Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(31): e2310608, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38461532

RESUMEN

Depression is a significant global health concern that remains inadequately treated due to the limited effectiveness of conventional drug therapies. One potential therapeutic agent, hypericin (HYP), is identified as an effective natural antidepressant. However, its poor water solubility, low bioavailability, and limited ability to penetrate the brain parenchyma have hindered its clinical application. To address these shortcomings and enhance the therapeutic efficacy of HYP, it is loaded onto black phosphorus nanosheets (BP) modified with the neural cell-targeting peptide RVG29 to synthesize a nanoplatform named BP-RVG29@HYP (BRH). This platform served as a nanocarrier for HYP and integrated the advantages of BP with advanced delivery methods and precise targeting strategies. Under the influence of 808 nm near-infrared irradiation (NIR), BRH effectively traversed an in vitro BBB model. In vivo experiments validated these findings, demonstrating that treatment with BRH significantly alleviated depressive-like behaviors and oxidative stress in mice. Importantly, BRH exhibited an excellent safety profile, causing minimal adverse effects, which highlighted its potential as a promising therapeutic agent. In brief, this novel nanocarrier holds great promise in the development of antidepressant drugs and can create new avenues for the treatment of depression.


Asunto(s)
Antracenos , Encéfalo , Depresión , Perileno , Fósforo , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Animales , Antracenos/química , Fósforo/química , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Depresión/tratamiento farmacológico , Ratones , Sistemas de Liberación de Medicamentos , Barrera Hematoencefálica/metabolismo , Nanopartículas/química , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/química , Estrés Oxidativo/efectos de los fármacos
2.
Mol Pharm ; 21(4): 1729-1744, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38449426

RESUMEN

Thermal ablation has been commonly used as an effective treatment for hepatocellular carcinoma; however, peri-necrotic tumor residues after ablation play a significant role in tumor recurrence and poor prognosis. Therefore, developing agents that can effectively target and eliminate residual tumors is critically needed. Necrosis targeting strategies have potential implications for evaluating tumor necrosis areas and treating the surrounding residual tumors. To address this issue, we have developed a biodegradable nanoparticle with necrosis avidity that is compatible with fluorescence imaging, single photon emission computed tomography (SPECT) imaging, and necrosis targeted radiotherapy. The nanoparticles were synthesized using iodine-131-labeled hypericin (131I-Hyp) as the core and amphiphilic copolymer poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) as the shell. The developed nanoparticle, PNP@(131I-Hyp), has a uniform spherical morphology with a size of 33.07 ± 3.94 and 45.93 ± 0.58 nm determined by cryogenic transmission electron microscopy (cryo-TEM) and dynamic light-scattering analysis (polydispersity index = 0.19 ± 0.01), respectively, and having a good stability and blood compatibility in vitro. In mouse subcutaneous ablated-residual tumor models, fluorescence and SPECT imaging demonstrated that PNP@(131I-Hyp) prominently accumulated in the tumor and was retained for as long as 168 h following intravenous injection. Moreover, ex vivo analyses showed that PNP@(131I-Hyp) mainly gathered in the necrotic zones of subcutaneous tumors and inhibited residual tumors by radiotherapy. In addition, histological examination of harvested organs and hematological analysis demonstrated that intravenous injection of 5 mCi/kg nanoparticles caused no gross abnormalities. This multifunctional nanoparticle, therefore, has necrosis imaging and targeted therapeutic effects on residual tumors after thermal ablation of hepatocellular carcinoma, showing potential for clinical application.


Asunto(s)
Carcinoma Hepatocelular , Lactonas , Neoplasias Hepáticas , Nanopartículas , Pindolol/análogos & derivados , Ratones , Animales , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/radioterapia , Neoplasia Residual , Medicina de Precisión , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Recurrencia Local de Neoplasia , Necrosis , Polietilenglicoles/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Nanopartículas/química , Imagen Óptica
3.
Photochem Photobiol Sci ; 23(6): 1067-1075, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38625651

RESUMEN

Photodynamic Therapy (PDT) is an emerging method to treat colorectal cancers (CRC). Hypericin (HYP) is an effective mediator of PDT and the ABCG2 inhibitor, Febuxostat (FBX) could augment PDT. HT29 and HEK293 cells showed light dependant cytotoxic response to PDT in both 2D and 3D cell models. FBX co-treatment was not found to improve PDT cytotoxicity. Next, ABCG2 protein expression was observed in HT29 but not in HEK293 cells. However, ABCG2 gene expression analysis did not support protein expression results as ABCG2 gene expression results were found to be higher in HEK293 cells. Although HYP treatment was found to significantly reduce ABCG2 gene expression levels in both cell lines, FBX treatment partially restored ABCG2 gene expression. Our findings indicate that FBX co-treatment may not be suitable for augmenting HYP-mediated PDT in CRC but could potentially be useful for other applications.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Antracenos , Neoplasias Colorrectales , Febuxostat , Proteínas de Neoplasias , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Antracenos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Perileno/análogos & derivados , Perileno/farmacología , Febuxostat/farmacología , Febuxostat/uso terapéutico , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Células HEK293 , Supervivencia Celular/efectos de los fármacos , Células HT29 , Antineoplásicos/farmacología , Antineoplásicos/química
4.
Photochem Photobiol Sci ; 23(7): 1361-1372, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865066

RESUMEN

Colorectal cancer (CRC) is significantly contributed to global cancer mortality rates. Treating CRC is particularly challenging due to metastasis and drug resistance. There is a pressing need for new treatment strategies against metastatic CRC. Photodynamic therapy (PDT) offers a well-established, minimally invasive treatment option for cancer with limited side effects. Hypericin (HYP), a potent photosensitizer for PDT, has been documented to induce cytotoxicity and apoptosis in various types of cancers. However, there are few reports on the inhibitory effects of HYP-mediated PDT on the metastatic ability of CRC cells. Here, we evaluate the inhibitory effects of HYP-mediated PDT against metastatic CRC cells and define its underlying mechanisms. Wound-healing and Transwell assays show that HYP-mediated PDT suppresses migration and invasion of CRC cells. F-actin visualization assays indicate HYP-mediated PDT decreases F-actin formation in CRC cells. TEM assays reveal HYP-mediated PDT disrupts pseudopodia formation of CRC cells. Mechanistically, immunofluorescence and western blotting results show that HYP-mediated PDT upregulates E-cadherin and downregulates N-cadherin and Vimentin. HYP-mediated PDT also suppresses key EMT regulators, including Snail, MMP9, ZEB1 and α-SMA. Additionally, the expressions of RhoA and ROCK1 are downregulated by HYP-mediated PDT. Together, these findings suggest that HYP-mediated PDT inhibits the migration and invasion of HCT116 and SW620 cells by modulating EMT and RhoA-ROCK1 signaling pathway. Thus, HYP-mediated PDT presents a potential therapeutic option for CRC.


Asunto(s)
Antracenos , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Transducción de Señal , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Humanos , Perileno/análogos & derivados , Perileno/farmacología , Perileno/química , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Antracenos/farmacología , Transducción de Señal/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Transición Epitelial-Mesenquimal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Metástasis de la Neoplasia , Ensayos de Selección de Medicamentos Antitumorales
5.
Phytother Res ; 38(7): 3271-3295, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38600756

RESUMEN

St. John's Wort, commonly known as Hypericum perforatum L., is a flowering plant in the Clusiaceae family that traditionally been employed for treating anxiety, depression, wounds, burns, sunburn, irritation, and stomach ailments. This review provides a synopsis of H. perforatum L. phytoconstituents and their biological effects, highlighting its beneficial therapeutic properties for dermatological indications, as well as its antioxidant, antimicrobial, anti-inflammatory, and anti-angiogenic activity in various applications including wound healing and skin conditions such as eczema, sun burn and minor burns also spastic paralysis, stiff neck and mood disorders as anti-depressant and nerve pains such as neuralgia. The data were collected from several databases as Web of Science PubMed, ScienceDirect, Scopus and Google Scholar using the terms: "H. perforatum L.", "H. perforatum L. /phytochemistry," and "H. perforatum extracts/wound healing" collected from 1994 to 2023. The findings suggest H. perforatum L. acts through various mechanisms and plays a role in each phase of the wound healing process, including re-epithelialization, angiogenesis, wound contraction, and connective tissue regeneration. H. perforatum L. enhances collagen deposition, decreases inflammation, inhibits fibroblast migration, and promotes epithelialization by increasing the number of fibroblasts with polygonal shape and the number of collagen fibers within fibroblasts. H. Perforatum L. extracts modulate the immune response and reduce inflammation were found to accelerate the wound healing process via inhibition of inflammatory mediators' production like interleukin-6, tumor necrosis factor-α, cyclooxygenase-2 gene expression, and inducible nitric oxide synthase. Thus, H. perforatum L. represents a potential remedy for a wide range of dermatological problems, owing to its constituents with beneficial therapeutic properties. H. perforatum L. could be utilized in the development of novel wound healing therapies.


Asunto(s)
Hypericum , Fitoquímicos , Extractos Vegetales , Cicatrización de Heridas , Hypericum/química , Cicatrización de Heridas/efectos de los fármacos , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología
6.
Int J Mol Sci ; 25(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39337451

RESUMEN

Protection against the negative effects of solar radiation involves using cosmetics with a UV filter, but visible radiation can also have negative effects. We use dietary supplements and take medications; unfortunately, many of them contain substances that degrade under the influence of visible light, which transform into chemical compounds harmful to health. Manufacturers often include information on the prohibition of exposure to sunlight on the packaging, but consumers often do not read the product leaflet. The solution to this problem may be the addition of silver particles to preparations. In the presented article, we proposed the use of silver nanoparticles to reduce the photobleaching and photoreaction of fluorophore, while increasing the fluorescence intensity. For our research, we used a compound that is particularly sensitive to radiation: hypericin.


Asunto(s)
Antracenos , Nanopartículas del Metal , Perileno , Plata , Plata/química , Perileno/análogos & derivados , Perileno/química , Nanopartículas del Metal/química , Antracenos/química , Colorantes Fluorescentes/química , Fotoblanqueo , Luz
7.
Int J Mol Sci ; 25(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39201411

RESUMEN

SARS-CoV-2 is a highly pathogenic virus responsible for the COVID-19 disease. It belongs to the Coronaviridae family, characterized by a phospholipid envelope, which is crucial for viral entry and replication in host cells. Hypericin, a lipophilic, naturally occurring photosensitizer, was reported to effectively inactivate enveloped viruses, including SARS-CoV-2, upon light irradiation. In addition to its photodynamic activity, Hyp was found to exert an antiviral action also in the dark. This study explores the mechanical properties of heat-inactivated SARS-CoV-2 viral particles using Atomic Force Microscopy (AFM). Results reveal a flexible structure under external stress, potentially contributing to the virus pathogenicity. Although the fixation protocol causes damage to some particles, correlation with fluorescence demonstrates colocalization of partially degraded virions with their genome. The impact of hypericin on the mechanical properties of the virus was assessed and found particularly relevant in dark conditions. These preliminary results suggest that hypericin can affect the mechanical properties of the viral envelope, an effect that warrants further investigation in the context of antiviral therapies.


Asunto(s)
Antracenos , Microscopía de Fuerza Atómica , Perileno , Fármacos Fotosensibilizantes , SARS-CoV-2 , Perileno/análogos & derivados , Perileno/farmacología , Perileno/química , Antracenos/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Virión/efectos de los fármacos , Humanos , Antivirales/farmacología , Antivirales/química , COVID-19/virología , Chlorocebus aethiops , Células Vero , Tratamiento Farmacológico de COVID-19 , Animales
8.
AAPS PharmSciTech ; 25(5): 99, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714608

RESUMEN

Hypericum perforatum (HP) contains valuable and beneficial bioactive compounds that have been used to treat or prevent several illnesses. Encapsulation technology offers protection of the active compounds and facilitates to expose of the biologically active compounds in a controlled mechanism. Microcapsulation of the hydroalcoholic gum arabic and maltodextrin have hot been used as wall materials in the encapsulation of HP extract. Therefore, the optimum microencapsulation parameters of Hypericum perforatum (HP) hydroalcoholic extract were determined using response surface methodology (RSM) for the evaluation of HP extract. Three levels of three independent variables were screened using the one-way ANOVA. Five responses were monitored, including total phenolic content (TPC), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), carr index (CI), hausner ratio (HR), and solubility. Optimum drying conditions for Hypericum perforatum microcapsules (HPMs) were determined: 180 °C for inlet air temperature, 1.04/1 for ratio of maltodextrin to gum arabic (w/w), and 1.98/1 for coating to core material ratio (w/w). TPC, antioxidant activity, CI, HR, and solubility values were specified as 316.531 (mg/g GAE), 81.912%, 6.074, 1.066, and 35.017%, respectively, under the optimized conditions. The major compounds of Hypericum perforatum (hypericin and pseudohypericin) extract were determined as 4.19 µg/g microcapsule and 15.09 µg/g microcapsule, respectively. Scanning electron microscope (SEM) analysis revealed that the mean particle diameter of the HPMs was 20.36 µm. Based on these results, microencapsulation of HPMs by spray drying is a viable technique which protects the bioactive compounds of HP leaves, facilitating its application in the pharmaceutical, cosmetic, and food industries.


Asunto(s)
Antioxidantes , Cápsulas , Composición de Medicamentos , Goma Arábiga , Hypericum , Extractos Vegetales , Polisacáridos , Solubilidad , Hypericum/química , Extractos Vegetales/química , Composición de Medicamentos/métodos , Goma Arábiga/química , Polisacáridos/química , Antioxidantes/química , Antioxidantes/farmacología , Cápsulas/química , Secado por Pulverización , Fenoles/química , Desecación/métodos
9.
Crit Rev Microbiol ; 49(1): 38-56, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35171731

RESUMEN

Considering the multifaceted and increasing application of photodynamic therapy (PDT), in recent years the antimicrobial employment of this therapy has been highlighted, because of the antiviral, antibacterial, antiparasitic, and antifungal activities that have already been demonstrated. In this context, research focussed on antimycological action, especially for treatment of superficial infections, presents promising growth due to the characteristics of these infections that facilitate PDT application as new therapeutic options are needed in the field of medical mycology. Among the more than one hundred classes of photosensitizers the antifungal action of hypericin (Hyp) stands out due to its ability to permeate the lipid membrane and accumulate in different cytoplasmic organelles of eukaryotic cells. In this review, we aim to provide a complete overview of the origin, physicochemical characteristics, and optimal alternative drug deliveries that promote the photodynamic action of Hyp (Hyp-PDT) against fungi. Furthermore, considering the lack of a methodological consensus, we intend to compile the best strategies to guide researchers in the antifungal application of Hyp-PDT. Overall, this review provides a future perspective of new studies and clinical possibilities for the advances of such a technique in the treatment of mycoses in humans.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Antiinfecciosos/uso terapéutico
10.
Phytother Res ; 37(12): 5639-5656, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37690821

RESUMEN

Hypericin can be derived from St. John's wort, which is widely spread around the world. As a natural product, it has been put into clinical practice such as wound healing and depression for a long time. In this article, we review the pharmacology, pharmacokinetics, and safety of hypericin, aiming to introduce the research advances and provide a full evaluation of it. Turns out hypericin, as a natural photosensitizer, exhibits an excellent capacity for anticancer, neuroprotection, and elimination of microorganisms, especially when activated by light, potent anticancer and antimicrobial effects are obtained after photodynamic therapy. The mechanisms of its therapeutic effects involve the induction of cell death, inhibition of cell cycle progression, inhibition of the reuptake of amines, and inhibition of virus replication. The pharmacokinetics properties indicate that hypericin has poor water solubility and bioavailability. The distribution and excretion are fast, and it is metabolized in bile. The toxicity of hypericin is rarely reported and the conventional use of it rarely causes adverse effects except for photosensitization. Therefore, we may conclude that hypericin can be used safely and effectively against a variety of diseases. We hope to provide researchers with detailed guidance and enlighten the development of it.


Asunto(s)
Hypericum , Perileno , Perileno/farmacología , Antracenos , Muerte Celular , Fármacos Fotosensibilizantes/farmacología
11.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069219

RESUMEN

The aim of this study was to explore the potential of hypericin, a naturally occurring photosensi-tizer, for photodynamic therapy (PDT) in skin cancer, investigating its phototoxic effects and mechanisms of action in cancer cells compared to normal skin keratinocytes, squamous cell cancer (SCC-25) cells and melanoma (MUG-Mel2) cells. Hypericin was applied at concentrations ranging from 0.1-40 µM to HaCaT, SCC-25, and MUG-Mel2 cells. After 24 h of incubation, the cells were exposed to orange light at 3.6 J/cm2 or 7.2 J/cm2. Phototoxicity was assessed using MTT and SRB tests. Cellular uptake was measured by flow cytometry. Apoptosis-positive cells were estimated through TUNEL for apoptotic bodies' visualization. Hypericin exhibited a higher phototoxic reaction in cancer cells compared to normal keratinocytes after irradiation. Cancer cells demonstrated increased and selective uptake of hypericin. Apoptosis was observed in SCC-25 and MUG-Mel2 cells following PDT. Our findings suggest that hypericin-based PDT is a promising and less invasive approach for treating skin cancer. The higher phototoxic reaction, selective uptake by cancer cells, and observed proapoptotic properties support the promising role of hypericin-based PDT in skin cancer treatment.


Asunto(s)
Carcinoma de Células Escamosas , Dermatitis Fototóxica , Melanoma , Perileno , Fotoquimioterapia , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Perileno/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Dermatitis Fototóxica/tratamiento farmacológico , Queratinocitos , Apoptosis , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología
12.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958772

RESUMEN

Breast cancer (BC) is the most common malignancy among women worldwide. In recent years, significant progress has been made in BC therapy. However, serious side effects resulting from the use of standard chemotherapeutic drugs, as well as the phenomenon of multidrug resistance (MDR), limit the effectiveness of approved therapies. Advanced research in the BC area is necessary to create more effective and safer forms of therapy to improve the outlook for individuals diagnosed with this aggressive neoplasm. For decades, plants and natural products with anticancer properties have been successfully utilized in treating various medical conditions. Anthraquinone derivatives are tricyclic secondary metabolites of natural origin that have been identified in plants, lichens, and fungi. They represent a few botanical families, e.g., Rhamnaceae, Rubiaceae, Fabaceae, Polygonaceae, and others. The review comprehensively covers and analyzes the most recent advances in the anticancer activity of 1,8-dihydroanthraquinone derivatives (emodin, aloe-emodin, hypericin, chrysophanol, rhein, and physcion) applied both individually, or in combination with other chemotherapeutic agents, in in vitro and in vivo BC models. The application of nanoparticles for in vitro and in vivo evidence in the context of 1,8-dihydroanthraquinone derivatives was also described.


Asunto(s)
Neoplasias de la Mama , Emodina , Polygonaceae , Rheum , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Antraquinonas/farmacología , Antraquinonas/uso terapéutico , Extractos Vegetales
13.
Molecules ; 28(9)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37175269

RESUMEN

Hypericin, one of the major antidepressant constituents of St. John's wort, was shown to exert antidepressant effects by affecting cerebral CYP enzymes, serotonin homeostasis, and neuroinflammatory signaling pathways. However, its exact mechanisms are unknown. Previous clinical studies reported that the mRNA modification N6-methyladenosine (m6A) interferes with the neurobiological mechanism in depressed patients, and it was also found that the antidepressant efficacy of tricyclic antidepressants (TCAs) is related to m6A modifications. Therefore, we hypothesize that the antidepressant effect of hypericin may relate to the m6A modification of epitranscriptomic regulation. We constructed a UCMS mouse depression model and found that hypericin ameliorated depressive-like behavior in UCMS mice. Molecular pharmacology experiments showed that hypericin treatment upregulated the expression of m6A-modifying enzymes METTL3 and WTAP in the hippocampi of UCMS mice. Next, we performed MeRIP-seq and RNA-seq to study m6A modifications and changes in mRNA expression on a genome-wide scale. The genome-wide m6A assay and MeRIP-qPCR results revealed that the m6A modifications of Akt3, Ntrk2, Braf, and Kidins220 mRNA were significantly altered in the hippocampi of UCMS mice after stress stimulation and were reversed by hypericin treatment. Transcriptome assays and qPCR results showed that the Camk4 and Arhgdig genes might be related to the antidepressant efficacy of hypericin. Further gene enrichment results showed that the differential genes were mainly involved in neurotrophic factor signaling pathways. In conclusion, our results show that hypericin upregulates m6A methyltransferase METTL3 and WTAP in the hippocampi of UCMS mice and stabilizes m6A modifications to exert antidepressant effects via the neurotrophin signaling pathway. This suggests that METTL3 and WTAP-mediated changes in m6A modifications may be a potential mechanism for the pathogenesis of depression and the efficacy of antidepressants, and that the neurotrophin signaling pathway plays a key role in this process.


Asunto(s)
Depresión , Metiltransferasas , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/genética , Metiltransferasas/metabolismo , Transducción de Señal , Modelos Animales de Enfermedad , Antidepresivos/farmacología , ARN Mensajero/genética , Factores de Crecimiento Nervioso
14.
J Comput Chem ; 43(30): 2037-2042, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36129210

RESUMEN

The main photophysical properties, useful for establishing whether hypericin in anionic form and some of its derivatives containing heavy atoms such as iodine, can be proposed for their use in photodynamic therapy, were determined using density functional based computations. The results showed that in the anionic form and in the iodinated derivatives, the absorption wavelength undergoes a bathochromic shift, the singlet-triplet energy gap assumes values ​that allow to excite the oxygen molecule from its ground to the excited singlet state, and that the spin-orbit couplings between singlet and triplet states significantly increase.


Asunto(s)
Yodo , Perileno , Antracenos , Yoduros , Oxígeno , Perileno/análogos & derivados , Teoría Cuántica
15.
J Nucl Cardiol ; 29(6): 3432-3439, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35296972

RESUMEN

PURPOSE: Hypericin (Hyp) is a natural compound with a newly discovered necrosis-avidity, which can be exploited as a necrosis-avid tracer once labeled with radioactive iodine as has been tested in rodent models. This study was to evaluate the effect of radioiodinated Hyp (131I-Hyp) for imaging detection of acute myocardial infarction (AMI) in conditions closer to clinical scenarios. METHODS: We established swine AMI models (n = 6) which were intravenously given 131I-Hyp and 99mTc-sestamibi and underwent SPECT-CT imaging with high- and low-energy collimators. The acquired SPECT images were fused with cardiac CT images and correlated with postmortem autoradiography and macro- and microscopic pathology. Tissue γ counting was performed to determine biodistribution of 131I-Hyp. RESULTS: 131I-Hyp based SPECT indicated clearly hot regions on ventricular walls which were all histologically proved as AMI. Complementally, the hot AMI regions on 131I-Hyp SPECT (infarct/myoc ratio of 15.3 ± 7.7) were inversely cold regions on 99mTc-sestamibi SPECT (infarct/myoc ratio of 0.029 ± 0.021). Autoradiography of heart slices showed 9.8 times higher 131I-Hyp uptake in infarcted over normal myocardium. With γ counting, the mean 131I-Hyp uptake in infarcts was 10.69 ID%/g, 12.05 times of that in viable myocardium. CONCLUSION: 131I-Hyp shows a potential for clinical detection of AMI once I-131 is substituted by its isotope like I-124 or I-123 for PET or SPECT, respectively.


Asunto(s)
Infarto del Miocardio , Neoplasias de la Tiroides , Animales , Porcinos , Radioisótopos de Yodo , Distribución Tisular , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Necrosis , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Tecnecio Tc 99m Sestamibi
16.
Pediatr Blood Cancer ; 69(8): e29482, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34889033

RESUMEN

BACKGROUND: Advanced stages of pediatric alveolar rhabdomyosarcoma (RMA) are associated with an unfavorable outcome at established therapeutic strategies, accentuating the need for novel treatment options. Photodynamic therapy (PDT) with hypericin (HYP) has shown strong cytotoxic effects in two-dimensional (2D) cell culture. In order to more accurately mimic in vivo tissue architecture and better predict pharmaceutical response, the aim of this study was to establish a spheroid culture model by which PDT efficacy could be assessed in a three-dimensional (3D) context. MATERIALS AND METHODS: 3D multicellular tumor spheroids were generated using various scaffold-based and scaffold-free techniques. On two reproducible methods, HYP-PDT was performed varying spheroid sizes, photosensitizer concentrations, and illumination times. The ability for HYP uptake within the spheroid was analyzed assessing the substrate's autofluorescence. Antitumorigenic treatment effects were evaluated investigating cell viability, spheroid morphology, proliferative activity, and induction of apoptosis. RESULTS: Magnetic spheroid printing and orbital shaking methods were established as reproducible culturing systems producing uniform spheroids. Within assessed incubation times, HYP showed good penetration depth in spheroids containing 50,000 cells. PDT was causing metabolic and molecular impairment of RMA cells, resulting in viability decrease, reduction of cell proliferation, and induction of apoptosis. CONCLUSION: Assessing HYP-based PDT in a 3D culture model, we were able to gain an insight on how parameters like photosensitizer, oxygen, and light distribution contribute to the phototoxic effect. Compared to 2D cell culture, a higher treatment resistance was detected, which can be related to spheroid structure and mechanisms of intercellular communication, signal transduction, and gene expression.


Asunto(s)
Fotoquimioterapia , Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Antracenos , Línea Celular Tumoral , Niño , Humanos , Perileno/análogos & derivados , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Rabdomiosarcoma/tratamiento farmacológico
17.
Pediatr Blood Cancer ; 69(11): e29864, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35731577

RESUMEN

BACKGROUND: Cytoreductive surgery (CRS) in combination with hyperthermic intraperitoneal chemotherapy (HIPEC) is an option in advanced peritoneal sarcomatosis. Nevertheless, CRS and HIPEC are not successful in all patients. An enhancement of HIPEC using photodynamic therapy (PDT) might be beneficial. Therefore, a combination of the photosensitizer hypericin (HYP) with HIPEC was evaluated in an animal model. PROCEDURE: An established HIPEC animal model for rhabdomyosarcoma (NOD/LtSz-scid IL2Rγnullmice, n = 80) was used. All groups received HYP (100 µg/200 µl) intraperitoneally with and without cisplatin-based (30 or 60 mg/m2 ) HIPEC (37°C or 42°C, for 60 minutes) (five groups, each n = 16). Peritoneal cancer index (PCI) was documented visually and by HYP-based photodynamic diagnosis (PDD). HYP-based PDT of the tumor was performed. Tissue samples were evaluated regarding proliferation (Ki-67) and apoptosis (TUNEL). RESULTS: HYP uptake was detected even in smallest tumor nodes (<1 mm) with improved tumor detection during PDD (PCI with PDD vs. PCI without PDD: 8.5 vs. 7, p < .001***). Apoptotic effects after PDT without HIPEC were limited to the tumor surface, whereas PDT after HIPEC (60 mg/m2 , 42°C) showed additional reduction of tumor proliferation in the top nine to 11 cell layers (50 µm). CONCLUSION: HYP as fluorescent photosensitizer offers an intraoperative diagnostic advantage detecting intraperitoneal tumor dissemination. The combination of HYP and cisplatin-based HIPEC was feasible in vivo, showing enhanced effects on tumor proliferation and apoptosis induction across the tumor surface. Further studies combining HYP and HIPEC will follow to establish a clinical application.


Asunto(s)
Hipertermia Inducida , Neoplasias Peritoneales , Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cisplatino/uso terapéutico , Terapia Combinada , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Antígeno Ki-67 , Modelos Animales , Neoplasias Peritoneales/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma Embrionario/tratamiento farmacológico , Tasa de Supervivencia
18.
Anal Bioanal Chem ; 414(17): 4849-4860, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35538227

RESUMEN

Glioblastoma WHO IV belongs to a group of brain tumors that are still incurable. A promising treatment approach applies photodynamic therapy (PDT) with hypericin as a photosensitizer. To generate a comprehensive understanding of the photosensitizer-tumor interactions, the first part of our study is focused on investigating the distribution and penetration behavior of hypericin in glioma cell spheroids by fluorescence microscopy. In the second part, fluorescence lifetime imaging microscopy (FLIM) was used to correlate fluorescence lifetime (FLT) changes of hypericin to environmental effects inside the spheroids. In this context, 3D tumor spheroids are an excellent model system since they consider 3D cell-cell interactions and the extracellular matrix is similar to tumors in vivo. Our analytical approach considers hypericin as probe molecule for FLIM and as photosensitizer for PDT at the same time, making it possible to directly draw conclusions of the state and location of the drug in a biological system. The knowledge of both state and location of hypericin makes a fundamental understanding of the impact of hypericin PDT in brain tumors possible. Following different incubation conditions, the hypericin distribution in peripheral and central cryosections of the spheroids were analyzed. Both fluorescence microscopy and FLIM revealed a hypericin gradient towards the spheroid core for short incubation periods or small concentrations. On the other hand, a homogeneous hypericin distribution is observed for long incubation times and high concentrations. Especially, the observed FLT change is crucial for the PDT efficiency, since the triplet yield, and hence the O2 activation, is directly proportional to the FLT. Based on the FLT increase inside spheroids, an incubation time > 30 min is required to achieve most suitable conditions for an effective PDT.


Asunto(s)
Neoplasias Encefálicas , Glioma , Perileno , Antracenos , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Humanos , Microscopía Fluorescente , Perileno/análogos & derivados , Fármacos Fotosensibilizantes
19.
Chem Phys Lett ; 788: 139294, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-34961797

RESUMEN

The SARS-CoV-2 papain-like (PLpro) protease is essential for viral replication. We investigated potential antiviral effects of hypericin relative to the well-known noncovalent PLpro inhibitor GRL-0617. Molecular dynamics and PELE Monte Carlo simulations highlight favourable binding of hypericin and GRL-0617 to the naphthalene binding pocket of PLpro. Although not potent as GRL-0617 (45.8 vs 1.6 µM for protease activity, respectively), in vitro fluorogenic enzymatic assays with hypericin show concentration-dependent inhibition of both PLpro protease and deubiquitinating activities. Given its use in supplementations and the FDA conditional approval of a synthetic version, further evaluation of hypericin as a potential SARS-CoV-2 antiviral is warranted.

20.
Drug Chem Toxicol ; 45(3): 1302-1307, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33050761

RESUMEN

This study evaluated the cytotoxic, genotoxic, and the modulatory effects on DNA damage of hypericin in Chinese hamster lung fibroblasts (V79 cells). The hypericin is a natural polycyclic quinone, mainly extracted from St. John's Wort (Hypericum perforatum L.). Along with hyperforin, the hypericins are responsible for the antidepressant activity of St. John's Wort. Cytotoxicity was assessed by the XTT colorimetric assay and the nuclear division index (NDI). The genotoxic activity was studied by the micronucleus test at concentrations of 30, 60, 120, and 240 µg/mL. Mutagenic agents, methyl methanesulfonate (MMS, 44 µg/mL), doxorubicin (DXR, 0.5 µg/mL), and etoposide (VP16, 1 µg/mL) were used in combination with different concentrations of hypericin in order to evaluate the modulatory effect on DNA damage. Results showed that the hypericin was cytotoxic at concentrations above 156.2 µg/mL and genotoxic above 120 µg/mL. The hypericin significantly reduced DNA damage frequency induced by DXR, at concentrations of 30 and 60 µg/mL, and MMS at a concentration of 30 µg/mL, but was unable to reduce damage when combined with VP-16. These results demonstrate the non-photoactivated hypericin toxicological safety limits, its protective effect on DNA damage and provide a basis for future studies that may characterize better its chemopreventive mechanism.


Asunto(s)
Hypericum , Antracenos/toxicidad , Daño del ADN , Mutágenos/toxicidad , Perileno/análogos & derivados , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA