Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Acta Pharmacol Sin ; 44(6): 1135-1148, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36536076

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons and the accumulation of Lewy bodies (LB) in the substantia nigra (SN). Evidence shows that microglia-mediated neuroinflammation plays a key role in PD pathogenesis. Using TNF-α as an indicator for microglial activation, we established a cellular model to screen compounds that could inhibit neuroinflammation. From 2471 compounds in a small molecular compound library composed of FDA-approved drugs, we found 77 candidates with a significant anti-inflammatory effect. In this study, we further characterized pazopanib, a pan-VEGF receptor tyrosine kinase inhibitor (that was approved by the FDA for the treatment of advanced renal cell carcinoma and advanced soft tissue sarcoma). We showed that pretreatment with pazopanib (1, 5, 10 µM) dose-dependently suppressed LPS-induced BV2 cell activation evidenced by inhibiting the transcription of proinflammatory factors iNOS, COX2, Il-1ß, and Il-6 through the MEK4-JNK-AP-1 pathway. The conditioned medium from LPS-treated microglia caused mouse DA neuronal MES23.5 cell damage, which was greatly attenuated by pretreatment of the microglia with pazopanib. We established an LPS-stimulated mouse model by stereotactic injection of LPS into mouse substantia nigra. Administration of pazopanib (10 mg·kg-1·d-1, i.p., for 10 days) exerted significant anti-inflammatory and neuronal protective effects, and improved motor abilities impaired by LPS in the mice. Together, we discover a promising candidate compound for anti-neuroinflammation and provide a potential repositioning of pazopanib in the treatment of PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Ratones , Animales , Neuronas Dopaminérgicas/metabolismo , Lipopolisacáridos/farmacología , Factor de Transcripción AP-1/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Microglía/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo
2.
Am J Physiol Endocrinol Metab ; 320(6): E1032-E1043, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33900847

RESUMEN

Uric acid is the end metabolite derived from the oxidation of purine compounds. Overwhelming evidence shows the vital interrelationship between hyperuricemia (HUA) and nonalcoholic fatty liver disease (NAFLD). However, the mechanisms for this association remain unclear. In this study, we established a urate oxidase-knockout (Uox-KO) mouse model by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. To study the correlation between HUA and NAFLD, human HepG2 hepatoma cells were treated in culture medium with high level of uric acid. In vivo, the Uox-KO mice spontaneously developed hyperuricemia and aberrant lipid-metabolism, concomitant with abnormal hepatic fat accumulation. HUA activated c-Jun N-terminal kinase (JNK) in vivo and in vitro. Furthermore, inhibiting JNK activation by a JNK-specific inhibitor, SP600125, decreased fat accumulation and lipogenic gene expression induced by HUA. Overexpression of the lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase 1 was via activation of JNK, which was blocked by the JNK inhibitor SP600125. HUA activated AP-1 to upregulate lipogenic gene expression via JNK activation. In addition, HUA caused mitochondrial dysfunction and reactive oxygen species production. Pretreatment with the antioxidant N-acetyl-l-cysteine could ameliorate HUA-activated JNK and hepatic steatosis. These data suggest that ROS/JNK/AP-1 signaling plays an important role in HUA-mediated fat accumulation in liver.NEW & NOTEWORTHY Hyperuricemia and nonalcoholic fatty liver disease are global public health problems, which are strongly associated with metabolic syndrome. In this study, we demonstrate that uric acid induces hepatic fat accumulation via the ROS/JNK/AP-1 pathway. This study identifies a new mechanism of NAFLD pathogenesis and new potential therapeutic strategies for HUA-induced NAFLD.


Asunto(s)
Hiperuricemia/metabolismo , Hígado/efectos de los fármacos , Ácido Úrico/farmacología , Animales , Células Hep G2 , Humanos , Hiperuricemia/patología , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción AP-1/metabolismo , Ácido Úrico/metabolismo
3.
J Cell Physiol ; 234(10): 18928-18941, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31004367

RESUMEN

Pre-eclampsia (PE) is a serious hypertensive disorder of pregnancy that remains a leading cause of perinatal and maternal morbidity and mortality worldwide. Placental ischemia/hypoxia and the secretion of soluble fms-like tyrosine kinase 1 (sFlt1) into maternal circulation are involved in the pathogenesis of PE. Although low-dose aspirin (LDA) has beneficial effects on the prevention of PE, the exact mechanisms of action of LDA, particularly on placental dysfunction, and sFlt1 release, have not been well investigated. This study aimed to determine whether LDA exists the protective effects on placental trophoblast and endothelial functions and prevents PE-associated sFlt1 release. First, we observed that LDA mitigated hypoxia-induced trophoblast apoptosis, showed positive effects on trophoblast cells migration and invasion activity, and increased the tube-forming activity of human umbilical vein endothelial cells (HUVECs). In addition, LDA decreased hypoxia-induced sFlt1 production, and the c-Jun NH2 -terminal kinase/activator protein-1 (JNK/AP-1) pathway was shown to mediate the induction of sFlt1. Moreover, the transcription factor AP-1 was confirmed to regulate the Flt1 gene expression by directly binding to the Flt1 promoter in luciferase assays. The result of chromatin immunoprecipitation assays further demonstrated that LDA could directly decrease the expression of the transcription factor AP-1, and thus decrease sFlt1 production. Finally, the effects of LDA on sFlt1 production were proved in human placental explants. Taken together, our data show the protective effects of LDA against trophoblast and endothelial cell dysfunction and reveal that the LDA-mediated inhibition of sFlt1 via the JNK/AP-1 pathway may be a potential cellular/molecular mechanism for the prevention of PE.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Preeclampsia/prevención & control , Trofoblastos/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Adulto , Apoptosis/fisiología , Hipoxia de la Célula/fisiología , Línea Celular , Movimiento Celular , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Placenta/metabolismo , Preeclampsia/patología , Embarazo , Factor de Transcripción AP-1/metabolismo
4.
Dig Dis Sci ; 64(12): 3518-3527, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31273598

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a common disorder of chronic intestinal inflammation that can be caused by the disruption of intestinal immune homeostasis. AIM: We aimed to evaluate the role of enhancer of zeste homolog 2 (EZH2) in the inflammatory response and explore the association between EZH2 and necroptosis in human epithelial colorectal adenocarcinoma cell lines. METHODS: In both in vitro and in vivo models, expression of EZH2 in intestinal tissues was verified by histology. The expression of inflammatory cytokines in cell lines treated with EZH2 siRNA with or without stimulus was analyzed by quantitative real-time polymerase chain reaction. An intestinal necroptosis cell model was established to elucidate whether EZH2 is involved in necroptosis. RESULTS: Our present data indicated that EZH2 expression was decreased in in vitro and in vivo models and in patients with inflammatory bowel disease. EZH2 downregulation increased the expression of inflammatory factors, including TNF-α, IL-8, IL-17, CCL5, and CCL20 in a Caco-2 cell model. The JNK pathway was activated with the reduction of EZH2. In the necroptosis model, downregulation of EZH2 was detected with the upregulation of necroptotic markers RIP1 and RIP3. In addition, EZH2 knockdown with siRNA increased p-JNK and p-c-Jun. CONCLUSION: Our data suggest that EZH2 plays an important role in the development of intestinal inflammation and necroptosis. Hence, EZH2 could be a potential therapeutic target for IBD.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Necroptosis/genética , Animales , Células CACO-2 , Quimiocina CCL20/metabolismo , Quimiocina CCL5/metabolismo , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Sulfato de Dextran/toxicidad , Regulación hacia Abajo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Técnicas In Vitro , Inflamación , Enfermedades Inflamatorias del Intestino/metabolismo , Interleucina-17/metabolismo , Interleucina-8/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Necroptosis/fisiología , Proteínas de Complejo Poro Nuclear/metabolismo , Fosfoproteínas , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Ácido Trinitrobencenosulfónico/toxicidad , Factor de Necrosis Tumoral alfa/metabolismo
5.
J Pharm Pharmacol ; 76(10): 1328-1339, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39186724

RESUMEN

OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a nutritional and metabolic disease with a high prevalence today. Artemisia capillaris has anti-inflammatory, antioxidant, and other effects. However, the mechanism of A. capillaris in treating NAFLD is still poorly understood. METHODS: This study explored the mechanism of A. capillaris in the treatment of NAFLD through network pharmacology and molecular docking, and verified the results through in vivo experiments using a high-fat diet-induced mouse model and in vitro experiments using an oleic acid-induced HepG2 cell model. KEY FINDINGS: Aqueous extract of A. capillaris (AEAC) can reduce blood lipids, reduce liver lipid accumulation and liver inflammation in NAFLD mice, and improve NAFLD. Network pharmacology analysis revealed that 51 drug ingredients in A. capillaris correspond to 370 targets that act on NAFLD. GEO data mining obtained 93 liver differentially expressed genes related to NAFLD. In the UHPLC-MS detection results, 36 components were characterized and molecular docked with JNK. Verified in vitro and in vivo, the results show that JNK and the phosphorylation levels of IL-6, IL-1ß, c-Jun, c-Fos, and CCL2 are key targets and pathways. CONCLUSIONS: This study confirmed that AEAC reduces lipid accumulation and inflammation in the liver of NAFLD mice by inhibiting the JNK/AP-1 pathway.


Asunto(s)
Artemisia , Dieta Alta en Grasa , Hígado , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico , Extractos Vegetales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Artemisia/química , Extractos Vegetales/farmacología , Células Hep G2 , Ratones , Humanos , Dieta Alta en Grasa/efectos adversos , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Modelos Animales de Enfermedad , Antiinflamatorios/farmacología , Metabolismo de los Lípidos/efectos de los fármacos
7.
Front Pharmacol ; 12: 621359, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897417

RESUMEN

Compound Dihuang Granule (CDG) is widely used in traditional Chinese medicine (TCM) for the treatment of Parkinson's disease (PD). It has been shown to alleviate PD symptoms. However, the molecular mechanisms of its action have not been established. To establish the molecular mechanisms of CDG against PD, we used TCM network pharmacology methods to predict its molecular targets and signaling pathways, followed by experimental validation. The Core Protein protein interaction (PPI) network of the 150 intersections between CDG and PD-related genes, comprising 23 proteins, including CASP3 (caspase-3), MAPK8 (JNK), FOS (c-Fos), and JUN (c-Jun). KEGG and GO analyses revealed that apoptotic regulation and MAPK signaling pathways were significantly enriched. Since c-Jun and c-Fos are AP-1 subunits, an important downstream JNK effector, we investigated if the JNK/AP-1 pathway influences CDG against apoptosis through the nigrostriatal pathways in PD rat models. Molecular docking analysis found that the top three bioactive compounds exhibiting the highest Degree Centrality following online database and LC-MS analysis had high affinities for JNK. Experimental validation analysis showed that CDG decreased the number of rotating laps and suppressed the levels of phosphorylated c-Jun, c-Fos, and JNK, as well as the number of TUNEL positive cells and the cleaved caspase-3 level in the nigrostriatal pathway. Furthermore, CDG treatment elevated the number of TH neurons, TH expression level, and Bcl-2/Bax protein ratio in a 6-OHDA-induced PD rat. These findings are in tandem with those obtained using SP600125, a specific JNK inhibitor. In conclusion, CDG suppresses the apoptosis of the nigrostriatal pathway and relieves PD symptoms by suppressing the JNK/AP-1 signaling pathway.

8.
Front Immunol ; 12: 740620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867962

RESUMEN

While the immunomodulatory pathways initiated in immune cells contribute to therapeutic response, their activation in cancer cells play a role in cancer progression. Also, many of the aberrantly expressed immunomodulators on cancer cells are considered as therapeutic targets. Here, we introduce host defense peptide (HDP), a known immuomodulator, as a therapeutic agent to target them. The cationic host defense peptides (HDPs), an integral part of the innate immune system, possess membranolytic activity, which imparts antimicrobial and antitumor efficacy to it. They act as immunomodulators by activating the immune cells. Though their antimicrobial function has been recently reassigned to immunoregulation, their antitumor activity is still attributed to its membranolytic activity. This membrane pore formation ability, which is proportional to the concentration of the peptide, also leads to side effects like hemolysis, limiting their therapeutic application. So, despite the identification of a variety of anticancer HDPs, their clinical utility is limited. Though HDPs are shown to exert the immunomodulatory activity through specific membrane targets on immune cells, their targets on cancer cells are unknown. We show that SSTP1, a novel HDP identified by shotgun cloning, binds to the active IL6/IL6Rα/gp130 complex on cancer cells, rearranging the active site residues. In contrast to the IL6 blockers inhibiting JAK/STAT activity, SSTP1 shifts the proliferative IL6/JAK/STAT signaling to the apoptotic IL6/JNK/AP1 pathway. In IL6Rα-overexpressing cancer cells, SSTP1 induces apoptosis at low concentration through JNK pathway, without causing significant membrane disruption. We highlight the importance of immunomodulatory pathways in cancer apoptosis, apart from its established role in immune cell regulation and cancer cell proliferation. Our study suggests that identification of the membrane targets for the promising anticancer HDPs might lead to the identification of new drugs for targeted therapy.


Asunto(s)
Proteínas Anfibias/inmunología , Péptidos Catiónicos Antimicrobianos/inmunología , Anuros , Apoptosis/inmunología , Interleucina-6/inmunología , Neoplasias/inmunología , Animales , Línea Celular Tumoral , Humanos
9.
J Physiol Biochem ; 76(3): 383-391, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32488540

RESUMEN

Homocysteine (Hcy) is considered an independent risk factor for various cardiovascular diseases including atherosclerosis which is associated with lipid metabolism, inflammation, and oxidative stress. Results from our previous study suggested that Hcy-induced atherosclerosis could be reversed by Herpud1 knockout which inhibits vascular smooth muscle cell (VSMC) phenotype switching. Here, we aim to investigate more precise mechanisms behind the improvement in Hcy-induced atherosclerosis. Amyloid-ß40 (Aß40), a vital protein in Alzheimer disease (AD), has been regarded as an important component in the atherosclerosis program in recent years due to the biological similarity between AD and atherosclerosis. Thus, we determined to assess the value of Aß40 in a Herpud1 knockout Hcy-induced atherosclerosis mouse model by measuring Aß40 expression in tissue and biomarkers of lipid metabolism, inflammation, and oxidative stress in serum. Additionally, since endothelial dysfunction plays a prominent role in atherosclerosis, we tested human umbilical vein endothelial cell (HUVEC) function following Herpud1 silencing in vitro and evaluated JNK/AP1 signaling activation in our models because of its close relationship with Aß40. As a result, our animal models showed that Herpud1 knockout reduced Aß40 expression, inflammation, and oxidative stress levels other than lipid metabolism and alleviated atherosclerosis via JNK/AP1 signaling inhibition. Similarly, our cell experiments implied that Hcy-induced Aß40 elevation and HUVEC dysfunction involving cell proliferation and apoptosis could be restored by Herpud1 silence through restraining JNK/AP1 pathway. Collectively, our study demonstrates that Herpud1 deficiency could reduce Aß40 expression, thereby suppressing Hcy-induced atherosclerosis by blocking the JNK/AP1 pathway. This may provide novel potential targets for atherosclerosis prevention or treatment.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Aterosclerosis/metabolismo , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Aterosclerosis/inducido químicamente , Células Cultivadas , Homocisteína , Células Endoteliales de la Vena Umbilical Humana , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL
10.
Am J Transl Res ; 8(5): 2284-92, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27347335

RESUMEN

OBJECTIVES: Forkhead/winged helix transcription factor p3 (Foxp3) increases in CD4(+)CD25(+)Treg cells during sepsis; however, related mechanisms are unclear. Our study aimed to explore the possible molecular mechanisms of high expression of Foxp3 in Treg cells during sepsis. METHODS: Sepsis was induced by cecal ligation and puncture (CLP) method. CD4(+)CD25(+)Treg cells were isolated from peripheral blood and identified by flow cytometry (FCM). Treg cells were cultured with or without adenosine, adenosine agonist, adenosine antagonist, SMAD family member 3 (Smad3) agonist (transforming growth factor (TGF)-ß1), or C-Jun N-Terminal Kinase (JNK) inhibitor. Expression levels of Foxp3 and activator protein 1 (AP-1) were determined. The binding of c-Fos or c-Jun to the Foxp3 promoter was then evaluated by the chromatin immunoprecipitation (ChIP) assay and quantified by quantitative real-time PCR (qRT-PCR). The mRNA and protein levels of Foxp3 were determined after transfection with siRNA against c-Fos, Fra-2, c-Jun or JunD. RESULTS: Pharmacological inhibition of both adenosine and JNK reduced Foxp3 protein levels. JNK/AP-1 activation was involved in increased levels of Foxp3 protein in CD4(+)CD25(+)Treg cells. AP-1 regulated activity of Foxp3 promoter in Treg cells, and the induction of c-Fos or c-Jun activity leads to elevated transcription of Foxp3 gene. Knockdown of c-Fos, Fra-2, c-Jun, or JunD levels also reduced Foxp3 expression. CONCLUSION: We confirm that adenosine plays significant roles in the high expression of Foxp3. Adenosine promotes Foxp3 expression in Treg cells during sepsis via JNK/AP-1 pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA