Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(8): 1626-1642, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39013459

RESUMEN

Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.


Asunto(s)
Anomalías Múltiples , Deleción Cromosómica , Cromosomas Humanos Par 9 , Anomalías Craneofaciales , Metilación de ADN , Proteínas de Unión al ADN , Cara , Enfermedades Hematológicas , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Enfermedades Vestibulares , Humanos , Anomalías Múltiples/genética , Enfermedades Vestibulares/genética , Discapacidad Intelectual/genética , Cara/anomalías , Cara/patología , Proteínas de Unión al ADN/genética , Masculino , Femenino , Enfermedades Hematológicas/genética , Trastornos del Neurodesarrollo/genética , Anomalías Craneofaciales/genética , Cromosomas Humanos Par 9/genética , Niño , Metilación de ADN/genética , Preescolar , Proteínas de Neoplasias/genética , Adolescente , Hipertricosis/genética , Mutación , Insuficiencia de Crecimiento/genética , N-Metiltransferasa de Histona-Lisina/genética , Cardiopatías Congénitas
2.
Am J Hum Genet ; 109(10): 1867-1884, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36130591

RESUMEN

Au-Kline syndrome (AKS) is a neurodevelopmental disorder associated with multiple malformations and a characteristic facial gestalt. The first individuals ascertained carried de novo loss-of-function (LoF) variants in HNRNPK. Here, we report 32 individuals with AKS (26 previously unpublished), including 13 with de novo missense variants. We propose new clinical diagnostic criteria for AKS that differentiate it from the clinically overlapping Kabuki syndrome and describe a significant phenotypic expansion to include individuals with missense variants who present with subtle facial features and few or no malformations. Many gene-specific DNA methylation (DNAm) signatures have been identified for neurodevelopmental syndromes. Because HNRNPK has roles in chromatin and epigenetic regulation, we hypothesized that pathogenic variants in HNRNPK may be associated with a specific DNAm signature. Here, we report a unique DNAm signature for AKS due to LoF HNRNPK variants, distinct from controls and Kabuki syndrome. This DNAm signature is also identified in some individuals with de novo HNRNPK missense variants, confirming their pathogenicity and the phenotypic expansion of AKS to include more subtle phenotypes. Furthermore, we report that some individuals with missense variants have an "intermediate" DNAm signature that parallels their milder clinical presentation, suggesting the presence of an epi-genotype phenotype correlation. In summary, the AKS DNAm signature may help elucidate the underlying pathophysiology of AKS. This DNAm signature also effectively supported clinical syndrome delineation and is a valuable aid for variant interpretation in individuals where a clinical diagnosis of AKS is unclear, particularly for mild presentations.


Asunto(s)
Metilación de ADN , Discapacidad Intelectual , Anomalías Múltiples , Cromatina , Metilación de ADN/genética , Epigénesis Genética , Cara/anomalías , Enfermedades Hematológicas , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Humanos , Discapacidad Intelectual/genética , Fenotipo , Enfermedades Vestibulares
3.
Bioessays ; 45(10): e2300075, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37530178

RESUMEN

Over the past decade, research has revealed biomolecular condensates' relevance in diverse cellular functions. Through a phase separation process, they concentrate macromolecules in subcompartments shaping the cellular organization and physiology. In the nucleus, biomolecular condensates assemble relevant biomolecules that orchestrate gene expression. We here hypothesize that chromatin condensates can also modulate the nongenetic functions of the genome, including the nuclear mechanical properties. The importance of chromatin condensates is supported by the genetic evidence indicating that mutations in their members are causative of a group of rare Mendelian diseases named chromatinopathies (CPs). Despite a broad spectrum of clinical features and the perturbations of the epigenetic machinery characterizing the CPs, recent findings highlighted negligible changes in gene expression. These data argue in favor of possible noncanonical functions of chromatin condensates in regulating the genome's spatial organization and, consequently, the nuclear mechanics. In this review, we discuss how condensates may impact nuclear mechanical properties, thus affecting the cellular response to mechanical cues and, eventually, cell fate and identity. Chromatin condensates organize macromolecules in the nucleus orchestrating the transcription regulation and mutations in their members are responsible for rare diseases named chromatinopathies. We argue that chromatin condensates, in concert with the nuclear lamina, may also govern the nuclear mechanical properties affecting the cellular response to external cues.


Asunto(s)
Núcleo Celular , Cromatina , Cromatina/genética , Cromatina/metabolismo , Núcleo Celular/genética , Mutación
4.
Br J Haematol ; 204(5): 1899-1907, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432067

RESUMEN

Kabuki syndrome (KS) is now listed in the Human Inborn Errors of Immunity (IEI) Classification. It is a rare disease caused by KMT2D and KDM6A variants, dominated by intellectual disability and characteristic facial features. Recurrently, pathogenic variants are identified in those genes in patients examined for autoimmune cytopenia (AIC), but interpretation remains challenging. This study aims to describe the genetic diagnosis and the clinical management of patients with paediatric-onset AIC and KS. Among 11 patients with AIC and KS, all had chronic immune thrombocytopenic purpura, and seven had Evans syndrome. All had other associated immunopathological manifestations, mainly symptomatic hypogammaglobinaemia. They had a median of 8 (5-10) KS-associated manifestations. Pathogenic variants were detected in KMT2D gene without clustering, during the immunological work-up of AIC in three cases, and the clinical strategy to validate them is emphasized. Eight patients received second-line treatments, mainly rituximab and mycophenolate mofetil. With a median follow-up of 17 (2-31) years, 8/10 alive patients still needed treatment for AIC. First-line paediatricians should be able to recognize and confirm KS in children with ITP or multiple AIC, to provide early appropriate clinical management and specific long-term follow-up. The epigenetic immune dysregulation in KS opens exciting new perspectives.


Asunto(s)
Anomalías Múltiples , Proteínas de Unión al ADN , Cara , Enfermedades Hematológicas , Histona Demetilasas , Proteínas de Neoplasias , Enfermedades Vestibulares , Humanos , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/diagnóstico , Niño , Cara/anomalías , Femenino , Masculino , Preescolar , Anomalías Múltiples/genética , Adolescente , Histona Demetilasas/genética , Proteínas de Neoplasias/genética , Enfermedades Hematológicas/genética , Proteínas de Unión al ADN/genética , Púrpura Trombocitopénica Idiopática/genética , Púrpura Trombocitopénica Idiopática/terapia , Púrpura Trombocitopénica Idiopática/diagnóstico , Lactante , Trombocitopenia/genética , Trombocitopenia/diagnóstico , Trombocitopenia/etiología , Trombocitopenia/terapia , Anemia Hemolítica Autoinmune/genética , Anemia Hemolítica Autoinmune/diagnóstico , Anemia Hemolítica Autoinmune/terapia , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/diagnóstico , Rituximab/uso terapéutico , Mutación , Citopenia
5.
J Clin Immunol ; 44(5): 105, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676773

RESUMEN

Kabuki Syndrome (KS) is a multisystemic genetic disorder. A portion of patients has immunological manifestations characterized by increased susceptibility to infections and autoimmunity. Aiming to describe the clinical and laboratory immunological aspects of KS, we conducted a retrospective multicenter observational study on patients with KS treated in centers affiliated to the Italian Primary Immunodeficiency Network.Thirty-nine patients were enrolled, with a median age at evaluation of 10 years (range: 3 m-21y). All individuals had organ malformations of variable severity. Congenital heart defect (CHD) was present in 19/39 patients (49%) and required surgical correction in 9/39 (23%), with associated thymectomy in 7/39 (18%). Autoimmune cytopenia occurred in 6/39 patients (15%) and was significantly correlated with thymectomy (p < 0.002), but not CHD. Individuals with cytopenia treated with mycophenolate as long-term immunomodulatory treatment (n = 4) showed complete response. Increased susceptibility to infections was observed in 22/32 patients (69%). IgG, IgA, and IgM were low in 13/29 (45%), 13/30 (43%) and 4/29 (14%) patients, respectively. Immunoglobulin substitution was required in three patients. Lymphocyte subsets were normal in all patients except for reduced naïve T-cells in 3/15 patients (20%) and reduced memory switched B-cells in 3/17 patients (18%). Elevated CD3 + TCRαß + CD4-CD8-T-cells were present in 5/17 individuals (23%) and were correlated with hematological and overall autoimmunity (p < 0.05).In conclusion, immunological manifestations of KS in our cohort include susceptibility to infections, antibody deficiency, and autoimmunity. Autoimmune cytopenia is correlated with thymectomy and elevated CD3 + TCRαß + CD4-CD8-T-cells, and benefits from treatment with mycophenolate.


Asunto(s)
Anomalías Múltiples , Cara/anomalías , Enfermedades Hematológicas , Enfermedades Vestibulares , Humanos , Femenino , Estudios Retrospectivos , Masculino , Niño , Enfermedades Hematológicas/inmunología , Enfermedades Hematológicas/terapia , Adolescente , Italia , Enfermedades Vestibulares/inmunología , Preescolar , Adulto Joven , Anomalías Múltiples/inmunología , Lactante , Autoinmunidad , Adulto
6.
J Clin Immunol ; 45(1): 7, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264387

RESUMEN

OBJECTIVE: To analyze the lymphocyte subsets in individuals with Kabuki syndrome for better characterizing the immunological phenotype of this rare congenital disorder. METHODS: We characterized the immunological profile including B-, T- and natural killer-cell subsets in a series (N = 18) of individuals with Kabuki syndrome. RESULTS: All 18 individuals underwent genetic analysis: 15 had a variant in KMT2D and 3 a variant in KDM6A. Eleven of the 18 individuals (61%) had recurrent infections and 9 (50%) respiratory infections. Three (17%) had autoimmune diseases. On immunological analysis, 6 (33%) had CD4 T-cell lymphopenia, which was preferentially associated with the KMT2D truncating variant (5/9 individuals). Eight of 18 individuals (44%) had a humoral deficiency and eight (44%) had B lymphopenia. We found abnormal distributions of T-cell subsets, especially a frequent decrease in recent thymic emigrant CD4 + naive T-cell count in 13/16 individuals (81%). CONCLUSION: The immunological features of Kabuki syndrome showed variable immune disorders with CD4 + T-cell deficiency in one third of cases, which had not been previously reported. In particular, we found a reduction in recent thymic emigrant naïve CD4 + T-cell count in 13 of 16 individuals, representing a novel finding that had not previously been reported.


Asunto(s)
Anomalías Múltiples , Proteínas de Unión al ADN , Cara , Histona Demetilasas , Proteínas de Neoplasias , Enfermedades Vestibulares , Humanos , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/inmunología , Cara/anomalías , Femenino , Masculino , Anomalías Múltiples/genética , Anomalías Múltiples/inmunología , Niño , Proteínas de Unión al ADN/genética , Adolescente , Histona Demetilasas/genética , Preescolar , Adulto , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Adulto Joven , Lactante , Linfopenia/inmunología , Linfopenia/genética , Fenotipo , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/inmunología , Mutación , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Inmunofenotipificación
7.
Scand J Immunol ; : e13411, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380326

RESUMEN

The purpose of this study was to identify new and low-frequency gene variants using whole exome sequencing (WES) in patients with childhood-onset systemic lupus erythematosus (cSLE), that may be involved in the pathogenesis of SLE. We performed WES on selected 17 trios (in some cases including other informative family members) in which the proband presented with severe, atypical clinical features, resistance to conventional therapy, a family pattern of occurrence and/or syndromic characteristics. After performing WES and analysis of gene variants, 17 novel and/or low-frequency variants were identified in 7 patients. One variant was classified as pathogenic (KMT2D, NM_003482.3:c.8626delC, predicted to truncate the protein p.(Gln2876Serfs*34)) and two as likely pathogenic according to the American College of Medical Genetics and Genomics classification guidelines (ADAR, NM_001111.3:c.2815A>G, predicted to encode p.(Ile939Val); BLK, NM_001715.2:c.211G>A, predicted to encode p.(Ala71Thr)). The other variants remain of uncertain significance at this point of time. WES is an important diagnostic and research instrument, producing a growing list of likely genes and gene variants that may be of relevance in the pathogenesis of cSLE and potentially point to novel therapeutic targets.

8.
Am J Med Genet A ; 194(2): 268-278, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37815018

RESUMEN

Kabuki syndrome (KS) is characterized by growth impairment, psychomotor delay, congenital heart disease, and distinctive facial features. KMT2D and KDM6A have been identified as the causative genes of KS. Craniosynostosis (CS) has been reported in individuals with KS; however, its prevalence and clinical implications remain unclear. In this retrospective study, we investigated the occurrence of CS in individuals with genetically diagnosed KS and examined its clinical significance. Among 42 individuals with genetically diagnosed KS, 21 (50%) exhibited CS, with 10 individuals requiring cranioplasty. No significant differences were observed based on sex, causative gene, and molecular consequence among individuals with KS who exhibited CS. Both individuals who underwent evaluation with three-dimensional computed tomography (3DCT) and those who required surgery tended to exhibit cranial dysmorphology. Notably, in several individuals, CS was diagnosed before KS, suggesting that CS could be one of the clinical features by which clinicians can diagnose KS. This study highlights that CS is one of the noteworthy complications in KS, emphasizing the importance of monitoring cranial deformities in the health management of individuals with KS. The findings suggest that in individuals where CS is a concern, conducting 3DCT evaluations for CS and digital impressions are crucial.


Asunto(s)
Anomalías Múltiples , Craneosinostosis , Cara/anomalías , Enfermedades Hematológicas , Enfermedades Vestibulares , Humanos , Estudios Retrospectivos , Prevalencia , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/epidemiología , Anomalías Múltiples/genética , Enfermedades Hematológicas/complicaciones , Enfermedades Hematológicas/diagnóstico , Enfermedades Hematológicas/epidemiología , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/epidemiología , Enfermedades Vestibulares/genética , Craneosinostosis/complicaciones , Craneosinostosis/diagnóstico , Craneosinostosis/epidemiología , Histona Demetilasas/genética , Mutación
9.
Am J Med Genet A ; 194(7): e63567, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38389298

RESUMEN

Biallelic variants in the OTUD6B gene have been reported in the literature in association with an intellectual developmental disorder featuring dysmorphic facies, seizures, and distal limb abnormalities. Physical differences described for affected individuals suggest that the disorder may be clinically recognizable, but previous publications have reported an initial clinical suspicion for Kabuki syndrome (KS) in some affected individuals. Here, we report on three siblings with biallelic variants in OTUD6B co-segregating with neurodevelopmental delay, shared physical differences, and other clinical findings similar to those of previously reported individuals. However, clinical manifestations such as long palpebral fissures, prominent and cupped ears, developmental delay, growth deficiency, persistent fetal fingertip pads, vertebral anomaly, and seizures in the proband were initially suggestive of KS. In addition, previously unreported clinical manifestations such as delayed eruption of primary dentition, soft doughy skin with reduced sweating, and mirror movements present in our patients suggest an expansion of the phenotype, and we perform a literature review to update on current information related to OTUD6B and human gene-disease association.


Asunto(s)
Anomalías Múltiples , Cara , Enfermedades Hematológicas , Fenotipo , Hermanos , Enfermedades Vestibulares , Niño , Preescolar , Humanos , Masculino , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Alelos , Endopeptidasas/genética , Cara/anomalías , Cara/patología , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/patología , Enfermedades Hematológicas/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación/genética , Cuello/anomalías , Cuello/patología , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/patología , Enfermedades Vestibulares/diagnóstico
10.
Graefes Arch Clin Exp Ophthalmol ; 262(6): 1737-1744, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38206414

RESUMEN

BACKGROUND: Kabuki Syndrome is a rare and genetically heterogenous condition with both ophthalmic and systemic complications and typical facial features. We detail the macular phenotype in two unrelated patients with Kabuki syndrome due to de novo nonsense variants in KMT2D, one novel. A follow-up of 10 years is reported. Pathogenicity of both de novo nonsense variants is analyzed. METHODS: Four eyes of two young patients were studied by full clinical examination, kinetic perimetry, short wavelength autofluorescence, full field (ff) ERGs, and spectral-domain optical coherence tomography (SD-OCT). One patient had adaptive optic (AO) imaging. Whole exome sequencing was performed in both patients. RESULTS: Both patients had de novo nonsense variants in KMTD2. One patient had c.14843C>G; p. (Ser4948ter) novel variant and the second c.11119C>T; p. (Arg3707ter). Both had a stable Snellen visual acuity of 0.2-0.3. The retinal multimodal imaging demonstrated abnormalities at the fovea in both eyes: hyperreflectivity to blue light and a well-delimited gap-disruption of ellipsoid and interdigitation layer on OCT. The dark area on AO imaging is presumed to be absent for, or with structural change to photoreceptors. The ff ERGs and kinetic visual fields were normal. The foveal findings remained stable over several years. CONCLUSION: Kabuki syndrome-related maculopathy is a distinct loss of photoreceptors at the fovea as shown by multimodal imaging including, for the first time, AO imaging. This report adds to the literature of only one case with maculopathy with two additional macular dystrophies in patients with Kabuki syndrome. Although underestimated, these cases further raise awareness of the potential impact of retinal manifestations of Kabuki syndrome not only among ophthalmologists but also other healthcare professionals involved in the care of patients with this multisystem disorder.


Asunto(s)
Anomalías Múltiples , Electrorretinografía , Cara , Angiografía con Fluoresceína , Enfermedades Hematológicas , Imagen Multimodal , Proteínas de Neoplasias , Fenotipo , Tomografía de Coherencia Óptica , Enfermedades Vestibulares , Agudeza Visual , Humanos , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/fisiopatología , Cara/anomalías , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/diagnóstico , Enfermedades Hematológicas/fisiopatología , Tomografía de Coherencia Óptica/métodos , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Estudios de Seguimiento , Masculino , Femenino , Proteínas de Neoplasias/genética , Angiografía con Fluoresceína/métodos , Proteínas de Unión al ADN/genética , Degeneración Macular/genética , Degeneración Macular/diagnóstico , Degeneración Macular/fisiopatología , Cuello , Fondo de Ojo , ADN/genética , Secuenciación del Exoma , Análisis Mutacional de ADN , Mácula Lútea/patología , Factores de Tiempo , Adulto , Adolescente
11.
BMC Pediatr ; 24(1): 133, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373926

RESUMEN

BACKGROUND: Kabuki syndrome (KS) is a monogenic disorder leading to special facial features, mental retardation, and multiple system malformations. Lysine demethylase 6A, (KDM6A, MIM*300128) is the pathogenic gene of Kabuki syndrome type 2 (KS2, MIM#300867), which accounts for only 5%-8% of KS. Previous studies suggested that female patients with KS2 may have a milder phenotype. METHOD: We summarized the phenotype and genotype of KS2 patients who were diagnosed in Shanghai Children's Medical Center since July 2017 and conducted a 1:3 matched case-control study according to age and sex to investigate sex-specific differences between patients with and without KS2. RESULTS: There were 12 KS2 cases in this study, and 8 of them matched with 24 controls. The intelligence quotient (IQ) score of the case group was significantly lower than that of the control group (P < 0.001). In addition, both the incidence of intellectual disability (ID) (IQ < 70) and moderate-to-severe ID (IQ < 55) were significantly higher in the case group than those in the control group. No sex-specific difference was found in the incidence of ID or moderate-to-severe ID between the female cases and female controls, whereas there was a significant difference between male cases and male controls. Furthermore, the rate of moderate-to-severe ID and congenital heart disease (CHD) was significantly higher in the male group than that in the female group. CONCLUSIONS: Our results showed that a sex-specific difference was exhibited in the clinical phenotypes of KS2 patients. The incidence of CHD was higher in male patients, and mental retardation was significantly impaired. However, the female patients' phenotype was mild.


Asunto(s)
Anomalías Múltiples , Cara/anomalías , Cardiopatías Congénitas , Enfermedades Hematológicas , Discapacidad Intelectual , Enfermedades Vestibulares , Niño , Humanos , Masculino , Femenino , Discapacidad Intelectual/genética , Estudios de Casos y Controles , China , Fenotipo , Mutación
12.
Adv Exp Med Biol ; 1441: 341-364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884720

RESUMEN

Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Animales , Metilación de ADN/genética , Cardiopatías Congénitas/genética , Histonas/metabolismo , Histonas/genética , Procesamiento Proteico-Postraduccional , Ratones , Cardiopatías/genética , Cardiopatías/metabolismo , Mutación
13.
Adv Exp Med Biol ; 1441: 761-775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884747

RESUMEN

Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.


Asunto(s)
Aorta Torácica , Válvula Aórtica , Humanos , Aorta Torácica/anomalías , Aorta Torácica/patología , Válvula Aórtica/anomalías , Válvula Aórtica/patología , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Enfermedad de la Válvula Aórtica Bicúspide/genética , Estenosis de la Válvula Pulmonar/genética , Mutación , Receptor Notch1/genética , Enfermedad de la Válvula Aórtica/genética , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/patología , Calcinosis/genética , Calcinosis/patología , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/patología , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/patología
14.
Adv Exp Med Biol ; 1441: 467-480, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884726

RESUMEN

Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Defectos del Tabique Interatrial , Humanos , Defectos del Tabique Interatrial/genética , Predisposición Genética a la Enfermedad/genética , Mutación
15.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884729

RESUMEN

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Asunto(s)
Defectos del Tabique Interventricular , Humanos , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Defectos del Tabique Interventricular/genética , Mutación , Factores de Transcripción/genética
16.
Am J Med Genet C Semin Med Genet ; 193(2): 128-138, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37296540

RESUMEN

Kabuki syndrome is a recognizable Mendelian disorder characterized by the clinical constellation of childhood hypotonia, developmental delay or intellectual impairment, and characteristic dysmorphism resulting from monoallelic pathogenic variants in KMT2D or KDM6A. In the medical literature, most reported patients are children, and data is lacking on the natural history of the condition across the lifespan, with little known about adult-specific presentations and symptoms. Here, we report the results of a retrospective chart review of eight adult patients with Kabuki syndrome, seven of whom are molecularly confirmed. We use their trajectories to highlight the diagnostic challenges unique to an adult population, expand on neurodevelopmental/psychiatric phenotypes across the lifespan, and describe adult-onset medical complications, including a potential cancer risk and unusual and striking premature/accelerated aging phenotype.


Asunto(s)
Anomalías Múltiples , Enfermedades Hematológicas , Humanos , Estudios Retrospectivos , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Cara/patología , Enfermedades Hematológicas/diagnóstico , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/complicaciones , Fenotipo , Mutación
17.
Development ; 147(21)2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32541010

RESUMEN

Kabuki syndrome (KS) is a congenital craniofacial disorder resulting from mutations in the KMT2D histone methylase (KS1) or the UTX histone demethylase (KS2). With small cohorts of KS2 patients, it is not clear whether differences exist in clinical manifestations relative to KS1. We mutated KMT2D in neural crest cells (NCCs) to study cellular and molecular functions in craniofacial development with respect to UTX. Similar to UTX, KMT2D NCC knockout mice demonstrate hypoplasia with reductions in frontonasal bone lengths. We have traced the onset of KMT2D and UTX mutant NCC frontal dysfunction to a stage of altered osteochondral progenitor differentiation. KMT2D NCC loss-of-function does exhibit unique phenotypes distinct from UTX mutation, including fully penetrant cleft palate, mandible hypoplasia and deficits in cranial base ossification. KMT2D mutant NCCs lead to defective secondary palatal shelf elevation with reduced expression of extracellular matrix components. KMT2D mutant chondrocytes in the cranial base fail to properly differentiate, leading to defective endochondral ossification. We conclude that KMT2D is required for appropriate cranial NCC differentiation and KMT2D-specific phenotypes may underlie differences between Kabuki syndrome subtypes.


Asunto(s)
Anomalías Múltiples/enzimología , Anomalías Múltiples/patología , Diferenciación Celular , Cara/anomalías , Enfermedades Hematológicas/enzimología , Enfermedades Hematológicas/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Cresta Neural/enzimología , Cresta Neural/patología , Enfermedades Vestibulares/enzimología , Enfermedades Vestibulares/patología , Alelos , Animales , Linaje de la Célula , Movimiento Celular , Condrocitos/patología , Cara/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Mutación/genética , Osteogénesis , Hueso Paladar/embriología , Hueso Paladar/metabolismo , Hueso Paladar/patología , Fenotipo , Cráneo/patología
18.
Clin Genet ; 103(6): 688-692, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36705342

RESUMEN

Disease-specific DNA methylation patterns (DNAm signatures) have been established for an increasing number of genetic disorders and represent a valuable tool for classification of genetic variants of uncertain significance (VUS). Sample size and batch effects are critical issues for establishing DNAm signatures, but their impact on the sensitivity and specificity of an already established DNAm signature has not previously been tested. Here, we assessed whether publicly available DNAm data can be employed to generate a binary machine learning classifier for VUS classification, and used variants in KMT2D, the gene associated with Kabuki syndrome, together with an existing DNAm signature as proof-of-concept. Using publicly available methylation data for training, a classifier for KMT2D variants was generated, and individuals with molecularly confirmed Kabuki syndrome and unaffected individuals could be correctly classified. The present study documents the clinical utility of a robust DNAm signature even for few affected individuals, and most importantly, underlines the importance of data sharing for improved diagnosis of rare genetic disorders.


Asunto(s)
Anomalías Múltiples , Enfermedades Hematológicas , Enfermedades Vestibulares , Humanos , Metilación de ADN , Anomalías Múltiples/genética , Enfermedades Hematológicas/genética , Enfermedades Vestibulares/genética
19.
FASEB J ; 36(12): e22662, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36412518

RESUMEN

Recent studies have demonstrated that epigenetic modifications are deeply involved in neurogenesis; however, the precise mechanisms remain largely unknown. To determine the role of UTX (also known as KDM6A), a demethylase of histone H3K27, in neural development, we generated Utx-deficient mice in neural stem/progenitor cells (NSPCs). Since Utx is an X chromosome-specific gene, the genotypes are sex-dependent; female mice lose both Utx alleles (UtxΔ/Δ ), and male mice lose one Utx allele yet retain one Uty allele, the counterpart of Utx on the Y chromosome (UtxΔ/Uty ). We found that UtxΔ/Δ mice exhibited fetal ventriculomegaly and died soon after birth. Immunofluorescence staining and EdU labeling revealed a significant increase in NSPCs and a significant decrease in intermediate-progenitor and differentiated neural cells. Molecular analyses revealed the downregulation of pathways related to DNA replication and increased H3K27me3 levels around the transcription start sites in UtxΔ/Δ NSPCs. These results indicate that UTX globally regulates the expression of genes required for proper neural development in NSPCs, and UTX deficiency leads to impaired cell cycle exit, reduced differentiation, and neonatal death. Interestingly, although UtxΔ/Uty mice survived the postnatal period, most died of hydrocephalus, a clinical feature of Kabuki syndrome, a congenital anomaly involving UTX mutations. Our findings provide novel insights into the role of histone modifiers in neural development and suggest that UtxΔ/Uty mice are a potential disease model for Kabuki syndrome.


Asunto(s)
Histonas , Hidrocefalia , Animales , Femenino , Masculino , Ratones , Desarrollo Fetal , Histona Demetilasas/genética , Hidrocefalia/genética , Neurogénesis , Células Madre , Células-Madre Neurales
20.
Am J Med Genet A ; 191(5): 1325-1338, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36891680

RESUMEN

We aim to assess if genotype-phenotype correlations are present within ocular manifestations of Kabuki syndrome (KS) among a large multicenter cohort. We conducted a retrospective, medical record review including clinical history and comprehensive ophthalmological examinations of a total of 47 individuals with molecularly confirmed KS and ocular manifestations at Boston Children's Hospital and Cincinnati Children's Hospital Medical Center. We assessed information regarding ocular structural, functional, and adnexal elements as well as pertinent associated phenotypic features associated with KS. For both type 1 KS (KS1) and type 2 KS (KS2), we observed more severe eye pathology in nonsense variants towards the C-terminus of each gene, KMT2D and KDM6A, respectively. Furthermore, frameshift variants appeared to be not associated with structural ocular elements. Between both types of KS, ocular structural elements were more frequently identified in KS1 compared with KS2, which only involved the optic disc in our cohort. These results reinforce the need for a comprehensive ophthalmologic exam upon diagnosis of KS and regular follow-up exams. The specific genotype may allow risk stratification of the severity of the ophthalmologic manifestation. However, additional studies involving larger cohorts are needed to replicate our observations and conduct powered analyses to more formally risk-stratify based on genotype, highlighting the importance of multicenter collaborations in rare disease research.


Asunto(s)
Anomalías Múltiples , Enfermedades Vestibulares , Humanos , Estudios Retrospectivos , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/complicaciones , Fenotipo , Genotipo , Histona Demetilasas/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA