Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Funct Integr Genomics ; 24(1): 12, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38228798

RESUMEN

Promoter methylation is one of the most studied epigenetic modifications and it is highly relevant to the onset and progression of thyroid carcinoma (THCA). This study investigates the promoter methylation and expression pattern of intercellular adhesion molecule 5 (ICAM5) in THCA. CpG islands with aberrant methylation pattern in THCA, and the expression profiles of the corresponding genes in THCA, were analyzed using bioinformatics. ICAM5 was suggested to have a hypermethylation status, and it was highly expressed in THCA tissues and cells. Its overexpression promoted proliferation, mobility, and tumorigenic activity of THCA cells. As for the downstream signaling, ICAM5 was found to activate the MAPK/ERK and MAPK/JNK signaling pathways. Either inhibition of ERK or JNK blocked the oncogenic effects of ICAM5. DNA methyltransferases 1 (DNMT1) and DNMT3a were found to induce promoter hypermethylation of ICAM5 in THCA cells. Knockdown of DNMT1 or DNMT3a decreased the ICAM5 expression and suppressed malignant properties of THCA cells in vitro and in vivo, which were, however, restored by further artificial ICAM5 overexpression. Collectively, this study reveals that DNMT1 and DNMT3a mediates promoter hypermethylation and transcription activation of ICAM5 in THCA, which promotes malignant progression of THCA through the MAPK signaling pathway.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Neoplasias de la Tiroides , Humanos , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Activación Transcripcional , Metilación de ADN , Neoplasias de la Tiroides/genética , Proteínas del Tejido Nervioso/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo
2.
J Neurosci ; 40(6): 1355-1365, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31882402

RESUMEN

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, resulted from the silencing of the Fmr1 gene and the subsequent loss of fragile X mental retardation protein (FMRP). Spine dysgenesis and cognitive impairment have been extensively characterized in FXS; however, the underlying mechanism remains poorly understood. As an important regulator of spine maturation, intercellular adhesion molecule 5 (ICAM5) mRNA may be one of the targets of FMRP and involved in cognitive impairment in FXS. Here we show that in Fmr1 KO male mice, ICAM5 was excessively expressed during the late developmental stage, and its expression was negatively correlated with the expression of FMRP and positively related with the morphological abnormalities of dendritic spines. While in vitro reduction of ICAM5 normalized dendritic spine abnormalities in Fmr1 KO neurons, and in vivo knockdown of ICAM5 in the dentate gyrus rescued the impaired spatial and fear memory and anxiety-like behaviors in Fmr1 KO mice, through both granule cell and mossy cell with a relative rate of 1.32 ± 0.15. Furthermore, biochemical analyses showed direct binding of FMRP with ICAM5 mRNA, to the coding sequence of ICAM5 mRNA. Together, our study suggests that ICAM5 is one of the targets of FMRP and is implicated in the molecular pathogenesis of FXS. ICAM5 could be a therapeutic target for treating cognitive impairment in FXS.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is characterized by dendritic spine dysgenesis and cognitive dysfunctions, while one of the FMRP latent targets, ICAM5, is well established for contributing both spine maturation and learning performance. In this study, we examined the potential link between ICAM5 mRNA and FMRP in FXS, and further investigated the molecular details and pathological consequences of ICAM5 overexpression. Our results indicate a critical role of ICAM5 in spine maturation and cognitive impairment in FXS and suggest that ICAM5 is a potential molecular target for the development of medication against FXS.


Asunto(s)
Disfunción Cognitiva/metabolismo , Espinas Dendríticas/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Regulación de la Expresión Génica/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Disfunción Cognitiva/genética , Espinas Dendríticas/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones , Ratones Noqueados , Neurogénesis/genética
3.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31167912

RESUMEN

Enterovirus D68 (EV-D68) is an emerging virus that has been identified as a cause of recent outbreaks of acute flaccid myelitis (AFM), a poliomyelitis-like spinal cord syndrome that can result in permanent paralysis and disability. In experimental mouse models, EV-D68 spreads to, infects, and kills spinal motor neurons following infection by various routes of inoculation. The topography of virus-induced motor neuron loss correlates with the pattern of paralysis. The mechanism(s) by which EV-D68 spreads to target motor neurons remains unclear. We sought to determine the capacity of EV-D68 to spread by the neuronal route and to determine the role of known EV-D68 receptors, sialic acid and intracellular adhesion molecule 5 (ICAM-5), in neuronal infection. To do this, we utilized a microfluidic chamber culture system in which human induced pluripotent stem cell (iPSC) motor neuron cell bodies and axons can be compartmentalized for independent experimental manipulation. We found that EV-D68 can infect motor neurons via their distal axons and spread by retrograde axonal transport to the neuronal cell bodies. Virus was not released from the axons via anterograde axonal transport after infection of the cell bodies. Prototypic strains of EV-D68 depended on sialic acid for axonal infection and transport, while contemporary circulating strains isolated during the 2014 EV-D68 outbreak did not. The pattern of infection did not correspond with the ICAM-5 distribution and expression in either human tissue, the mouse model, or the iPSC motor neurons.IMPORTANCE Enterovirus D68 (EV-D68) infections are on the rise worldwide. Since 2014, the United States has experienced biennial spikes in EV-D68-associated acute flaccid myelitis (AFM) that have left hundreds of children paralyzed. Much remains to be learned about the pathogenesis of EV-D68 in the central nervous system (CNS). Herein we investigated the mechanisms of EV-D68 CNS invasion through neuronal pathways. A better understanding of EV-D68 infection in experimental models may allow for better prevention and treatment strategies of EV-D68 CNS disease.


Asunto(s)
Transporte Axonal , Enterovirus Humano D/fisiología , Infecciones por Enterovirus/metabolismo , Infecciones por Enterovirus/virología , Interacciones Huésped-Patógeno , Neuronas Motoras/metabolismo , Neuronas Motoras/virología , Ácido N-Acetilneuramínico/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Enfermedades Virales del Sistema Nervioso Central/metabolismo , Enfermedades Virales del Sistema Nervioso Central/virología , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Neuronas Motoras/citología , Mielitis/metabolismo , Mielitis/virología , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neuromusculares/metabolismo , Enfermedades Neuromusculares/virología , Parálisis/etiología
4.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 7): 1934-43, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25004970

RESUMEN

Intercellular cell adhesion molecule-5 (ICAM-5) is a member of the ICAM subfamily that is exclusively expressed in the telencephalon region of the brain. The crystal structure of the four most N-terminal glycosylated domains (D1-D4) of ICAM-5 was determined in three different space groups and the D1-D5 fragment was modelled. The structures showed a curved molecule with two pronounced interdomain bends between D2 and D3 and between D3 and D4, as well as some interdomain flexibility. In contrast to ICAM-1, ICAM-5 has patches of positive and negative electrostatic charge at D1-D2 and at D3-D5, respectively. ICAM-5 can mediate homotypic interactions. In the crystals, several charge-based intermolecular interactions between the N-terminal and C-terminal moieties of the ICAM-5 molecules were observed, which defined an interacting surface in the D1-D4 fragment. One of the crystal lattices has a molecular assembly that could represent the homophilic ICAM-5 cell adhesion complex in neurons.


Asunto(s)
Moléculas de Adhesión Celular/química , Proteínas del Tejido Nervioso/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Electricidad Estática
5.
J Inflamm Res ; 17: 6583-6602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318995

RESUMEN

Background: Lung cancer is the most common type of cancer in the world. In lung adenocarcinoma (LUAD), studies on receptor tyrosine kinase ROS proto-oncogene 1 (ROS1) have mainly focused on the oncogenic effects of its fusion mutations, whereas ROS1 has been reported to be aberrantly expressed in a variety of cancers and can extensively regulate the growth, survival, and proliferation of tumor cells through multiple signaling pathways. The comprehensive analysis of ROS1 expression has not been fully investigated regarding its predictive value for LUAD patients. Methods: Gene expression profiles collected from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases were used to build and validate prognostic risk models. The association of ROS1 with overall survival and the immune landscape was obtained from the Tumor Immune Estimation Resource (TIMER) database. The following analyses were performed using the R package to determine the model's validity: pathway dysregulation analysis, gene set enrichment analysis, Gene Oncology analysis, immune invasion analysis, chemotherapy, radiotherapy, and immunotherapy sensitivity analysis. Finally, we conducted a pan-cancer analysis and performed in vitro experiments to explore the regulatory role of intercellular adhesion molecule 5 (ICAM5) in the progression of LUAD. Results: We constructed a 17-gene model that categorized patients into two risk groups. The model had predictive accuracy for tumor prognosis and was specific for patients with high ROS1 expression. Comprehensive analysis showed that patients in the high-risk group were characterized by marked dysregulation of multiple pathways (eg, unfolded protein response), immune suppression of the tumor microenvironment, and poor benefit from immunotherapy and radiotherapy compared with patients in the low-risk group. PLX4720 may be a suitable treatment for the high-risk patient population. The ICAM5 gene has been demonstrated to inhibit the proliferation, cell cycle, invasion, and migration of LUAD cells. Conclusion: We constructed a 17-gene prognostic risk model and found differences in immune-related cells, biological processes, and prognosis among patients in different risk groups based on the correlation between ROS1 and immunity. Personalized therapy may play an essential role in treatment. We further investigated the role of ICAM5 in inhibiting the malignant bioactivity of LUAD cells.

7.
Front Microbiol ; 11: 1580, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849329

RESUMEN

Rhinovirus (RV) and influenza virus are the most frequently detected respiratory viruses among adult patients with community acquired pneumonia. Previous clinical studies have identified major differences in the clinical presentations and inflammatory or immune response during these infections. A systematic transcriptomic analysis directly comparing influenza and RV is lacking. Here, we sought to compare the transcriptomic response to these viral infections. Human airway epithelial Calu-3 cells were infected with contemporary clinical isolates of RV, influenza A virus (IAV), or influenza B virus (IBV). Host gene expression was determined using RNA-seq. Differentially expressed genes (DEGs) with respect to mock-infected cells were identified using the overlapping gene-set of four different statistical models. Transcriptomic analysis showed that RV-infected cells have a more blunted host response with fewer DEGs than IAV or IBV-infected cells. IFNL1 and CXCL10 were among the most upregulated DEGs during RV, IAV, and IBV infection. Other DEGs that were highly expressed for all 3 viruses were mainly genes related to type I or type III interferons (RSAD2, IDO1) and chemokines (CXCL11). Notably, ICAM5, a known receptor for enterovirus D68, was highly expressed during RV infection only. Gene Set Enrichment Analysis (GSEA) confirmed that pathways associated with interferon response, innate immunity, or regulation of inflammatory response, were most perturbed for all three viruses. Network analysis showed that steroid-related pathways were enriched. Taken together, our data using contemporary virus strains suggests that genes related to interferon and chemokine predominated the host response associated with RV, IAV, and IBV infection. Several highly expressed genes, especially ICAM5 which is preferentially-induced during RV infection, deserve further investigation.

8.
Antiviral Res ; 176: 104752, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32101770

RESUMEN

Enterovirus D68 (EV-D68) is a member of the Picornavirus family and a causative agent of respiratory diseases in children. The incidence of EV-D68 infection has increased worldwide in recent years. Thus far, there are no approved antiviral agents or vaccines for EV-D68. Here, we show that methyl-ß-cyclodextrin (MßCD), a common drug that disrupts lipid rafts, specifically inhibits EV-D68 infection without producing significant cytotoxicity at virucidal concentrations. The addition of exogenous cholesterol attenuated the anti-EV-D68 activity of MßCD. MßCD treatment had a weak influence on the attachment of viral particles to the cell membrane but significantly inhibited EV-D68 entry into host cells. We demonstrated that EV-D68 facilitated the translocation of the viral receptor ICAM-5 to membrane rafts in infected cells. The colocalization of viral particles with ICAM-5 in lipid rafts was thoroughly abolished in cells after treatment with MßCD. Finally, we showed that MßCD inhibited the replication of isolated circulating EV-D68 strains. In summary, our results demonstrate that MßCD suppresses EV-D68 replication by perturbing the accumulation of virus particles and ICAM-5 in lipid rafts. This mechanism represents a promising strategy for drug development.


Asunto(s)
Antivirales/farmacología , Moléculas de Adhesión Celular/metabolismo , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/virología , Proteínas del Tejido Nervioso/metabolismo , Internalización del Virus/efectos de los fármacos , beta-Ciclodextrinas/farmacología , Células A549 , Colesterol/farmacología , Enterovirus Humano D/efectos de los fármacos , Enterovirus Humano D/fisiología , Células HeLa , Humanos , Replicación Viral/efectos de los fármacos
9.
Front Neurosci ; 13: 1098, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680833

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder that causes intellectual disability, as well as the leading monogenic cause of autism spectrum disorders (ASD), in which neurons show aberrant dendritic spine structure. The reduction/absence of the functional FMRP protein, coded by the X-linked Fmr1 gene in humans, is responsible for the syndrome. Targets of FMRP, CLSTN1, and ICAM5, play critical roles in the maturation of dendritic spines, synapse formation and synaptic plasticity. However, the implication of CLSTN1 and ICAM5 in dendritic spine abnormalities and the underlying neuropathologic processes in FXS remain uninvestigated. In this study, we demonstrated that CLSTN1 co-localizes and co-transports with ICAM5 in cultured cortical neurons. Also we showed that shRNA-mediated downregulation of CLSTN1 in cultured WT neurons increases ICAM5 on the surface of synaptic membrane, subsequently affecting the maturation of dendritic spines. Whereas, normalization of CLSTN1 level in Fmr1 KO neurons reduces ICAM5 abundance and rescues impaired dendritic spine phenotypes. Most importantly, CLSTN1 protein is reduced in the postnatal medial prefrontal cortex of Fmr1 KO mice, which is correlated with increased ICAM5 levels on the surface of synapses and excessive filopodia-like spines. In conclusion, this study demonstrates that CLSTN1 plays a critical role in dendritic spine formation and maturation in FXS by regulating ICAM5 redistribution.

10.
Artículo en Inglés | MEDLINE | ID: mdl-30147651

RESUMEN

Dendritic filopodia are thin, long, and highly mobile protrusions functioning as spine precursors. By contrast with a wealth of knowledge on molecular profiles in spines, little is known about structural and functional proteins present in dendritic filopodia. To reveal the molecular constituents of dendritic filopodia, we developed a new method for biochemical preparation of proteins enriched in dendritic filopodia, by taking advantage of specific and strong binding between a dendritic filopodial membrane protein, telencephalin, and its extracellular matrix ligand, vitronectin. When vitronectin-coated magnetic microbeads were added onto cultured hippocampal neurons, phagocytic cup-like membrane protrusions were formed on dendrites through the binding to telencephalin. Magnetically purified membrane protrusion fraction was subjected to comprehensive mass spectrometric analysis and 319 proteins were identified, many of which were confirmed to be localized to dendritic filopodia. Thus, this study provides a useful resource for studying molecular mechanisms underlying dendritic development, synapse formation, and plasticity.

11.
J Ment Health Clin Psychol ; 2(5): 9-14, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30957105

RESUMEN

Posttraumatic stress disorder (PTSD) is a debilitating disorder that can develop following exposure to a traumatic event. Although the cause of PTSD is known, the brain mechanisms of its development remain unknown, especially why it arises in some people but not in others. Most of the research on PTSD has dealt with psychological and brain mechanisms underlying its symptomatology, including intrusive memories, fear and avoidance (see ref.1 for a broad coverage of PTSD research)1. Here we focus, instead, on the origin of PTSD, namely on the neural mechanisms underlying its development. Specifically, we propose a two-hit model for PTSD development, with the following components. (a) The 1st hit is a neuroimmune challenge, as a preexisting condition, and the 2nd hit is intense glutamatergic neurotransmission, induced by the traumatic event; (b) the key molecule that mediates the effects of these two hits is intercellular adhesion molecule 5 (ICAM-5) which was found to be differentially expressed in PTSD2. ICAM-5 is activated by neuroimmune challenge3,4 and glutamatergic neurotransmission5,6, it further enhances glutamatergic transmission6, and exerts a potent effect on synapse formation and neural plasticity, in addition to immunoregulatory functions3,4,7; and (c) with respect to the neural network(s) involved, the brain areas most involved are medial temporal cortical areas, and interconnected cortical and subcortical areas8-10. We hypothesize that the net result of intense glutamatergic transmission in those areas induced by a traumatic event in the presence of ongoing neuroimmune challenge leads to increased levels of ICAM-5 which further enhances glutamatergic transmission and thus leads to a state of a neural network with highly correlated neural interactions, as has been observed in functional neuroimaging studies8-10. We assume that such a "locked-in" network underlies the intrusive re-experiencing in PTSD and maintains associated symptomatology, such as fear and avoidance.

12.
Aging Dis ; 8(3): 250-256, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28580181

RESUMEN

Despite the use of antiretroviral drugs HIV associated neurocognitive disorders (HAND) are still common in HIV-seropositive patients. Identification of HIV patients with cognitive impairment in early-stage might benefit a great deal from disease progression monitoring and treatment adjustment. Intercellular adhesion molecule-5 (ICAM5), characteristically expressed on neuron, may suppress immune functions by inhibition of T cell activation in central nervous system. Previous studies have shown that ICAM5 could be detected in patients with brain injury. To investigate the relationship between cognitive impairment and ICAM5 in HIV patients, we compared soluble ICAM5 levels in paired CSF and plasma specimens from HIV-infected individuals with or without neurocognitive impairment. sICAM5 concentrations were measured by ICAM5 ELISA kit. A total of 41 Patients were classified into HIV infected with normal cognition (HIV-NC) and impaired cognition groups (HIV-CI) based on Memorial Sloan-Kettering Scale. CSF and plasma levels of sICAM5 in HIV-CI patients were significantly higher than HIV-NC group (p<0.0001, p=0.0054 respectively). sICAM5 concentrations in plasma strongly correlated with sICAM5 in CSF (r=0.7250, p<0.0001) and S100B in CSF (r=0.3812, p<0.0139). Among 6 follow-up patients we found that sICAM5 levels in CSF and plasma might change consistently with HAND progression. In summary, we have shown that the expressions of sICAM5 in CSF and plasma may correlate with neurocognitive impairment in HIV infected patients. The elevation of sICAM5 in plasma were correspond with that in CSF as a consequence of blood-brain barrier permeability changes. ICAM5 can serve as a potential and readily accessible biomarker to predict HIV associated neurocognitive disorder.

13.
Front Mol Neurosci ; 10: 431, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311819

RESUMEN

The intercellular adhesion molecule-5 (ICAM-5) regulates neurite outgrowth and synaptic maturation. ICAM-5 overexpression in the hippocampal neurons induces filopodia formation in vitro. Since microglia are known to prune supernumerous synapses during development, we characterized the regulatory effect of ICAM-5 on microglia. ICAM-5 was released as a soluble protein from N-methyl-D-aspartic acid (NMDA)-treated neurons and bound by microglia. ICAM-5 promoted down-regulation of adhesion and phagocytosis in vitro. Microglia formed large cell clusters on ICAM-5-coated surfaces whereas they adhered and spread on the related molecule ICAM-1. ICAM-5 further reduced the secretion of the proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß), but on the contrary induced the secretion of the anti-inflammatory IL-10 from lipopolysaccharide (LPS) stimulated microglia. Thus, ICAM-5 might be involved in the regulation of microglia in both health and disease, playing an important neuroprotective role when the brain is under immune challenges and as a "don't-eat-me" signal when it is solubilized from active synapses.

14.
Cell Host Microbe ; 20(5): 631-641, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27923705

RESUMEN

Enterovirus D68 (EV-D68) is a member of the Picornaviridae family. Although EV-D68-associated infection was once considered rare, it has been increasing in recent years. EV-D68 infection is most frequently associated with respiratory illness. However, it has also been implicated in a polio-like neurological disorder, acute flaccid myelitis. Although sialic acid has been implicated in EV-D68 entry, the existence of a protein receptor has yet to be clarified. Here we identify neuron-specific intercellular adhesion molecule 5 (ICAM-5/telencephalin) as a cellular receptor for sialic acid-dependent and -independent EV-D68 viruses. EV-D68 bound specifically and efficiently to ICAM-5, and replication of EV-D68 in diverse cell types was inhibited by soluble ICAM-5 fragments. ICAM-5 silencing attenuated EV-D68 replication in permissive cells, and ICAM-5 expression in non-permissive cells allowed EV-D68 replication. The discovery of a neuron-specific adhesion molecule as an EV-D68 receptor has important implications for EV-D68 pathogenesis and may facilitate the development of novel intervention strategies.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Enterovirus Humano D/fisiología , Proteínas del Tejido Nervioso/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Humanos , Unión Proteica , Ácidos Siálicos/metabolismo , Acoplamiento Viral
15.
Biol Open ; 4(2): 125-36, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25572420

RESUMEN

ICAM-5 is a negative regulator of dendritic spine maturation and facilitates the formation of filopodia. Its absence results in improved memory functions, but the mechanisms have remained poorly understood. Activation of NMDA receptors induces ICAM-5 ectodomain cleavage through a matrix metalloproteinase (MMP)-dependent pathway, which promotes spine maturation and synapse formation. Here, we report a novel, ICAM-5-dependent mechanism underlying spine maturation by regulating the dynamics and synaptic distribution of α-actinin. We found that GluN1 and ICAM-5 partially compete for the binding to α-actinin; deletion of the cytoplasmic tail of ICAM-5 or ablation of the gene resulted in increased association of GluN1 with α-actinin, whereas internalization of ICAM-5 peptide perturbed the GluN1/α-actinin interaction. NMDA treatment decreased α-actinin binding to ICAM-5, and increased the binding to GluN1. Proper synaptic distribution of α-actinin requires the ICAM-5 cytoplasmic domain, without which α-actinin tended to accumulate in filopodia, leading to F-actin reorganization. The results indicate that ICAM-5 retards spine maturation by preventing reorganization of the actin cytoskeleton, but NMDA receptor activation is sufficient to relieve the brake and promote the maturation of spines.

16.
Front Neurol ; 6: 110, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074866

RESUMEN

BACKGROUND: Blood biomarkers are valuable tools for elucidating complex cellular and molecular mechanisms underlying traumatic brain injury (TBI). Profiling distinct classes of biomarkers could aid in the identification and characterization of initial injury and secondary pathological processes. This study characterized the prognostic performance of a recently developed multi-marker panel of circulating biomarkers that reflect specific pathogenic mechanisms including neuroinflammation, oxidative damage, and neuroregeneration, in moderate-to-severe TBI patients. MATERIALS AND METHODS: Peripheral blood was drawn from 85 isolated TBI patients (n = 60 severe, n = 25 moderate) at hospital admission, 6-, 12-, and 24-h post-injury. Mortality and neurological outcome were assessed using the extended Glasgow Outcome Scale. A multiplex platform was designed on MULTI-SPOT(®) plates to simultaneously analyze human plasma levels of s100 calcium binding protein beta (s100B), glial fibrillary acidic protein (GFAP), neuron specific enolase (NSE), brain-derived neurotrophic factor (BDNF), monocyte chemoattractant protein (MCP)-1, intercellular adhesion molecule (ICAM)-5, and peroxiredoxin (PRDX)-6. Multivariable logistic regression and area under the receiver-operating characteristic curve (AUC) were used to evaluate both individual and combined predictive abilities of these markers for 6-month neurological outcome and mortality after TBI. RESULTS: Unfavorable neurological outcome was associated with elevations in s100B, GFAP, and MCP-1. Mortality was related to differences in six of the seven markers analyzed. Combined admission concentrations of s100B, GFAP, and MCP-1 were able to discriminate favorable versus unfavorable outcome (AUC = 0.83), and survival versus death (AUC = 0.87), although not significantly better than s100B alone (AUC = 0.82 and 0.86, respectively). CONCLUSION: The multi-marker panel of TBI-related biomarkers performed well in discriminating unfavorable and favorable outcomes in the acute period after moderate-to-severe TBI. However, the combination of these biomarkers did not outperform s100B alone.

17.
J Comp Neurol ; 522(3): 676-88, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23897576

RESUMEN

The telencephalon-associated intercellular adhesion molecule-5 (telencephalin; ICAM-5) regulates dendritic morphology in the developing brain. In vitro studies have shown that ICAM-5 is found predominantly within dendrites and immature dendritic protrusions, with reduced expression in mushroom spines, suggesting that ICAM-5 downregulation is critical for the maturation of synaptic structures. However, developmental expression of ICAM-5 has not been explored in depth at the ultrastructural level in intact brain tissue. To investigate the ultrastructural localization of ICAM-5 with transmission electron microscopy, we performed immunoperoxidase histochemistry for ICAM-5 in mouse visual cortex at postnatal day (P)14, a period of intense synaptogenesis, and at P28, when synapses mature. We observed the expected ICAM-5 expression in dendritic protrusions and shafts at both P14 and P28. ICAM-5 expression in these dendritic protrusions decreased in prevalence with developmental age to become localized predominantly to dendritic shafts by P28. To understand better the relationship between ICAM-5 and the endopeptidase metalloproteinase-9 (MMP-9), which mediates ICAM-5 cleavage following glutamate activation during postnatal development, we also explored ICAM-5 expression in MMP-9 null animals. This analysis revealed a similar expression of ICAM-5 in dendritic elements at P14 and P28; however, an increased prevalence of ICAM-5 was noted in dendritic protrusions at P28 in the MMP-9 null animals, indicating that, in the absence of MMP-9, there is no developmental shift in ICAM-5 subcellular localization. Our ultrastructural observations shed light on possible functions mediated by ICAM-5 and their regulation by extracellular proteases.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Metaloproteinasa 9 de la Matriz/deficiencia , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , Fracciones Subcelulares/metabolismo , Corteza Visual/citología , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/ultraestructura , Proteínas de Unión al Calcio/metabolismo , Dendritas/metabolismo , Dendritas/ultraestructura , Proteína Ácida Fibrilar de la Glía/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Glicoproteínas de Membrana/ultraestructura , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Microscopía Inmunoelectrónica , Proteínas del Tejido Nervioso/ultraestructura , Neuronas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Fracciones Subcelulares/ultraestructura , Corteza Visual/crecimiento & desarrollo , Corteza Visual/metabolismo
18.
Commun Integr Biol ; 6(6): e27315, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24753788

RESUMEN

The telencephalon-associated intercellular adhesion molecule 5 (Telencephalin; ICAM-5) regulates dendritic maturation, a process dependent on extracellular proteases in the developing brain. Using transmission electron microscopy, we have reported previously that ICAM-5 is localized primarily in dendritic protrusions during a period of robust synaptogenesis (P14 in mouse visual cortex). As dendritic protrusions mature (P28), ICAM-5 immuno-reactivity shifts from dendritic protrusions into dendritic shafts. ICAM-5 immuno-reactivity does not shift in animals lacking the matrix metalloproteinase-9 (MMP-9), a protease shown to regulate ICAM-5 cleavage. Cleaved ICAM-5 (soluble fraction; sICAM-5) has been shown to bind to a number of receptors located in neighboring structures, resulting in a variety of downstream signaling events, including enhanced neurotransmission. Here, we investigated the potential MMP-regulated ICAM-5 signaling by examining the relationship between ICAM-5 immuno-positive elements and the structures that directly neighbor them.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA