Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(10): 3269-3282, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38778433

RESUMEN

Kluyveromyces marxianus, a thermotolerant, fast-growing, Crabtree-negative yeast, is a promising chassis for the manufacture of various bioproducts. Although several genome editing tools are available for this yeast, these tools still require refinement to enable more convenient and efficient genetic modification. In this study, we engineered the K. marxianus NBRC 104275 strain by impairing the nonhomologous end joining and enhancing the homologous recombination machinery, which resulted in improved homology-directed repair effective on homology arms of up to 40 bp in length. Additionally, we simplified the CRISPR-Cas9 editing system by constructing a strain for integrative expression of Cas9 nuclease and plasmids bearing different selection markers for gRNA expression, thereby facilitating iterative genome editing without the need for plasmid curing. We demonstrated that tRNA was more effective than the hammerhead ribozyme for processing gRNA primary transcripts, and readily assembled tRNA-gRNA arrays were used for multiplexed editing of at least four targets. This editing tool was further employed for simultaneous scarless in vivo assembly of a 12-kb cassette from three fragments and marker-free integration for expressing a fusion variant of fatty acid synthase, as well as the integration of genes for starch hydrolysis. Together, the genome editing tool developed in this study makes K. marxianus more amenable to genetic modification and will facilitate more extensive engineering of this nonconventional yeast for chemical production.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Kluyveromyces , Kluyveromyces/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos
2.
Adv Appl Microbiol ; 126: 27-62, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38637106

RESUMEN

Kluyveromyces marxianus is a non-Saccharomyces yeast that has gained importance due to its great potential to be used in the food and biotechnology industries. In general, K. marxianus is a known yeast for its ability to assimilate hexoses and pentoses; even this yeast can grow in disaccharides such as sucrose and lactose and polysaccharides such as agave fructans. Otherwise, K. marxianus is an excellent microorganism to produce metabolites of biotechnological interest, such as enzymes, ethanol, aroma compounds, organic acids, and single-cell proteins. However, several studies highlighted the metabolic trait variations among the K. marxianus strains, suggesting genetic diversity within the species that determines its metabolic functions; this diversity can be attributed to its high adaptation capacity against stressful environments. The outstanding metabolic characteristics of K. marxianus have motivated this yeast to be a study model to evaluate its easy adaptability to several environments. This chapter will discuss overview characteristics and applications of K. marxianus and recent insights into the stress response and adaptation mechanisms used by this non-Saccharomyces yeast.


Asunto(s)
Etanol , Kluyveromyces , Biotecnología , Etanol/metabolismo , Fermentación , Kluyveromyces/genética , Kluyveromyces/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592508

RESUMEN

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Asunto(s)
Kluyveromyces , Ácido Succínico , Kluyveromyces/genética , Perfilación de la Expresión Génica , Transcriptoma
4.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125891

RESUMEN

This research cloned and expressed the sugar transporter gene KM_SUT5 from Kluyveromyces marxianus GX-UN120, which displayed remarkable sugar transportation capabilities, including pentose sugars. To investigate the impact of point mutations on xylose transport capacity, we selected four sites, predicted the suitable amino acid sites by molecular docking, and altered their codons to construct the corresponding mutants, Q74D, Y195K, S460H, and Q464F, respectively. Furthermore, we conducted site-directed truncation on six sites of KM_SUT5p. The molecular modification resulted in significant changes in mutant growth and the D-xylose transport rate. Specifically, the S460H mutant exhibited a higher growth rate and demonstrated excellent performance across 20 g L-1 xylose, achieving the highest xylose accumulation under xylose conditions (49.94 µmol h-1 gDCW-1, DCW mean dry cell weight). Notably, mutant delA554-, in which the transporter protein SUT5 is truncated at position delA554-, significantly increased growth rates in both D-xylose and D-glucose substrates. These findings offer valuable insights into potential modifications of other sugar transporters and contribute to a deeper understanding of the C-terminal function of sugar transporters.


Asunto(s)
Proteínas Fúngicas , Kluyveromyces , Xilosa , Xilosa/metabolismo , Kluyveromyces/metabolismo , Kluyveromyces/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/química , Simulación del Acoplamiento Molecular , Mutación , Glucosa/metabolismo
5.
World J Microbiol Biotechnol ; 40(4): 121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441729

RESUMEN

Mezcal is a traditional Mexican distilled beverage, known for its marked organoleptic profile, which is influenced by several factors, such as the fermentation process, where a wide variety of microorganisms are present. Kluyveromyces marxianus is one of the main yeasts isolated from mezcal fermentations and has been associated with ester synthesis, contributing to the flavors and aromas of the beverage. In this study, we employed CRISPR interference (CRISPRi) technology, using dCas9 fused to the Mxi1 repressor factor domain, to down-regulate the expression of the IAH1 gene, encoding for an isoamyl acetate-hydrolyzing esterase, in K. marxianus strain DU3. The constructed CRISPRi plasmid successfully targeted the IAH1 gene, allowing for specific gene expression modulation. Through gene expression analysis, we assessed the impact of IAH1 down-regulation on the metabolic profile of volatile compounds. We also measured the expression of other genes involved in volatile compound biosynthesis, including ATF1, EAT1, ADH1, and ZWF1 by RT-qPCR. Results demonstrated successful down-regulation of IAH1 expression in K. marxianus strain DU3 using the CRISPRi system. The modulation of IAH1 gene expression resulted in alterations in the production of volatile compounds, specifically ethyl acetate, which are important contributors to the beverage's aroma. Changes in the expression levels of other genes involved in ester biosynthesis, suggesting that the knockdown of IAH1 may generate intracellular alterations in the balance of these metabolites, triggering a regulatory response. The application of CRISPRi technology in K. marxianus opens the possibility of targeted modulation of gene expression, metabolic engineering strategies, and synthetic biology in this yeast strain.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Kluyveromyces , Regulación de la Expresión Génica , Kluyveromyces/genética , Ésteres
6.
Rev Argent Microbiol ; 56(2): 134-139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38472028

RESUMEN

A bioassay containing Kluyveromyces marxianus in microtiter plates was used to determine the inhibitory action of 28 antibiotics (aminoglycosides, beta-lactams, macrolides, quinolones, tetracyclines and sulfonamides) against this yeast in whey. For this purpose, the dose-response curve for each antibiotic was constructed using 16 replicates of 12 different concentrations of the antibiotic. The plates were incubated at 40°C until the negative samples exhibited their indicator (5-7h). Subsequently, the absorbances of the yeast cells in each plate were measured by the turbidimetric method (λ=600nm) and the logistic regression model was applied. The concentrations causing 10% (IC10) and 50% (IC50) of growth inhibition of the yeast were calculated. The results allowed to conclude that whey contaminated with cephalosporins, quinolones and tetracyclines at levels close to the Maximum Residue Limits inhibits the growth of K. marxianus. Therefore, previous inactivation treatments should be implemented in order to re-use this contaminated whey by fermentation with K. marxianus.


Asunto(s)
Antibacterianos , Kluyveromyces , Suero Lácteo , Kluyveromyces/efectos de los fármacos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Relación Dosis-Respuesta a Droga
7.
Rev Argent Microbiol ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39306524

RESUMEN

The aim of this study was to determine the impact of Kluyveromyces marxianus VM004 culture conditions on the cell wall (CW) structure and its influence on aflatoxin B1 binding. The yeast was inoculated into two types of culture media: yeast extract-peptone-dextrose (YPD) broth and dried distiller's grains with solubles (DDG). The CW was extracted from the biomass produced in these media. AFB1 (150ng/ml) adsorption tests using the biomass (1×107cells/ml) and the CW (0.001g) were performed at pH 2 and pH 8. Transmission electron microscopy (TEM) evaluated the CW thickness, and infrared spectroscopy (IR) determined the CW composition. Biomass production in YPD was higher than that in DDG. Cell diameter (µm) and CW thickness (µm) increased in the DDG medium. The CW percentage obtained in DDG was higher than that in YPD. The absorbance of carbohydrates by IR was higher in YPD. pH influenced AFB1 adsorption, which was lower at pH 8. The proportion of ß-glucan and chitin present in CW was higher in the YPD medium. The IR method allowed to study the CW carbohydrate variation under the influence of these carbon sources. In conclusion, the culture media composition influenced the ß-glucan and chitin composition and consequently, AFB1 adsorption.

8.
Arch Microbiol ; 205(12): 379, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37950820

RESUMEN

The management of inflammatory states typically involves non-steroidal anti-inflammatory drugs (NSAIDs) and opiates. Understanding the mechanisms underlying the processing of nociceptive information from potential alternatives such as some polysaccharides may enable new and meaningful therapeutic approaches. In this study, α-D-mannan isolated from the Kluyveromyces marxianus cell wall produced antinociceptive effects in models of inflammatory pain (formalin and complete Freund's adjuvant tests). Furthermore, α-D-mannan reduced paw edema and interleukin-6 (IL-6) production after carrageenan-induced inflammation. The polysaccharide α-D-mannan was characterized by gas chromatography-mass spectrometry, methylation analysis, and spectroscopic techniques. Moreover, the Doehlert experimental design was applied to find the optimal conditions for biomass production, with the best conditions being 10.8 g/L and 117 h for the glucose concentration and the fermentation time, respectively. These results indicate that α-D-mannan from K. marxianus exerts anti-inflammatory and antinociceptive effects in mice, possibly via a mechanism dependent on the inhibition of IL-6 production.


Asunto(s)
Analgésicos , Interleucina-6 , Ratones , Animales , Analgésicos/farmacología , Analgésicos/química , Analgésicos/uso terapéutico , Mananos , Antiinflamatorios/farmacología , Polisacáridos
9.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36626788

RESUMEN

AIMS: Kluyveromyces marxianus' high production of 2-phenylethyl acetate (2-PEA) via L-phenylalanine (Phe) catabolism makes it relevant for industries relying on the production of aroma compounds through fermentation processes. This study assessed the physiological impact of exogenous supplementation of Phe on cell viability, fermentation performance, and, by extension, on lipid and amino acid metabolism in a wine isolate of this yeast. METHODS AND RESULTS: The data showed that Phe exerted cytotoxic effects on K. marxianus IWBT Y885, which were minimal on Saccharomyces cerevisiae and impacted amino acid metabolism and aroma production. We demonstrated that K. marxianus strains fermented sugars more effectively in the absence of Phe. While lipid supplementation did not mitigate any deleterious effects of Phe, it supported viability maintenance and fermentation performance in the absence of Phe. Phe supplementation succeeded in augmenting the production of 2-PE and 2-PEA. CONCLUSIONS: The enhanced production of 2-PEA in K. marxianus suggests that this transesterification may be, at least in part, a compensatory detoxification mechanism for this yeast.


Asunto(s)
Kluyveromyces , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Kluyveromyces/metabolismo , Azúcares/metabolismo , Fermentación , Aminoácidos/metabolismo
10.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37537147

RESUMEN

AIMS: The aims of this study were to evaluate the potential of Hanseniaspora opuntiae, Meyerozyma caribbica, and Kluyveromyces marxianus for in vitro biocontrol of Aspergillus ochraceus, A. westerdijkiae, and A. carbonarius growth, the ochratoxin A (OTA) effect on yeast growth, and yeast in vitro OTA detoxification ability using an experimental design to predict the combined effects of inoculum size, incubation time, and OTA concentration. METHODS AND RESULTS: Predictive models were developed using an incomplete Box-Behnken experimental design to predict the combined effects of inoculum size, incubation time, and OTA concentration on OTA detoxification by the yeasts. The yeasts were able to inhibit fungal growth from 13% to 86%. Kluyveromyces marxianus was the most efficient in inhibiting the three Aspergillus species. Furthermore, high OTA levels (100 ng ml-1) did not affect yeast growth over 72 h incubation. The models showed that the maximum OTA detoxification under optimum conditions was 86.8% (H. opuntiae), 79.3% (M. caribbica), and 73.7% (K. marxianus), with no significant difference (P > 0.05) between the values predicted and the results obtained experimentally. CONCLUSION: The yeasts showed potential for biocontrol of ochratoxigenic fungi and OTA detoxification, and the models developed are important tools for predicting the best conditions for the application of these yeasts as detoxification agents.

11.
Appl Microbiol Biotechnol ; 107(4): 1421-1438, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36651929

RESUMEN

Kluyveromyces marxianus is a non-conventional yeast with outstanding physiological characteristics and a high potential for lignocellulosic ethanol production. However, achieving high ethanol productivity requires overcoming several biotechnological challenges due to the cellular inhibition caused by the inhibitors present in the medium. In this work, K. marxianus SLP1 was adapted to increase its tolerance to a mix of inhibitory compounds using the adaptive laboratory evolution strategy to study the adaptation and stress response mechanisms used by this non-Saccharomyces yeast. The fermentative and physiological parameters demonstrated that the adapted K. marxianus P8 had a better response against the synergistic effects of multiple inhibitors because it reduced the lag phase from 12 to 4 h, increasing the biomass by 40% and improving the volumetric ethanol productivity 16-fold than the parental K. marxianus SLP1. To reveal the effect of adaptation process in P8, transcriptome analysis was carried out; the result showed that the basal gene expression in P8 changed, suggesting the biological capability of K. marxianus to activate the adaptative prediction mechanism. Similarly, we carried out physiologic and transcriptome analyses to reveal the mechanisms involved in the stress response triggered by furfural, the most potent inhibitor in K. marxianus. Stress response studies demonstrated that P8 had a better physiologic response than SLP1, since key genes related to furfural transformation (ALD4 and ALD6) and stress response (STL1) were upregulated. Our study demonstrates the rapid adaptability of K. marxianus to stressful environments, making this yeast a promising candidate to produce lignocellulosic ethanol. KEY POINTS: • K. marxianus was adapted to increase its tolerance to a mix of inhibitory compounds • The basal gene expression of K. marxianus changed after the adaptation process • Adapted K. marxianus showed a better physiological response to stress by inhibitors • Transcriptome analyses revealed key genes involved in the stress response.


Asunto(s)
Furaldehído , Kluyveromyces , Furaldehído/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Perfilación de la Expresión Génica , Fermentación , Etanol/metabolismo
12.
Appl Microbiol Biotechnol ; 107(16): 5095-5105, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37405435

RESUMEN

Saccharomyces cerevisiae is the workhorse of fermentation industry. Upon engineering for D-lactate production by a series of gene deletions, this yeast had deficiencies in cell growth and D-lactate production at high substrate concentrations. Complex nutrients or high cell density were thus required to support growth and D-lactate production with a potential to increase medium and process cost of industrial-scale D-lactate production. As an alternative microbial biocatalyst, a Crabtree-negative and thermotolerant yeast Kluyveromyces marxianus was engineered in this study to produce high titer and yield of D-lactate at a lower pH without growth defects. Only pyruvate decarboxylase 1 (PDC1) gene was replaced by a codon-optimized bacterial D-lactate dehydrogenase (ldhA). Ethanol, glycerol, or acetic acid was not produced by the resulting strain, KMΔpdc1::ldhA. Aeration rate at 1.5 vvm and culture pH 5.0 at 30 °C provided the highest D-lactate titer of 42.97 ± 0.48 g/L from glucose. Yield and productivity of D-lactate, and glucose-consumption rate were 0.85 ± 0.01 g/g, 0.90 ± 0.01 g/(L·h), and 1.06 ± 0.00 g/(L·h), respectively. Surprisingly, D-lactate titer, productivity, and glucose-consumption rate of 52.29 ± 0.68 g/L, 1.38 ± 0.05 g/(L·h), and 1.22 ± 0.00 g/(L·h), respectively, were higher at 42 °C compared to 30 °C. Sugarcane molasses, a low-value carbon, led to the highest D-lactate titer and yield of 66.26 ± 0.81 g/L and 0.91 ± 0.01 g/g, respectively, in a medium without additional nutrients. This study is a pioneer work of engineering K. marxianus to produce D-lactate at the yield approaching theoretical maximum using simple batch process. Our results support the potential of an engineered K. marxianus for D-lactate production on an industrial scale. KEY POINTS: • K. marxianus was engineered by deleting PDC1 and expressing codon-optimized D-ldhA. • The strain allowed high D-lactate titer and yield under pH ranging from 3.5 to 5.0. • The strain produced 66 g/L D-lactate at 30 °C from molasses without any additional nutrients.


Asunto(s)
Kluyveromyces , Ácido Láctico , Saccharomyces cerevisiae/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Glucosa , Piruvato Descarboxilasa/genética , Piruvato Descarboxilasa/metabolismo , Concentración de Iones de Hidrógeno , Fermentación
13.
Food Microbiol ; 116: 104369, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37689420

RESUMEN

In this study, two strains of lactic acid bacteria (Lacticaseibacillus paracasei GL1 and Lactobacillus helveticus SNA12) and one yeast strain of Kluyveromyces marxianus G-Y4 (G-Y4) isolated from Tibetan kefir grains were co-cultured. It was found that the addition of G-Y4 could not only promote the growth of lactic acid bacteria, but also increase the release of metabolites (lactic acid, ethanol, and amino nitrogen). Furthermore, the addition of live cells and cell-free fermentation supernatant (CFS) of G-Y4 could increase the ability of biofilm formation. Morever, the surface characteristics results showed that the addition of G-Y4 live cells could enhance the aggregation ability and hydrophobicity of LAB. Meanwhile, adding live cells and CFS of G-Y4 could promote the release of signaling molecule AI-2 and enhance the expression of the LuxS gene related to biofilm formation. In addition, Fourier-transform infrared spectroscopy and chemical composition analysis were used to investigate the composition of the biofilm, and the results indicated that the biofilm was mainly composed of a small amount of protein but it was rich in polysaccharides including glucose, galactose, and mannose with different ratios. Finally, the formation of biofilm could delay the decline of the number of viable bacteria in storage fermented milk.


Asunto(s)
Kluyveromyces , Lacticaseibacillus paracasei , Lactobacillus helveticus , Lacticaseibacillus , Lactobacillus helveticus/genética , Kluyveromyces/genética , Biopelículas
14.
J Basic Microbiol ; 63(1): 75-91, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36336635

RESUMEN

This study includes the utilization of sweet lemon peel (SLP) and sugarcane bagasse (SB) in solid-state fermentation using Kluyveromyces marxianus for bioflavor compounds production adopting response surface methodology. The major flavor compounds, 2-phenylethanol (2-PE) and 2-phenylethyl acetate (2-PEA) were quantified using gas chromatography-mass spectrometry with and without adding any supplements. Quantification of flavor compounds indicated that without adding any accessory in the substrate, the concentration of 2-PE using SLP and SB was 0.15 ± 0.003 mg/g and 0.14 ± 0.002 mg/g, respectively. Whereas 2-PEA concentration using SLP and SB was observed as 0.01 ± 0.008 mg/g and 0.02 ± 0.001 mg/g, respectively. The addition of l-phenylalanine (l-phe) in the substrates showed 30%-75% enhancement in the production of 2-PE and 2-PEA. The present study indicates that the K. marxianus is a potential microbial cell factory for the production of 2-PE and 2-PEA with the addition of synthetic l-phe having a plethora of applications in food and pharmaceutical industries.


Asunto(s)
Celulosa , Saccharum , Fermentación , Celulosa/metabolismo , Fenilalanina/metabolismo , Saccharum/metabolismo
15.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108722

RESUMEN

Whey permeate is categorised as hazardous wastewater for aquatic environments, mainly due to its high lactose content. Therefore, it must be valorised before being released into the environment. One pathway for whey permeate management is its use in biotechnological processes. Herein, we present roads for whey permeate valorisation with the K. marxianus WUT240 strain. The established technology is based on two bioprocesses. During first, 2.5 g/L 2-phenylethanol and fermented plant oils enriched with different flavourings are obtained after 48 h biphasic cultures at 30 °C. The second process leads to a maximum of 75 g ethanol/L (YP/S = 0.53 g/g) after 96 h at 30 °C. Moreover, established whey permeate valorisation pathways reduced its biochemical oxygen demand and chemical oxygen demand values by 12- to 3-fold, respectively. Together, the present study reports a complete, effective, and environmentally friendly whey permeate management strategy while simultaneously enabling the acquisition of valuable compounds with substantial application potential.


Asunto(s)
Queso , Kluyveromyces , Suero Lácteo/química , Técnicas de Cultivo Celular por Lotes , Proteína de Suero de Leche/metabolismo , Kluyveromyces/metabolismo , Lactosa/metabolismo , Fermentación
16.
Entropy (Basel) ; 25(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36981385

RESUMEN

This paper presents results concerning mechanistic modeling to describe the dynamics and interactions between biomass growth, glucose consumption and ethanol production in batch culture fermentation by Kluyveromyces marxianus (K. marxianus). The mathematical model was formulated based on the biological assumptions underlying each variable and is given by a set of three coupled nonlinear first-order Ordinary Differential Equations. The model has ten parameters, and their values were fitted from the experimental data of 17 K. marxianus strains by means of a computational algorithm design in Matlab. The latter allowed us to determine that seven of these parameters share the same value among all the strains, while three parameters concerning biomass maximum growth rate, and ethanol production due to biomass and glucose had specific values for each strain. These values are presented with their corresponding standard error and 95% confidence interval. The goodness of fit of our system was evaluated both qualitatively by in silico experimentation and quantitative by means of the coefficient of determination and the Akaike Information Criterion. Results regarding the fitting capabilities were compared with the classic model given by the logistic, Pirt, and Luedeking-Piret Equations. Further, nonlinear theories were applied to investigate local and global dynamics of the system, the Localization of Compact Invariant Sets Method was applied to determine the so-called localizing domain, i.e., lower and upper bounds for each variable; whilst Lyapunov's stability theories allowed to establish sufficient conditions to ensure asymptotic stability in the nonnegative octant, i.e., R+,03. Finally, the predictive ability of our mechanistic model was explored through several numerical simulations with expected results according to microbiology literature on batch fermentation.

17.
Indian J Microbiol ; 63(4): 483-493, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38031616

RESUMEN

During fermentation, yeast cells undergo various stresses that inhibit cell growth and ethanol production. Therefore, the ability to tolerate multiple stresses during fermentation is one of the important characteristics for yeast cells that can be used for commercial ethanol production. In the present study, we evaluated the multi-stress tolerance of parent and ethanol adapted Kluyveromyces marxianus MTCC1389 and their relative gene expression analysis. Multi-stress tolerance was confirmed by determining its cell viability, growth, and spot assay under oxidative, osmotic, thermal, and ethanol stress. During oxidative (0.8% H2O2) and osmotic stress (2 M NaCl), there was significant cell viability of 90% and 50%, respectively, by adapted strain. On the other hand, under 45 °C of thermal stress, the adapted strain was 80% viable while the parent strain was 60%. In gene expression analysis, the ethanol stress responsive gene ETP1 was significantly upregulated by 3.5 folds, the osmotic stress gene SLN1 was expressed by 3 folds, and the thermal stress responsive gene MSN2 was expressed by 7 folds. This study shows adaptive evolution for ethanol stress can develop other stress tolerances by changing relative gene expression of osmotic, oxidative, and thermal stress responsive genes.

18.
Yeast ; 39(4): 283-296, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791694

RESUMEN

Kluyveromyces marxianus is a promising host for the production of heterologous proteins, chemicals, and bioethanol. One superior feature of this species is its capacity to assimilate lactose, which is rendered by the LAC12-LAC4 gene pair encoding a lactose permease and a ß-galactosidase enzyme. Little is known about the regulation of LAC4 in K. marxianus. In this study, we showed the presence of weak glucose repression in the regulation of LAC4 and that might contribute to the leaky expression of LAC4 in the glucose medium. In a mutagenesis screen of 1000-bp LAC4 upstream region, one mutant region, named H1, drove low-leakage expression of a URA3 reporter gene in glucose medium. Two mutations inside a polyadenosine stretch (poly(A)) of 5' UTR were major contributors to the low-leakage phenotype of H1. H1 directed low-leakage expression of GFP on a plasmid and that of LAC4 in situ in the glucose medium, which was not due to the reduction of mRNA levels. Meanwhile, H1 did not affect the induction of GFP or LAC4 by lactose. Cre recombinase expressed by H1 caused lower toxicity in the repressive condition and achieved higher yield after induction, compared with that expressed by a wild-type LAC4 upstream region or a strong INU1 promoter. Our study suggested that poly(A) inside 5' UTR played a role in regulating the expression of LAC4 in the repressive condition. Meanwhile, H1 provided a base for the development of a strict inducible system for expressing industrial proteins, especially toxic proteins.


Asunto(s)
Glucosa , Lactosa , Regiones no Traducidas 5' , Kluyveromyces , Lactosa/metabolismo , beta-Galactosidasa/genética
19.
Appl Environ Microbiol ; 88(6): e0200621, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35080905

RESUMEN

The intrinsic mechanism of the thermotolerance of Kluyveromyces marxianus was investigated by comparison of its physiological and metabolic properties at high and low temperatures. After glucose consumption, the conversion of ethanol to acetic acid became gradually prominent only at a high temperature (45°C) and eventually caused a decline in viability, which was prevented by exogenous glutathione. Distinct levels of reactive oxygen species (ROS), glutathione, and NADPH suggest a greater accumulation of ROS and enhanced ROS-scavenging activity at a high temperature. Fusion and fission forms of mitochondria were dominantly observed at 30°C and 45°C, respectively. Consistent results were obtained by temperature upshift experiments, including transcriptomic and enzymatic analyses, suggesting a change of metabolic flow from glycolysis to the pentose phosphate pathway. The results of this study suggest that K. marxianus survives at a high temperature by scavenging ROS via metabolic change for a period until a critical concentration of acetate is reached. IMPORTANCE Kluyveromyces marxianus, a thermotolerant yeast, can grow well at temperatures over 45°C, unlike Kluyveromyces lactis, which belongs to the same genus, or Saccharomyces cerevisiae, which is a closely related yeast. K. marxianus may thus bear an intrinsic mechanism to survive at high temperatures. This study revealed the thermotolerant mechanism of the yeast, including ROS scavenging with NADPH, which is generated by changes in metabolic flow.


Asunto(s)
Kluyveromyces , Termotolerancia , Fermentación , Kluyveromyces/genética , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/fisiología , Temperatura
20.
Int Microbiol ; 25(3): 515-529, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35156144

RESUMEN

Kluyveromyces marxianus is expected to be used in the production of yeast extracts due to its good fermentation ability and nutritional properties. Yeast autolysis is a key process to produce yeast extract and vacuum negative pressure stress can be used as an effective way to assist autolysis. However, the molecular mechanism of initiating Kluyveromyces marxianus autolysis induced by vacuum negative pressure and the higher temperature is still unclear. In this study, RNA-seq technology was performed mainly to analyze autolytic processes in Kluyveromyces marxianus strains. Considerable differentially expressed genes (DEGs) of downregulation were significantly enriched in 7 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to synthesis and transport of RNA and ribosome, which indicated that abnormal protein translations had already occurred in autolytic process. Interestingly, due to obvious change of related DEGs, endoplasmic reticulum-associated degradation (ERAD) and autophagy were activated and cell wall integrity pathway was hindered. Under the continuous influence of the external stress environment, the long-term changes of the above pathways triggered a vicious circle of gradual damage to yeast cells, which is the main cause of yeast autolysis. These results may provide important clues for the in-depth interpretation of the yeast autolytic mechanism.


Asunto(s)
Kluyveromyces , Transcriptoma , Degradación Asociada con el Retículo Endoplásmico , Fermentación , Kluyveromyces/genética , Kluyveromyces/metabolismo , Temperatura , Vacio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA