RESUMEN
Metal oxo clusters and metal oxides assemble and precipitate from water in processes that depend on pH, temperature, and concentration. Other parameters that influence the structure, composition, and nuclearity of "molecular" and bulk metal oxides are poorly understood, and have thus not been exploited. Herein, we show that Bi3+ drives the formation of aqueous Fe3+ clusters, usurping the role of pH. We isolated and structurally characterized a Bi/Fe cluster, Fe3 BiO2 (CCl3 COO)8 (THF)(H2 O)2 , and demonstrated its conversion into an iron Keggin ion capped by six Bi3+ irons (Bi6 Fe13 ). The reaction pathway was documented by X-ray scattering and mass spectrometry. Opposing the expected trend, increased cluster nuclearity required a pH decrease instead of a pH increase. We attribute this anomalous behavior of Bi/Fe(aq) solutions to Bi3+ , which drives hydrolysis and condensation. Likewise, Bi3+ stabilizes metal oxo clusters and metal oxides in strongly acidic conditions, which is important in applications such as water oxidation for energy storage.
RESUMEN
The solution chemistry of aluminum has long interested scientists due to its relevance to materials chemistry and geochemistry. The dynamic behavior of large aluminum-oxo-hydroxo clusters, specifically [Al13 O4 (OH)24 (H2 O)12 ]7+ (Al13 ), is the focus of this paper. 27 Alâ NMR, 1 Hâ NMR, and 1 Hâ DOSY techniques were used to follow the isomerization of the ϵ-Al13 in the presence of glycine and Ca2+ at 90 °C. Although the conversion of ϵ-Al13 to new clusters and/or Baker-Figgis-Keggin isomers has been studied previously, new 1 Hâ NMR and 1 Hâ DOSY analyses provided information about the role of glycine, the ligated intermediates, and the mechanism of isomerization. New 1 Hâ NMR data suggest that glycine plays a critical role in the isomerization. Surprisingly, glycine does not bind to Al30 clusters, which were previously proposed as an intermediate in the isomerization. Additionally, a highly symmetric tetrahedral signal (δ=72â ppm) appeared during the isomerization process, which evidence suggests corresponds to the long-sought α-Al13 isomer in solution.
RESUMEN
The ε-Keggin [AlO4Al12(OH)24(H2O)12](7+) ion (AlAl12(7+)) is a metastable precursor in the formation of aluminum oxyhydroxide solids. It also serves as a useful model for the chemistry of aluminous mineral surfaces. Herein we calculate the enthalpies of formation for this aqueous ion and its heterometal-substituted forms, GaAl12(7+) and GeAl12(8+), using solution calorimetry. Rather than measuring the enthalpies of the MAl12(7/8+) ions directly from solution hydrolysis, we measured the metathesis reaction of the crystallized forms with barium chloride creating an aqueous aluminum solution monospecific in MAl12(7/8+). Then, the contributions to the heat of formation from the crystallized forms were subtracted using referenced states. When comparing the aqueous AlAl12(7+) ion to solid aluminum (oxy)-hydroxide phases, we found that this ion lies closer in energy to solid phases than to aqueous aluminum monomers, thus explaining its role as a precursor to amorphous aluminum hydroxide phases.
RESUMEN
Two-dimensional (2D) membranes exhibit exceptional properties in molecular separation and transport, which reveals their potential use in various applications. However, ion sieving with 2D membranes is severely restrained due to intercalation-induced swelling. Here, we describe how to efficiently stabilize the lamellar architecture using Keggin Al13 polycations as pillars in a Ti3C2Tx membrane. More importantly, interlayer spacing can be easily adjusted with angstrom precision over a wide range (2.7-11.2 Å) to achieve selective and tunable ion sieving. A membrane with narrow d-spacing demonstrated enhanced selectivity for monovalent ions. When applied in a forward osmosis desalination process, this membrane exhibited high NaCl exclusion (99%) with a fast water flux (0.30 L m-2 h-1 bar-1). A membrane with wide d-spacing showed notable selectivity, which was dependent on the cation valence. When it was applied to acid recovery from iron-based industrial wastewater, the membrane showed good H+/Fe2+ selectivity, which makes it a promising substitute for traditional polymeric membranes. Thus, we introduce a possible route to construct 2D membranes with appropriate structures to satisfy different ion-sieving requirements in diverse environment-, resource-, and energy-related applications.