Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(15): e2104453119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377790

RESUMEN

Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population with high immunosuppressive activity that proliferates in infections, inflammation, and tumor microenvironments. In tumors, MDSC exert immunosuppression mainly by producing reactive oxygen species (ROS), a process triggered by the NADPH oxidase 2 (NOX2) activity. NOX2 is functionally coupled with the Hv1 proton channel in certain immune cells to support sustained free-radical production. However, a functional expression of the Hv1 channel in MDSC has not yet been reported. Here, we demonstrate that mouse MDSC express functional Hv1 proton channel by immunofluorescence microscopy, flow cytometry, and Western blot, besides performing a biophysical characterization of its macroscopic currents via patch-clamp technique. Our results show that the immunosuppression by MDSC is conditional to their ability to decrease the proton concentration elevated by the NOX2 activity, rendering Hv1 a potential drug target for cancer treatment.


Asunto(s)
Canales Iónicos , Células Supresoras de Origen Mieloide , Protones , Linfocitos T , Animales , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Células Supresoras de Origen Mieloide/inmunología , NADPH Oxidasa 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/inmunología
2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941706

RESUMEN

The dissipation of acute acid loads by the voltage-gated proton channel (Hv1) relies on regulating the channel's open probability by the voltage and the ΔpH across the membrane (ΔpH = pHex - pHin). Using monomeric Ciona-Hv1, we asked whether ΔpH-dependent gating is produced during the voltage sensor activation or permeation pathway opening. A leftward shift of the conductance-voltage (G-V) curve was produced at higher ΔpH values in the monomeric channel. Next, we measured the voltage sensor pH dependence in the absence of a functional permeation pathway by recording gating currents in the monomeric nonconducting D160N mutant. Increasing the ΔpH leftward shifted the gating charge-voltage (Q-V) curve, demonstrating that the ΔpH-dependent gating in Hv1 arises by modulating its voltage sensor. We fitted our data to a model that explicitly supposes the Hv1 voltage sensor free energy is a function of both the proton chemical and the electrical potential. The parameters obtained showed that around 60% of the free energy stored in the ΔpH is coupled to the Hv1 voltage sensor activation. Our results suggest that the molecular mechanism underlying the Hv1 ΔpH dependence is produced by protons, which alter the free-energy landscape around the voltage sensor domain. We propose that this alteration is produced by accessibility changes of the protons in the Hv1 voltage sensor during activation.


Asunto(s)
Algoritmos , Activación del Canal Iónico/fisiología , Canales Iónicos/fisiología , Modelos Biológicos , Protones , Secuencia de Aminoácidos , Animales , Femenino , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/genética , Canales Iónicos/genética , Canales Iónicos/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Simulación de Dinámica Molecular , Mutación , Oocitos/metabolismo , Oocitos/fisiología , Homología de Secuencia de Aminoácido , Xenopus laevis
3.
Glia ; 71(10): 2418-2436, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37395288

RESUMEN

Spinal cord injury (SCI) causes severe functional deficits and neuronal damage, accompanied by intense glial activation. The voltage-gated proton channel Hv1, selectively expressed on microglia, is associated with SCI progression. However, the effect of Hv1 on the phenotypes and functions of reactive astrocytes after SCI remains unclear. Here, we combined Hv1 knockout (Hv1-/- ) mice and T10 spinal cord contusion to investigate the effects of microglial Hv1 on SCI pathophysiology and the phenotypes and functions of reactive astrocytes. After SCI, astrocytes proliferated and activated in the peri-injury area and exhibited an A1-dominant phenotype. Hv1 knockout reduced neurotoxic A1 astrocytes and shifted the dominant phenotype of reactive astrocytes from A1 to A2, enhancing synaptogenesis promotion, phagocytosis, and neurotrophy of astrocytes. Moreover, synaptic and axonal remodeling as well as motor recovery after SCI benefited from the improved astrocytic functions of Hv1 knockout. Furthermore, exogenous and endogenous reactive oxygen species (ROS) in astrocytes after SCI were reduced by Hv1 knockout. Our in vitro results showed that inhibition of ROS reduced the neurotoxic A1 phenotype in primary astrocytes via the STAT3 pathway. Similar to the effect of Hv1 knockout, the application of the ROS scavenger N-acetylcysteine reduced SCI-induced neurotoxic A1 astrocytes in vivo. Based on the in vivo and vitro results, we elucidated that microglial Hv1 knockout promotes synaptic and axonal remodeling in SCI mice by decreasing neurotoxic A1 astrocytes and increasing neuroprotective A2 astrocytes via the ROS/STAT3 pathway. Therefore, the Hv1 proton channel is a promising target for the treatment of SCI.


Asunto(s)
Microglía , Traumatismos de la Médula Espinal , Animales , Ratones , Astrocitos/metabolismo , Canales Iónicos/metabolismo , Ratones Noqueados , Microglía/metabolismo , Protones , Especies Reactivas de Oxígeno/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo
4.
J Neurochem ; 165(1): 29-54, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36625847

RESUMEN

Although the precise mechanisms determining the neurotoxic or neuroprotective activation phenotypes in microglia remain poorly characterized, metabolic changes in these cells appear critical for these processes. As cellular metabolism can be tightly regulated by changes in intracellular pH, we tested whether pharmacological targeting of the microglial voltage-gated proton channel 1 (Hv1), an important regulator of intracellular pH, is critical for activated microglial reprogramming. Using a mouse microglial cell line and mouse primary microglia cultures, either alone, or co-cultured with rat cerebrocortical neurons, we characterized in detail the microglial activation profile in the absence and presence of Hv1 inhibition. We observed that activated microglia neurotoxicity was mainly attributable to the release of tumor necrosis factor alpha, reactive oxygen species, and zinc. Strikingly, pharmacological inhibition of Hv1 largely abrogated inflammatory neurotoxicity not only by reducing the production of cytotoxic mediators but also by promoting neurotrophic molecule production and restraining excessive phagocytic activity. Importantly, the Hv1-sensitive change from a pro-inflammatory to a neuroprotective phenotype was associated with metabolic reprogramming, particularly via a boost in NADH availability and a reduction in lactate. Most critically, Hv1 antagonism not only reduced inflammatory neurotoxicity but also promoted microglia-dependent neuroprotection against a separate excitotoxic injury. Our results strongly suggest that Hv1 blockers may provide an important therapeutic tool against a wide range of inflammatory neurodegenerative disorders.


Asunto(s)
Ácido Glutámico , Microglía , Animales , Ratas , Microglía/metabolismo , Ácido Glutámico/toxicidad , Ácido Glutámico/metabolismo , Canales Iónicos/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Brain Behav Immun ; 114: 22-45, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37557959

RESUMEN

Approximately 20-68% of traumatic brain injury (TBI) patients exhibit trauma-associated olfactory deficits (OD) which can compromise not only the quality of life but also cognitive and neuropsychiatric functions. However, few studies to date have examined the impact of experimental TBI on OD. The present study examined inflammation and neuronal dysfunction in the olfactory bulb (OB) and the underlying mechanisms associated with OD in male mice using a controlled cortical impact (CCI) model. TBI caused a rapid inflammatory response in the OB as early as 24 h post-injury, including elevated mRNA levels of proinflammatory cytokines, increased numbers of microglia and infiltrating myeloid cells, and increased IL1ß and IL6 production in these cells. These changes were sustained for up to 90 days after TBI. Moreover, we observed significant upregulation of the voltage-gated proton channel Hv1 and NOX2 expression levels, which were predominantly localized in microglia/macrophages and accompanied by increased reactive oxygen species production. In vivo OB neuronal firing activities showed early neuronal hyperexcitation and later hypo-neuronal activity in both glomerular layer and mitral cell layer after TBI, which were improved in the absence of Hv1. In a battery of olfactory behavioral tests, WT/TBI mice displayed significant OD. In contrast, neither Hv1 KO/TBI nor NOX2 KO/TBI mice showed robust OD. Finally, seven days of intranasal delivery of a NOX2 inhibitor (NOX2ds-tat) ameliorated post-traumatic OD. Collectively, these findings highlight the importance of OB neuronal networks and its role in TBI-mediated OD. Thus, targeting Hv1/NOX2 may be a potential intervention for improving post-traumatic anosmia.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Trastornos del Olfato , Humanos , Masculino , Ratones , Animales , Bulbo Olfatorio , Calidad de Vida , Lesiones Traumáticas del Encéfalo/metabolismo , Olfato/fisiología , Microglía/metabolismo , Trastornos del Olfato/etiología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
6.
Proc Natl Acad Sci U S A ; 117(34): 20898-20907, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32788354

RESUMEN

The voltage-gated proton channel Hv1 is a member of the voltage-gated ion channel superfamily, which stands out in design: It is a dimer of two voltage-sensing domains (VSDs), each containing a pore pathway, a voltage sensor (S4), and a gate (S1) and forming its own ion channel. Opening of the two channels in the dimer is cooperative. Part of the cooperativity is due to association between coiled-coil domains that extend intracellularly from the S4s. Interactions between the transmembrane portions of the subunits may also contribute, but the nature of transmembrane packing is unclear. Using functional analysis of a mutagenesis scan, biochemistry, and modeling, we find that the subunits form a dimer interface along the entire length of S1, and also have intersubunit contacts between S1 and S4. These interactions exert a strong effect on gating, in particular on the stability of the open state. Our results suggest that gating in Hv1 is tuned by extensive VSD-VSD interactions between the gates and voltage sensors of the dimeric channel.


Asunto(s)
Canales Iónicos/metabolismo , Secuencia de Aminoácidos , Humanos , Activación del Canal Iónico , Canales Iónicos/química , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Protones
7.
Proc Natl Acad Sci U S A ; 117(24): 13490-13498, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32461356

RESUMEN

The voltage-gated Hv1 proton channel is a ubiquitous membrane protein that has roles in a variety of cellular processes, including proton extrusion, pH regulation, production of reactive oxygen species, proliferation of cancer cells, and increased brain damage during ischemic stroke. A crystal structure of an Hv1 construct in a putative closed state has been reported, and structural models for the channel open state have been proposed, but a complete characterization of the Hv1 conformational dynamics under an applied membrane potential has been elusive. We report structural models of the Hv1 voltage-sensing domain (VSD), both in a hyperpolarized state and a depolarized state resulting from voltage-dependent conformational changes during a 10-µs-timescale atomistic molecular dynamics simulation in an explicit membrane environment. In response to a depolarizing membrane potential, the S4 helix undergoes an outward displacement, leading to changes in the VSD internal salt-bridge network, resulting in a reshaping of the permeation pathway and a significant increase in hydrogen bond connectivity throughout the channel. The total gating charge displacement associated with this transition is consistent with experimental estimates. Molecular docking calculations confirm the proposed mechanism for the inhibitory action of 2-guanidinobenzimidazole (2GBI) derived from electrophysiological measurements and mutagenesis. The depolarized structural model is also consistent with the formation of a metal bridge between residues located in the core of the VSD. Taken together, our results suggest that these structural models are representative of the closed and open states of the Hv1 channel.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/metabolismo , Cristalografía por Rayos X , Guanidinas/metabolismo , Humanos , Enlace de Hidrógeno , Canales Iónicos/genética , Potenciales de la Membrana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Conformación Proteica , Protones
8.
Pestic Biochem Physiol ; 192: 105416, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37105624

RESUMEN

Established dogma concerning the action of insecticidal arthropod-derived peptides (e.g., scorpion toxins), was that they acted on the peripheral nervous system and were excluded from the central nervous system (CNS) by barrier systems. Initial evidence for a CNS-directed toxicological effect following parenteral administration was for a novel peptide from the Hobo spider, Tegeneria agrestis. This toxin was inactive on peripheral sensory and motor nerves, but had a potent excitatory effect on the CNS of larval Musca domestica. Recently, a commercialized formulation of GS-omega/kappa-Hxtx-Hv1a (HXTX), derived from the venom of the Australian blue mountain funnel web spider (Hadronyche versuta) was introduced for use in agriculture by Vestaron Corp. Its primary mode of action was found to be central neuroexcitation via positive allosteric modulation of nicotinic acetylcholine receptors (nAchR) of cockroach neurons. In the present study, this peptide showed hyperexcitation followed by a decrease in firing of the Drosophila melanogaster larval CNS that was prevented by co-exposure to 100 nM α-bungarotoxin (α-BGTX), a classical nAchR noncompetitive antagonist. This effect was mirrored in isobologram analysis, which showed clear antagonism between the two toxins when injected into adult houseflies. Interestingly, U1-agatoxin-Ta1b-QA derived from Tegeneria agrestis (VST-7304) had a similar biphasic action, but showed increased nerve discharge when co-exposed with 100 nM α-BGTX, and had additive effects when injected together with α-BGTX in isobologram analyses. Binary mixtures of HXTX or VST-7304 with 30 nM nicotine showed clear evidence of synergized nerve block, which was also observed for mixtures of HXTX and VST-7304. Taken together, these data suggest that HXTX and VST-7304 have somewhat different and complementary modes of action.


Asunto(s)
Proteínas de Drosophila , Venenos de Araña , Animales , Venenos de Araña/toxicidad , Drosophila melanogaster , Australia , Péptidos/farmacología
9.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37047188

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are key determinants of the immunosuppressive microenvironment in tumors. As ion channels play key roles in the physiology/pathophysiology of immune cells, we aimed at studying the ion channel repertoire in tumor-derived polymorphonuclear (PMN-MDSC) and monocytic (Mo-MDSC) MDSCs. Subcutaneous tumors in mice were induced by the Lewis lung carcinoma cell line (LLC). The presence of PMN-MDSC (CD11b+/Ly6G+) and Mo-MDSCs (CD11b+/Ly6C+) in the tumor tissue was confirmed using immunofluorescence microscopy and cells were identified as CD11b+/Ly6G+ PMN-MDSCs and CD11b+/Ly6C+/F4/80-/MHCII- Mo-MDSCs using flow cytometry and sorting. The majority of the myeloid cells infiltrating the LLC tumors were PMN-MDSC (~60%) as compared to ~10% being Mo-MDSCs. We showed that PMN- and Mo-MDSCs express the Hv1 H+ channel both at the mRNA and at the protein level and that the biophysical and pharmacological properties of the whole-cell currents recapitulate the hallmarks of Hv1 currents: ~40 mV shift in the activation threshold of the current per unit change in the extracellular pH, high H+ selectivity, and sensitivity to the Hv1 inhibitor ClGBI. As MDSCs exert immunosuppression mainly by producing reactive oxygen species which is coupled to Hv1-mediated H+ currents, Hv1 might be an attractive target for inhibition of MDSCs in tumors.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Animales , Ratones , Línea Celular , Monocitos , Células Mieloides , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
10.
J Physiol ; 600(9): 2089-2103, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35244217

RESUMEN

Regulation of intracellular pH (pHi ) in cardiomyocytes is crucial for cardiac function; however, currently known mechanisms for direct or indirect extrusion of acid from cardiomyocytes seem insufficient for energetically efficient extrusion of the massive H+ loads generated under in vivo conditions. In cardiomyocytes, voltage-sensitive H+ channel activity mediated by the HVCN1 proton channel would be a highly efficient means of disposing of H+ , while avoiding Na+ loading, as occurs during direct acid extrusion via Na+ /H+ exchange or indirect acid extrusion via Na+ -HCO3- cotransport. PCR and immunoblotting demonstrated expression of HVCN1 mRNA and protein in canine heart. Patch clamp analysis of canine ventricular myocytes revealed a voltage-gated H+ current that was highly H+ -selective. The current was blocked by external Zn2+ and the HVCN1 blocker 5-chloro-2-guanidinobenzimidazole. Both the gating and Zn2+ blockade of the current were strongly influenced by the pH gradient across the membrane. All characteristics of the observed current were consistent with the known hallmarks of HVCN1-mediated H+ current. Inhibition of HVCN1 and the NHE1 Na+ /H+ exchanger, singly and in combination, showed that either mechanism is largely sufficient to maintain pHi in beating cardiomyocytes, but that inhibition of both activities causes rapid acidification. These results show that HVCN1 is expressed in canine ventricular myocytes and provides a major H+ extrusion activity, with a capacity similar to that of NHE1. In the beating heart in vivo, this activity would allow Na+ -independent extrusion of H+ during each action potential and, when functionally coupled with anion transport mechanisms, could facilitate transport-mediated CO2 disposal. KEY POINTS: Intracellular pH (pHi ) regulation is crucial for cardiac function, as acidification depresses contractility and causes arrhythmias. H+ ions are generated in cardiomyocytes from metabolic processes and particularly from CO2 hydration, which has been shown to facilitate CO2 venting from mitochondria. Currently, the NHE1 Na+ /H+ exchanger is viewed as the dominant H+ extrusion mechanism in cardiac muscle. We show that the HVCN1 voltage-gated proton channel is present and functional in canine ventricular myocytes, and that HVCN1 and NHE1 both contribute to pHi regulation. HVCN1 provides an energetically efficient mechanism of H+ extrusion that would not cause Na+ loading, which can cause pathology, and that could contribute to transport-mediated CO2 disposal. These results provide a major advance in our understanding of pHi regulation in cardiac muscle.


Asunto(s)
Miocitos Cardíacos , Protones , Ácidos , Animales , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Perros , Concentración de Iones de Hidrógeno , Miocitos Cardíacos/fisiología , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo
11.
J Biol Chem ; 297(4): 101212, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34547291

RESUMEN

Sex as a physiologic factor has a strong association with the features of metabolic syndrome. Our previous study showed that loss of the voltage-gated proton channel Hv1 inhibits insulin secretion and leads to hyperglycemia and glucose intolerance in male mice. However, there are significant differences in blood glucose between male and female Hv1-knockout (KO) mice. Here, we investigated the differences in glucose metabolism and insulin sensitivity between male and female KO mice and how sex steroids contribute to these differences. We found that the fasting blood glucose in female KO mice was visibly lower than that in male KO mice, which was accompanied by hypotestosteronemia. KO mice in both sexes exhibited higher expression of gluconeogenesis-related genes in liver compared with WT mice. Also, the livers from KO males displayed a decrease in glycolysis-related gene expression and an increase in gluconeogenesis-related gene expression compared with KO females. Furthermore, exogenous testosterone supplementation decreased blood glucose levels in male KO mice, as well as enhancing insulin signaling. Taken together, our data demonstrate that knockout of Hv1 results in higher blood glucose levels in male than female mice, despite a decreased insulin secretion in both sexes. This sex-related difference in glucose homeostasis is associated with the glucose metabolism in liver tissue, likely due to the physiological levels of testosterone in KO male mice.


Asunto(s)
Glucemia , Gluconeogénesis , Glucólisis , Canales Iónicos/deficiencia , Hígado/metabolismo , Caracteres Sexuales , Animales , Glucemia/genética , Glucemia/metabolismo , Femenino , Regulación de la Expresión Génica , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Noqueados , Transducción de Señal
12.
J Cell Sci ; 133(2)2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-31932506

RESUMEN

Capacitation in mammalian sperm involves the accurate balance of intracellular pH (pHi), but the mechanisms controlling this process are not fully understood, particularly regarding the spatiotemporal regulation of the proteins involved in pHi modulation. Here, we employed an image-based flow cytometry technique combined with pharmacological approaches to study pHi dynamics at the subcellular level during capacitation. We found that, upon capacitation induction, sperm cells undergo intracellular alkalization in the head and principal piece regions. The observed localized pHi increases require the initial uptake of HCO3-, which is mediated by several proteins acting consistently with their subcellular localization. Hv1 proton channel (also known as HVCN1) and cAMP-activated protein kinase (protein kinase A, PKA) antagonists impair alkalization mainly in the principal piece. Na+/HCO3- cotransporter (NBC) and cystic fibrosis transmembrane regulator (CFTR) antagonists impair alkalization only mildly, predominantly in the head. Motility measurements indicate that inhibition of alkalization in the principal piece prevents the development of hyperactivated motility. Altogether, our findings shed light on the complex control mechanisms of pHi and underscore their importance during human sperm capacitation.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Capacitación Espermática/genética , Espermatozoides/metabolismo , Humanos , Masculino
13.
Drug Dev Res ; 83(1): 3-15, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34506652

RESUMEN

The pyrophosphate mimicking groups offer rational modification of the pyrophosphate-bearing natural substrates of the overexpressed enzymes that cause the onset of disease progression. Mainly, the modified substrate interacts differently with the enzyme active site eventually causing its deactivation, or provides the therapeutically active products at the completion of the catalytic cycle that contribute toward the inhibition of the target enzyme. Many of the pyrophosphate mimic-containing molecules serve as competitive or allosteric inhibitors of the target enzyme to achieve the desirable properties for the mitigation of the target enzyme's pathophysiology. This review presents an epigrammatic overview of the pyrophosphate mimics in medicinal chemistry.


Asunto(s)
Química Farmacéutica , Difosfatos , Dominio Catalítico
14.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408673

RESUMEN

The voltage-gated proton channel Hv1 has important roles in proton extrusion, pH homeostasis, sperm motility, and cancer progression. The Hv1 channel has also been found to be highly expressed in cell lines and tissue samples from patients with breast cancer. A high-resolution closed-state structure has been reported for the mouse Hv1 chimera channel (mHv1cc), solved by X-ray crystallography, but the open-state structure of Hv1 has not been solved. Since Hv1 is a promising drug target, various groups have proposed open conformations by molecular modeling and simulation studies. However, the gating mechanism and the open-state conformation under the membrane potential are still debate. Here, we present a molecular dynamics study considering membrane potential and pH conditions. The closed-state structure of mHv1cc was used to run molecular dynamics (MD) simulations with respect to electric field and pH conditions in order to investigate the mechanism of proton transfer. We observed a continuous hydrogen bond chain of water molecules called a water-wire to be formed through the channel pore in the channel opening, triggered by downward displacement of the S2 helix and upward movement of the S4 helix relative to other helices. Due to the movement of the S2 and S4 helices, the internal salt bridge network was rearranged, and the hydrophobic gating layers were destroyed. In line with previous experimental and simulation observations, our simulation results led us to propose a new gating mechanism for the Hv1 proton channel, and may provide valuable information for novel drug discovery.


Asunto(s)
Simulación de Dinámica Molecular , Protones , Animales , Humanos , Activación del Canal Iónico , Canales Iónicos/metabolismo , Masculino , Ratones , Motilidad Espermática , Agua/química
15.
J Biol Chem ; 295(11): 3601-3613, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31949049

RESUMEN

Insulin secretion by pancreatic islet ß-cells is regulated by glucose levels and is accompanied by proton generation. The voltage-gated proton channel Hv1 is present in pancreatic ß-cells and extremely selective for protons. However, whether Hv1 is involved in insulin secretion is unclear. Here we demonstrate that Hv1 promotes insulin secretion of pancreatic ß-cells and glucose homeostasis. Hv1-deficient mice displayed hyperglycemia and glucose intolerance because of reduced insulin secretion but retained normal peripheral insulin sensitivity. Moreover, Hv1 loss contributed much more to severe glucose intolerance as the mice got older. Islets of Hv1-deficient and heterozygous mice were markedly deficient in glucose- and K+-induced insulin secretion. In perifusion assays, Hv1 deletion dramatically reduced the first and second phase of glucose-stimulated insulin secretion. Islet insulin and proinsulin content was reduced, and histological analysis of pancreas slices revealed an accompanying modest reduction of ß-cell mass in Hv1 knockout mice. EM observations also indicated a reduction in insulin granule size, but not granule number or granule docking, in Hv1-deficient mice. Mechanistically, Hv1 loss limited the capacity for glucose-induced membrane depolarization, accompanied by a reduced ability of glucose to raise Ca2+ levels in islets, as evidenced by decreased durations of individual calcium oscillations. Moreover, Hv1 expression was significantly reduced in pancreatic ß-cells from streptozotocin-induced diabetic mice, indicating that Hv1 deficiency is associated with ß-cell dysfunction and diabetes. We conclude that Hv1 regulates insulin secretion and glucose homeostasis through a mechanism that depends on intracellular Ca2+ levels and membrane depolarization.


Asunto(s)
Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Secreción de Insulina , Canales Iónicos/metabolismo , Envejecimiento/patología , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Tamaño de la Célula , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Citosol/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Regulación hacia Abajo/efectos de los fármacos , Eliminación de Gen , Glucosa/farmacología , Concentración de Iones de Hidrógeno , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/ultraestructura , Canales Iónicos/deficiencia , Canales Iónicos/genética , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Acetato de Tetradecanoilforbol/farmacología
16.
J Membr Biol ; 254(1): 5-16, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33196887

RESUMEN

The voltage-gated proton channel Hv1 mediates efflux of protons from the cell. Hv1 integrally contributes to various physiological processes including pH homeostasis and the respiratory burst of phagocytes. Inhibition of Hv1 may provide therapeutic avenues for the treatment of inflammatory diseases, breast cancer, and ischemic brain damage. In this work, we investigate two prototypical Hv1 inhibitors, 2-guanidinobenzimidazole (2GBI), and 5-chloro-2-guanidinobenzimidazole (GBIC), from an experimentally screened class of guanidine derivatives. Both compounds block proton conduction by binding the same site located on the intracellular side of the channel. However, when added to the extracellular medium, the compounds strongly differ in their ability to inhibit proton conduction, suggesting substantial differences in membrane permeability. Here, we compute the potential of mean force for each compound to permeate through the membrane using atomistic molecular dynamics simulations with the adaptive biasing force method. Our results rationalize the putative distinction between these two blockers with respect to their abilities to permeate the cellular membrane.


Asunto(s)
Canales Iónicos/antagonistas & inhibidores , Termodinámica , Permeabilidad de la Membrana Celular , Canales Iónicos/metabolismo , Simulación de Dinámica Molecular , Protones
17.
Brain Behav Immun ; 91: 267-283, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33039662

RESUMEN

Tissue acidosis is an important secondary injury process in the pathophysiology of traumatic spinal cord injury (SCI). To date, no studies have examined the role of proton extrusion as mechanism of pathological acidosis in SCI. In the present study, we hypothesized that the phagocyte-specific proton channel Hv1 mediates hydrogen proton extrusion after SCI, contributing to increased extracellular acidosis and poor long-term outcomes. Using a contusion model of SCI in adult female mice, we demonstrated that tissue pH levels are markedly lower during the first week after SCI. Acidosis was most evident at the injury site, but also extended into proximal regions of the cervical and lumbar cord. Tissue reactive oxygen species (ROS) levels and expression of Hv1 were significantly increased during the week of injury. Hv1 was exclusively expressed in microglia within the CNS, suggesting that microglia contribute to ROS production and proton extrusion during respiratory burst. Depletion of Hv1 significantly attenuated tissue acidosis, NADPH oxidase 2 (NOX2) expression, and ROS production at 3 d post-injury. Nanostring analysis revealed decreased gene expression of neuroinflammatory and cytokine signaling markers in Hv1 knockout (KO) mice. Furthermore, Hv1 deficiency reduced microglia proliferation, leukocyte infiltration, and phagocytic oxidative burst detected by flow cytometry. Importantly, Hv1 KO mice exhibited significantly improved locomotor function and reduced histopathology. Overall, these data suggest an important role for Hv1 in regulating tissue acidosis, NOX2-mediated ROS production, and functional outcome following SCI. Thus, the Hv1 proton channel represents a potential target that may lead to novel therapeutic strategies for SCI.


Asunto(s)
Acidosis , Contusiones , Traumatismos de la Médula Espinal , Animales , Femenino , Canales Iónicos/genética , Ratones , Protones
18.
Proc Natl Acad Sci U S A ; 115(37): 9240-9245, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30127012

RESUMEN

The voltage-gated proton (Hv1) channel, a voltage sensor and a conductive pore contained in one structural module, plays important roles in many physiological processes. Voltage sensor movements can be directly detected by measuring gating currents, and a detailed characterization of Hv1 charge displacements during channel activation can help to understand the function of this channel. We succeeded in detecting gating currents in the monomeric form of the Ciona-Hv1 channel. To decrease proton currents and better separate gating currents from ion currents, we used the low-conducting Hv1 mutant N264R. Isolated ON-gating currents decayed at increasing rates with increasing membrane depolarization, and the amount of gating charges displaced saturates at high voltages. These are two hallmarks of currents arising from the movement of charged elements within the boundaries of the cell membrane. The kinetic analysis of gating currents revealed a complex time course of the ON-gating current characterized by two peaks and a marked Cole-Moore effect. Both features argue that the voltage sensor undergoes several voltage-dependent conformational changes during activation. However, most of the charge is displaced in a single central transition. Upon voltage sensor activation, the charge is trapped, and only a fast component that carries a small percentage of the total charge is observed in the OFF. We hypothesize that trapping is due to the presence of the arginine side chain in position 264, which acts as a blocking ion. We conclude that the movement of the voltage sensor must proceed through at least five states to account for our experimental data satisfactorily.


Asunto(s)
Ciona intestinalis/química , Ciona intestinalis/metabolismo , Activación del Canal Iónico/fisiología , Canales Iónicos/metabolismo , Sustitución de Aminoácidos , Animales , Ciona intestinalis/genética , Canales Iónicos/genética , Transporte Iónico/fisiología , Cinética , Mutación Missense , Xenopus laevis
19.
Proc Natl Acad Sci U S A ; 115(41): 10321-10326, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30254162

RESUMEN

The nature of the action of voltage-activated proton transport proteins is a conundrum of great current interest. Here we approach this issue by exploring the action of Hv1, a voltage-gated proton channel found in different cells in humans and other organisms. Our study focuses on evaluating the free energy of transporting a proton through the channel, as well as the effect of the proton transfer through D112, in both the closed and open channel conformations. It is found that D112 allows a transported proton to bypass the electrostatic barrier of the open channel, while not being able to help in passing the barrier in the closed form. This reflects the change in position of the gating arginine residues relative to D112, upon voltage activation. Significantly, the effect of D112 accounts for the observed trend in selectivity by overcoming the electrostatic barrier at its highest point. Thus, the calculations provide a structure/function correlation for the Hv1 system. The present work also clarifies that the action of Hv1 is not controlled by a Grotthuss mechanism but, as is always the case, by the protein electrostatic potential at the rate-limiting barriers.


Asunto(s)
Canales Iónicos/química , Canales Iónicos/metabolismo , Membrana Celular/metabolismo , Canales Iónicos/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Protones , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
J Cell Physiol ; 235(11): 8757-8767, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32324259

RESUMEN

Metabolic reprogramming of cancer cells results in a high production of acidic substances that must be extruded to maintain tumor-cell viability. The voltage-gated proton channel (Hv1) mediates highly selective effluxes of hydronium-ion (H+ ) that prevent deleterious cytoplasmic acidification. In the work described here, we demonstrated for the first time that the amino-terminal-truncated isoform of Hv1 is more highly expressed in tumorigenic breast-cancer-cell lines than in nontumorigenic breast cells. With respect to Hv1 function, we observed that pharmacologic inhibition of that channel, mediated by the specific blocker 5-chloro-2-guanidinobenzimidazole, produced a drop in intracellular pH and a decrease in cell viability, both in monolayer and in three-dimensional cultures, and adversely affected the cell-cycle in tumorigenic breast cells without altering the cycling of nontumorigenic cells. In conclusion, our results demonstrated that the Hv1 channel could be a potential tool both as a biomarker and as a therapeutic target in breast-cancer disease.


Asunto(s)
Neoplasias de la Mama/metabolismo , Supervivencia Celular/fisiología , Canales Iónicos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA