteome in bacteria. ClpX/P is one such proteolytic complex that is important for conserving protein homeostasis. In this study, we investigated the role of ClpX/P in Streptococcus mutans, an important oral pathogen. We identified several putative substrates whose cellular levels are regulated by ClpX/P in S. mutans and subsequently discovered several recognition motifs that are critical for degradation. Our study is the first comprehensive analysis of determining ClpX/P motifs in streptococci. We believe that identifying the substrates that are regulated by ClpX/P will enhance our understanding about virulence regulation in this important group of pathogens.


Asunto(s)
Proteínas de Escherichia coli , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Escherichia coli/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Chaperonas Moleculares/metabolismo , Proteolisis
17.
Front Mol Biosci ; 10: 1155521, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021114

RESUMEN

While proteins populating their native conformations constitute the functional entities of cells, protein aggregates are traditionally associated with cellular dysfunction, stress and disease. During recent years, it has become clear that large aggregate-like protein condensates formed via liquid-liquid phase separation age into more solid aggregate-like particles that harbor misfolded proteins and are decorated by protein quality control factors. The constituent proteins of the condensates/aggregates are disentangled by protein disaggregation systems mainly based on Hsp70 and AAA ATPase Hsp100 chaperones prior to their handover to refolding and degradation systems. Here, we discuss the functional roles that condensate formation/aggregation and disaggregation play in protein quality control to maintain proteostasis and why it matters for understanding health and disease.

18.
Front Mol Biosci ; 8: 681439, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017857

RESUMEN

Bacteria as unicellular organisms are most directly exposed to changes in environmental growth conditions like temperature increase. Severe heat stress causes massive protein misfolding and aggregation resulting in loss of essential proteins. To ensure survival and rapid growth resume during recovery periods bacteria are equipped with cellular disaggregases, which solubilize and reactivate aggregated proteins. These disaggregases are members of the Hsp100/AAA+ protein family, utilizing the energy derived from ATP hydrolysis to extract misfolded proteins from aggregates via a threading activity. Here, we describe the two best characterized bacterial Hsp100/AAA+ disaggregases, ClpB and ClpG, and compare their mechanisms and regulatory modes. The widespread ClpB disaggregase requires cooperation with an Hsp70 partner chaperone, which targets ClpB to protein aggregates. Furthermore, Hsp70 activates ClpB by shifting positions of regulatory ClpB M-domains from a repressed to a derepressed state. ClpB activity remains tightly controlled during the disaggregation process and high ClpB activity states are likely restricted to initial substrate engagement. The recently identified ClpG (ClpK) disaggregase functions autonomously and its activity is primarily controlled by substrate interaction. ClpG provides enhanced heat resistance to selected bacteria including pathogens by acting as a more powerful disaggregase. This disaggregase expansion reflects an adaption of bacteria to extreme temperatures experienced during thermal based sterilization procedures applied in food industry and medicine. Genes encoding for ClpG are transmissible by horizontal transfer, allowing for rapid spreading of extreme bacterial heat resistance and posing a threat to modern food production.

19.
Front Mol Biosci ; 8: 666893, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055885

RESUMEN

Small heat shock proteins (sHsps) are an evolutionarily conserved class of ATP-independent chaperones that form the first line of defence during proteotoxic stress. sHsps are defined not only by their relatively low molecular weight, but also by the presence of a conserved α-crystallin domain, which is flanked by less conserved, mostly unstructured, N- and C-terminal domains. sHsps form oligomers of different sizes which deoligomerize upon stress conditions into smaller active forms. Activated sHsps bind to aggregation-prone protein substrates to form assemblies that keep substrates from irreversible aggregation. Formation of these assemblies facilitates subsequent Hsp70 and Hsp100 chaperone-dependent disaggregation and substrate refolding into native species. This mini review discusses what is known about the role and place of bacterial sHsps in the chaperone network.

20.
Int J Biol Macromol ; 165(Pt A): 375-387, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32987071

RESUMEN

Tuberculosis, caused by pathogenic M. tuberculosis, remains a global health concern among various infectious diseases. Studies show that ClpB, a major disaggregase, protects the pathogen from various stresses encountered in the host environment. In the present study we have performed a detailed biophysical characterization of M. tuberculosis ClpB followed by a high throughput screening to identify small molecule inhibitors. The sedimentation velocity studies reveal that ClpB oligomerization varies with its concentration and presence of nucleotides. Further, using high throughput malachite green-based screening assay, we identified potential novel inhibitors of ClpB ATPase activity. The enzyme kinetics revealed that the lead molecule inhibits ClpB activity in a competitive manner. These drugs were also able to inhibit ATPase activity associated with E. coli ClpB and yeast Hsp104. The identified drugs inhibited the growth of intracellular bacteria in macrophages. Small angle X-ray scattering based modeling shows that ATP, and not its non-hydrolyzable analogs induce large scale conformational rearrangements in ClpB. Remarkably, the identified small molecules inhibited these ATP inducible conformational changes, suggesting that nucleotide induced shape changes are crucial for ClpB activity. The study broadens our understanding of M. tuberculosis chaperone machinery and provides the basis for designing more potent inhibitors against ClpB chaperone.


Asunto(s)
Antituberculosos/química , Proteínas Bacterianas , Endopeptidasa Clp , Proteínas de Choque Térmico , Mycobacterium tuberculosis/enzimología , Inhibidores de Proteasas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Endopeptidasa Clp/antagonistas & inhibidores , Endopeptidasa Clp/química , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/química , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA