Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nano Lett ; 24(29): 8948-8955, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38996059

RESUMEN

We demonstrate the integration of a thin BaTiO3 (BTO) membrane with monolayer MoSe2 in a dual-gate device that enables in situ manipulation of the BTO ferroelectric polarization with a voltage pulse. While two-dimensional (2D) transition metal dichalcogenides (TMDs) offer remarkable adaptability, their hybrid integration with other families of functional materials beyond the realm of 2D materials has been challenging. Released functional oxide membranes offer a solution for 2D/3D integration via stacking. 2D TMD excitons can serve as a local probe of the ferroelectric polarization in BTO at a heterogeneous interface. Using photoluminescence (PL) of MoSe2 excitons to optically read out the doping level, we find that the relative population of charge carriers in MoSe2 depends sensitively on the ferroelectric polarization. This finding points to a promising avenue for future-generation versatile sensing devices with high sensitivity, fast readout, and diverse applicability for advanced signal processing.

2.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511394

RESUMEN

The creation of buffer (hybrid) layers that provide improved adhesion to two heterogeneous materials is a promising and high-priority research area in the field of dental materials science. In our work, using FTIR and Raman microspectroscopy at the submicron level in a system of dental composites/intact dental enamel, we assessed the molecular features of formation and chemically visualized the hybrid interface formed on the basis of a nature-like adhesive, polydopamine (PDA). It is shown that a homogeneous bioinspired PDA-hybrid interface with an increased content of O-Ca-O bonds can be created using traditional methods of dental tissue pretreatment (diamond micro drilling, acid etching), as well as the subsequent alkalinization procedure and the developed synthesis technology. The development of the proposed technology for accelerated deposition of PDA-hybrid layers, as well as the creation of self-assembled biomimetic nanocomposites with antibacterial properties, may in the future find clinical application for minimally invasive dental restoration procedures.


Asunto(s)
Resinas Compuestas , Recubrimiento Dental Adhesivo , Resinas Compuestas/química , Cementos de Resina/química , Propiedades de Superficie , Indoles , Ensayo de Materiales
3.
Angew Chem Int Ed Engl ; 62(45): e202311988, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37743256

RESUMEN

In aqueous electrolytes, the uncontrollable interfacial evolution caused by a series of factors such as pH variation and unregulated Zn2+ diffusion would usually result in the rapid failure of metallic Zn anode. Considering the high correlation among various triggers that induce the anode deterioration, a synergistic modulation strategy based on electrolyte modification is developed. Benefitting from the unique pH buffer mechanism of the electrolyte additive and its capability to in situ construct a zincophilic solid interface, this synergistic effect can comprehensively manage the thermodynamic and kinetic properties of Zn anode by inhibiting the pH variation and parasitic side reactions, accelerating de-solvation of hydrated Zn2+ , and regulating the diffusion behavior of Zn2+ to realize uniform Zn deposition. Thus, the modified Zn anode can achieve an impressive lifespan at ultra-high current density and areal capacity, operating stably for 609 and 209 hours at 20 mA cm-2 , 20 mAh cm-2 and 40 mA cm-2 , 20 mAh cm-2 , respectively. Based on this exceptional performance, high loading Zn||NH4 V4 O10 batteries can achieve excellent cycle stability and rate performance. Compared with those previously reported single pH buffer strategies, the synergistic modulation concept is expected to provide a new approach for highly stable Zn anode in aqueous zinc-ion batteries.

4.
J Neuroeng Rehabil ; 14(1): 2, 2017 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-28061779

RESUMEN

BACKGROUND: Most of the modern motorized prostheses are controlled with the surface electromyography (sEMG) recorded on the residual muscles of amputated limbs. However, the residual muscles are usually limited, especially after above-elbow amputations, which would not provide enough sEMG for the control of prostheses with multiple degrees of freedom. Signal fusion is a possible approach to solve the problem of insufficient control commands, where some non-EMG signals are combined with sEMG signals to provide sufficient information for motion intension decoding. In this study, a motion-classification method that combines sEMG and electroencephalography (EEG) signals were proposed and investigated, in order to improve the control performance of upper-limb prostheses. METHODS: Four transhumeral amputees without any form of neurological disease were recruited in the experiments. Five motion classes including hand-open, hand-close, wrist-pronation, wrist-supination, and no-movement were specified. During the motion performances, sEMG and EEG signals were simultaneously acquired from the skin surface and scalp of the amputees, respectively. The two types of signals were independently preprocessed and then combined as a parallel control input. Four time-domain features were extracted and fed into a classifier trained by the Linear Discriminant Analysis (LDA) algorithm for motion recognition. In addition, channel selections were performed by using the Sequential Forward Selection (SFS) algorithm to optimize the performance of the proposed method. RESULTS: The classification performance achieved by the fusion of sEMG and EEG signals was significantly better than that obtained by single signal source of either sEMG or EEG. An increment of more than 14% in classification accuracy was achieved when using a combination of 32-channel sEMG and 64-channel EEG. Furthermore, based on the SFS algorithm, two optimized electrode arrangements (10-channel sEMG + 10-channel EEG, 10-channel sEMG + 20-channel EEG) were obtained with classification accuracies of 84.2 and 87.0%, respectively, which were about 7.2 and 10% higher than the accuracy by using only 32-channel sEMG input. CONCLUSIONS: This study demonstrated the feasibility of fusing sEMG and EEG signals towards improving motion classification accuracy for above-elbow amputees, which might enhance the control performances of multifunctional myoelectric prostheses in clinical application. TRIAL REGISTRATION: The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.


Asunto(s)
Miembros Artificiales , Electroencefalografía/métodos , Electromiografía/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Procesamiento de Señales Asistido por Computador , Algoritmos , Amputación Quirúrgica , Amputados , Análisis Discriminante , Electrodos , Humanos , Masculino , Movimiento (Física) , Movimiento/fisiología , Articulación de la Muñeca
5.
ACS Appl Mater Interfaces ; 16(15): 18980-18990, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38577916

RESUMEN

Although nonflammable electrolytes are beneficial for battery safety, they often adversely affect the electrochemical performance of lithium-ion batteries due to their poor compatibility with electrodes. Herein, we design a nonflammable electrolyte consisting of cyclic carbonate and 2,2-difluoroethyl acetate (DFEA) solvents paired with several surface-film-forming additives, significantly improving the safety and cycling performance of NMC811||SiOx/graphite pouch cells. The DFEA solvent exhibits not only good flame retardancy but also lower lowest unoccupied molecular orbital (LUMO) energy, promoting the formation of a robust inorganic-rich and gradient-architecture hybrid interface between the SiOx/graphite anode and electrolyte. The double insurance of good flame retardancy of the DFEA solvent and decreased exothermic effects of both bulk electrolyte and DFEA-derived solid electrolyte interphase (SEI) can ensure the high safety of the pouch cell. Moreover, the highly robust SEI can prevent the excessive reduction decomposition of the electrolyte and alleviate the structural decay of the anode, which can restrain the formation of lithium deposition on the anode surface and further suppress the structural decay of NMC materials. This contributes to the unprecedented cycling performance of the NMC811||SiOx/graphite pouch cells with a capacity retention of 80% after 1000 cycles at a 0.33C rate.

6.
ACS Appl Mater Interfaces ; 16(7): 9108-9116, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38341806

RESUMEN

Donor-acceptor (D-A) structured molecules are essential components of organic electronics. The respective molecular structures of these molecules and their synthesis are primarily determined by the intended area of application. Typically, D-A molecules promote charge separation and transport in organic photovoltaics or organic field-effect transistors. D-A molecules showing a larger twist angle between D and A units are, e.g., essential for the development of high internal quantum efficiency in organic light-emitting diodes. A prototypical molecule of this D-A type is DCzDCN (5-(4,6-diphenyl-1,3,5-triazine-2-yl)benzene-1,3-dinitrile). In most cases, these molecules are only investigated regarding their electronic and structural interaction in bulk aggregates but not in ultrathin films supported by a metallic substrate. Here, we present growth and electronic structure studies of DCzDCN on a Cu(100) surface. We used a complementary approach through the use of scanning tunneling microscopy/spectroscopy (STM and STS), ultraviolet/inverse photoemission spectroscopy (UPS and IPES), and single-molecule density functional theory (DFT) calculations. This method combination enabled us to investigate the adsorption geometry (STM) and the local electronic states near the Fermi energy (EF) of a single adsorbed molecule (using STS) and to compare these data with the integral overall electronic structure of the DCzDCN/Cu(100) interface (using UPS/IPES). The orientation of the molecules with the donor part toward the substrate results in a chiral resolution at the interface due to the molecular as well as the substrate symmetry and additional strong molecular electrostatic forces induced by the charge distribution of the twisted dicarbonitrile part. Thus, the formation of various bulk-unlike homochiral structures and the appearance of hybrid interface states modify the molecular electronic properties of the DCzDCN/Cu(100) system, e.g., the transport gap by -1.3 eV compared to that of a single DCzDCN molecule. This may be useful not only for optoelectronic applications but also in organic spintronics.

7.
Materials (Basel) ; 16(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37512212

RESUMEN

An abundant hollow nanostructure is crucial for fast Li+ and K+ diffusion paths and sufficient electrolyte penetration, which creates a highly conductive network for ionic and electronic transport. In this study, we successfully developed a molecular-bridge-linked, organic-inorganic hybrid interface that enables the preparation of in situ nitrogen-doped hollow carbon nanospheres. Moreover, the prepared HCNSs, with high nitrogen content of up to 10.4%, feature homogeneous and regular morphologies. The resulting HCNSs exhibit excellent lithium and potassium storage properties when used as electrode materials. Specifically, the HCNS-800 electrode demonstrates a stable reversible discharge capacity of 642 mA h g-1 at 1000 mA g-1 after 500 cycles for LIBs. Similarly, the electrode maintains a discharge capacity of 205 mA h g-1 at 100 mA g-1 after 500 cycles for KIBs. Moreover, when coupled with a high-mass-loading LiFePO4 cathode to design full cells, the HCNS-800‖LiFePO4 cells provide a specific discharge capacity of 139 mA h g-1 at 0.1 C. These results indicate that the HCNS electrode has promising potential for use in high-energy and environmentally sustainable lithium-based and potassium-based batteries.

8.
Nanomaterials (Basel) ; 13(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513133

RESUMEN

The hydrogen evolution reaction (HER) is a remarkable mechanism which yields the production of hydrogen through a process of water electrolysis. However, the evolution of hydrogen requires highly conductive and stable catalysts, such as the noble metal platinum (Pt). However, the problem lies in the limitations that this catalyst and others of its kind present. Due to limited availability, as well as the costs involved in acquiring such catalysts, researchers are challenged to manufacture catalysts that do not present these limitations. Carbon nanotubes (CNTs), which are nanomaterials, are known to have a wide range of applications. However, specifically, the pristine carbon nanotube is not suitable for the HER due to the binding free energy of its positive H-atoms. Hence, for the first time, we demonstrated the use of the proposed aryl-functionalised catalysts, i.e., Aryl-L@SWCNT (L = Br, CCH, Cl, CO2CH3, F, I, NO2, or t-butyl), along with the effect of the sp2-sp3 hybridised interface through the density functional theory (DFT). We performed calculations of single-walled carbon nanotubes with multiple aryl functional groups. By employing the DFT calculations, we proved that the curvature of the nanotubes along with the proposed aryl-functionalised catalysts had a noteworthy effect on the performance of the HER. Our study opens the door to investigating a promising group of catalysts for sustainable hydrogen production.

9.
Adv Sci (Weinh) ; 9(8): e2105575, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35040581

RESUMEN

With the emergence of fused ring electron acceptors, the power conversion efficiency of organic solar cells reached 19%. In comparison with the electron donor and acceptor materials progress, the development of cathode interlayers lags. As a result, charge extraction barriers, interfacial trap states, and significant transport resistance may be induced due to the unfavorable cathode interlayer, limiting the device performances. Herein, a hybrid cathode interlayer composed of PNDIT-F3N and PDIN is adopted to investigate the interaction between the photoexcited acceptor and cathode interlayer. The state of art acceptor Y6 is chosen and blended with PM6 as the active layer. The device with hybrid interlayer, PNDIT-F3N:PDIN (0.6:0.4, in wt%), attains a power conversion efficiency of 17.4%, outperforming devices with other cathode interlayer such as NDI-M, PDINO, and Phen-DPO. It is resulted from enhanced exciton dissociation, reduced trap-assisted recombination, and smaller transfer resistance. Therefore, the hybrid interlayer strategy is demonstrated as an efficient approach to improve device performance, shedding light on the selection and engineering of cathode interlayers for pairing the increasing number of fused ring electron acceptors.

10.
Mater Today Bio ; 15: 100326, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35761844

RESUMEN

In tissue engineering, foreign body reactions (FBRs) that may occur after the insertion of medical implants are a considerable challenge. Materials currently used in implants are mainly metals that are non-organic, and the lack of biocompatibility and absence of immune regulations may lead to fibrosis after long periods of implantation. Here, we introduce a highly biocompatible hybrid interface of graphene oxide (GO) and collagen type I (COL-I), where the topological nanostructure can effectively inhibit the differentiation of fibroblasts into myofibroblasts. The structure and roughness of this coating interface can be easily adjusted at the nanoscale level through changes in the GO concentration, thereby effectively inducing the polarization of macrophages to the M1 state without producing excessive amounts of pro-inflammatory factors. Compared to nanomaterials or the extracellular matrix as an anti-fibrotic interface, this hybrid bio-interface has superior mechanical strength, physical structures, and high inflammation. Evidenced by inorganic materials such as glass, titanium, and nitinol, GO-COL shows great potential for use in medical implants and cell-material interfaces.

11.
ACS Appl Mater Interfaces ; 13(22): 26404-26410, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34048216

RESUMEN

Controlling the interfacial effect is facing challenges because of the weak interactions between the inorganic and the organic materials. We found that the silane coupling agents with -NH2 groups (e.g., KH550) play a key role as a molecular bridge that links an inorganic silica template with an organic precursor (i.e., pyrrole) in the process of constructing a spherical silica core-polypyrrole shell structure. The molecular bridge is also suitable for inorganic core templates with cube or rod shapes for the construction of different core-shell structures. These template core-polymeric shell structures can be transformed into well-defined hollow carbons after carbonization and template removal. The outer diameter, hollow-core size, and carbon shell thickness of hollow carbon materials (e.g., hollow carbon spheres) could be facilely controlled by changing the template size or the pyrrole amount. We believe that our work will provide a guideline for the preparation of well-orchestrated carbon-based composites and their templated hollow carbons.

12.
Polymers (Basel) ; 11(6)2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31212644

RESUMEN

In this work, we propose poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) material to form a hybrid heterojunction with amorphous silicon-based materials for high charge carrier collection at the frontal interface of solar cells. The nanostructural characteristics of PEDOT:PSS layers were modified using post-treatment techniques via isopropyl alcohol (IPA). Atomic force microscopy (AFM), Fourier-transform infrared (FTIR), and Raman spectroscopy demonstrated conformational changes and nanostructural reorganization in the surface of the polymer in order to tailor hybrid interface to be used in the heterojunctions of inorganic solar cells. To prove this concept, hybrid polymer/amorphous silicon solar cells were fabricated. The hybrid PEDOT:PSS/buffer/a-Si:H heterojunction demonstrated high transmittance, reduction of electron diffusion, and enhancement of the internal electric field. Although the structure was a planar superstrate-type configuration and the PEDOT:PSS layer was exposed to glow discharge, the hybrid solar cell reached high efficiency compared to that in similar hybrid solar cells with substrate-type configuration and that in textured well-optimized amorphous silicon solar cells fabricated at low temperature. Thus, we demonstrate that PEDOT:PSS is fully tailored and compatible material with plasma processes and can be a substitute for inorganic p-type layers in inorganic solar cells and related devices with improvement of performance and simplification of fabrication process.

13.
Appl Sci (Basel) ; 9(3)2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33542835

RESUMEN

The most common cause for dental composite failures is secondary caries due to invasive bacterial colonization of the adhesive/dentin (a/d) interface. Innate material weakness often lead to an insufficient seal between the adhesive and dentin. Consequently, bacterial by-products invade the porous a/d interface leading to material degradation and dental caries. Current approaches to achieve antibacterial properties in these materials continue to raise concerns regarding hypersensitivity and antibiotic resistance. Herein, we have developed a multi-faceted, bio-functionalized approach to overcome the vulnerability of such interfaces. An antimicrobial adhesive formulation was designed using a combination of antimicrobial peptide and a ε-polylysine resin system. Effector molecules boasting innate immunity are brought together with a biopolymer offering a two-fold biomimetic design approach. The selection of ε-polylysine was inspired due to its non-toxic nature and common use as food preservative. Biomolecular characterization and functional activity of our engineered dental adhesive formulation were assessed and the combinatorial formulation demonstrated significant antimicrobial activity against Streptococcus mutans. Our antimicrobial peptide-hydrophilic adhesive hybrid system design offers advanced, biofunctional properties at the critical a/d interface.

14.
ACS Appl Mater Interfaces ; 9(20): 17565-17575, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28463491

RESUMEN

In this article, using controllable magnetron sputtering of indium tin oxide (ITO) materials on single crystal silicon at 100 °C, the optoelectronic heterojunction frame of ITO/a-SiOx(In)/n-Si is simply fabricated for the purpose of realizing passivation contact and hole tunneling. It is found that the gradation profile of indium (In) element together with silicon oxide (SiOx/In) within the ultrathin boundary zone between ITO and n-Si occurs and is characterized by X-ray photoelectron spectroscopy with the ion milling technique. The atomistic morphology and physical phase of the interfacial layer has been observed with a high-resolution transmission electron microscope. X-ray diffraction, Hall effect measurement, and optical transmittance with Tauc plot have been applied to the microstructure and property analyses of ITO thin films, respectively. The polycrystalline and amorphous phases have been verified for ITO films and SiOx(In) hybrid layer, respectively. For the quantum transport, both direct and defect-assisted tunneling of photogenerated holes through the a-SiOx(In) layer is confirmed. Besides, there is a gap state correlative to the indium composition and located at Ev + 4.60 eV in the ternary hybrid a-SiOx(In) layer that is predicted by density functional theory of first-principles calculation, which acts as an "extended delocalized state" for direct tunneling of the photogenerated holes. The reasonable built-in potential (Vbi = 0.66 V) and optimally controlled ternary hybrid a-SiOx(In) layer (about 1.4 nm) result in that the device exhibits excellent PV performance, with an open-circuit voltage of 0.540 V, a short-circuit current density of 30.5 mA/cm2, a high fill factor of 74.2%, and a conversion efficiency of 12.2%, under the AM 1.5 illumination. The work function difference between ITO (5.06 eV) and n-Si (4.31 eV) is determined by ultraviolet photoemission spectroscopy and ascribed to the essence of the built-in-field of the PV device. In addition, the strong inversion layer in the surface of the n-Si substrate is tentatively correlated to the a-SiOx(In) interface layer as well.

15.
J Phys Chem Lett ; 6(22): 4510-7, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26535617

RESUMEN

Molecular photon upconversion via triplet-triplet annihilation (TTA-UC), combining two or more low energy photons to generate a higher energy excited state, is an intriguing strategy to surpass the maximum efficiency for a single junction solar cell (<34%). Here, we introduce self-assembled bilayers on metal oxide surfaces as a strategy to facilitate TTA-UC emission and demonstrate direct charge separation of the upconverted state. A 3-fold enhancement in transient photocurrent is achieved at light intensities as low as two equivalent suns. This strategy is simple, modular and offers unprecedented geometric and spatial control of the donor-acceptor interactions at an interface. These results are a key stepping stone toward the realization of an efficient TTA-UC solar cell that can circumvent the Shockley-Queisser limit.

16.
ACS Appl Mater Interfaces ; 7(40): 22228-37, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26402298

RESUMEN

We report fabrication of a hybrid organic semiconductor-inorganic complex oxide interface of rubrene and La0.67Sr0.33MnO3 (LSMO) for spintronic devices using pulsed laser deposition (PLD) and investigate the interface structure and chemical bonding-dependent magnetic properties. Our results demonstrate that with proper control of growth parameters, thin films of organic semiconductor rubrene can be deposited without any damage to the molecular structure. Rubrene, a widely used organic semiconductor with high charge-carrier mobility and spin diffusion length, when grown as thin films on amorphous and crystalline substrates such as SiO2-glass, indium-tin oxide (ITO), and LSMO by PLD at room temperature and a laser fluence of 0.19 J/cm2, reveals amorphous structure. The Raman spectra verify the signatures of both Ag and Bg Raman active modes of rubrene molecules. X-ray reflectivity measurements indicate a well-defined interface formation between surface-treated LSMO and rubrene, whereas X-ray photoelectron spectra indicate the signature of hybridization of the electronic states at this interface. Magnetic measurements show that the ferromagnetic property of the rubrene-LSMO interface improves by >230% compared to the pristine LSMO surface due to this proposed hybridization. Intentional disruption of the direct contact between LSMO and rubrene by insertion of a dielectric AlOx layer results in an observably decreased ferromagnetism. These experimental results demonstrate that by controlling the interface formation between organic semiconductor and half-metallic oxide thin films, it is possible to engineer the interface spin polarization properties. Results also confirm that by using PLD for consecutive growth of different layers, contamination-free interfaces can be obtained, and this finding is significant for the well-controlled and reproducible design of spin-polarized interfaces for future hybrid spintronics devices.

17.
Comput Biol Med ; 51: 82-92, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24880998

RESUMEN

We propose a wearable hybrid interface where eye movements and mental concentration directly influence the control of a quadcopter in three-dimensional space. This noninvasive and low-cost interface addresses limitations of previous work by supporting users to complete their complicated tasks in a constrained environment in which only visual feedback is provided. The combination of the two inputs augments the number of control commands to enable the flying robot to travel in eight different directions within the physical environment. Five human subjects participated in the experiments to test the feasibility of the hybrid interface. A front view camera on the hull of the quadcopter provided the only visual feedback to each remote subject on a laptop display. Based on the visual feedback, the subjects used the interface to navigate along pre-set target locations in the air. The flight performance was evaluated by comparing with a keyboard-based interface. We demonstrate the applicability of the hybrid interface to explore and interact with a three-dimensional physical space through a flying robot.


Asunto(s)
Aeronaves , Interfaces Cerebro-Computador , Electroencefalografía , Movimientos Oculares/fisiología , Medidas del Movimiento Ocular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA