Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Br J Nutr ; 121(7): 748-755, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30806344

RESUMEN

Treatment of liver fibrosis is very limited as there is currently no effective anti-fibrotic therapy. Spirulina platensis (SP) is a blue-green alga that is widely supplemented in healthy foods. The objective of this study was to determine whether SP supplementation can prevent obesity-induced liver fibrosis in vivo. Male C57BL/6J mice were randomly assigned to a low-fat or a high-fat (HF)/high-sucrose/high-cholesterol diet or an HF diet supplemented with 2·5 % SP (w/w) (HF/SP) for 16 or 20 weeks. There were no significant differences in body weight, activity, energy expenditure, serum lipids or glucose tolerance between mice on HF and HF/SP diets. However, plasma alanine aminotransferase level was significantly reduced by SP at 16 weeks. Expression of fibrotic markers and trichrome stains showed no differences between HF and HF/SP. Splenocytes isolated from HF/SP fed mice had lower inflammatory gene expression and cytokine secretion compared with splenocytes from HF-fed mice. SP supplementation did not attenuate HF-induced liver fibrosis. However, the expression and secretion of inflammatory genes in splenocytes were significantly reduced by SP supplementation, demonstrating the anti-inflammatory effects of SP in vivo. Although SP did not show appreciable effect on the prevention of liver fibrosis in this mouse model, it may be beneficial for other inflammatory conditions.


Asunto(s)
Antiinflamatorios/farmacología , Suplementos Dietéticos , Cirrosis Hepática/prevención & control , Spirulina , Bazo/citología , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Cirrosis Hepática/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones
2.
Br J Nutr ; 119(11): 1220-1232, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29770757

RESUMEN

Diets high in fat can result in obesity and non-alcoholic fatty liver disease (NAFLD). The improvement of obesity and NAFLD is an important issue. ß-Conglycinin, one of the soya proteins, is known to prevent hyperlipidaemia, obesity and NAFLD. Therefore, we aimed to investigate the effects of ß-conglycinin on the improvement of obesity and NAFLD in high-fat (HF) diet-induced obese (DIO) mice and clarify the mechanism underlying these effects in liver and white adipose tissue (WAT). DIO male ddY mice were divided into six groups: HF, medium-fat (MF) and low-fat (LF) groups fed casein, and HF, MF and LF groups in all of which the casein was replaced by ß-conglycinin. A period of 5 weeks later, the ß-conglycinin-supplemented group resulted in lower body weight, relative weight of subcutaneous WAT, and hepatic TAG content (P=0·001). Furthermore, ß-conglycinin suppressed the hepatic expression of Pparγ2 in the HF dietary group, sterol regulatory element-binding protein-1c and the target genes. The expressions of inflammation-related genes were significantly low in the epididymal and subcutaneous WAT from the mice fed ß-conglycinin compared with those fed casein in the HF dietary group. Moreover, the expressions of Pparγ1 and Pparγ2 mRNA were suppressed in subcutaneous WAT in the HF dietary group but not in epididymal WAT. The concentrations of insulin and leptin were low in the serum of the mice fed ß-conglycinin. In conclusion, ß-conglycinin effectively improved obesity and NAFLD in DIO mice, and it appears to be a promising dietary protein for the amelioration of NAFLD and obesity.


Asunto(s)
Antígenos de Plantas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Hígado Graso/prevención & control , Globulinas/farmacología , Obesidad/prevención & control , PPAR gamma/metabolismo , Proteínas de Almacenamiento de Semillas/farmacología , Proteínas de Soja/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Alimentación Animal/análisis , Animales , Antígenos de Plantas/administración & dosificación , Dióxido de Carbono , Dieta , Epidídimo , Regulación de la Expresión Génica/efectos de los fármacos , Globulinas/administración & dosificación , Masculino , Ratones , Obesidad/etiología , Consumo de Oxígeno , PPAR gamma/genética , Proteínas de Almacenamiento de Semillas/administración & dosificación , Proteínas de Soja/administración & dosificación
3.
Br J Nutr ; 115(3): 466-79, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26768850

RESUMEN

The effects of low-carbohydrate (LC) diets on body weight and cardiovascular risk are unclear, and previous studies have found varying results. Our aim was to conduct a meta-analysis of randomised controlled trials (RCT), assessing the effects of LC diets v. low-fat (LF) diets on weight loss and risk factors of CVD. Studies were identified by searching MEDLINE, Embase and Cochrane Trials. Studies had to fulfil the following criteria: a RCT; the LC diet was defined in accordance with the Atkins diet, or carbohydrate intake of <20% of total energy intake; twenty subjects or more per group; the subjects were previously healthy; and the dietary intervention had a duration of 6 months or longer. Results from individual studies were pooled as weighted mean difference (WMD) using a random effect model. In all, eleven RCT with 1369 participants met all the set eligibility criteria. Compared with participants on LF diets, participants on LC diets experienced a greater reduction in body weight (WMD -2·17 kg; 95% CI -3·36, -0·99) and TAG (WMD -0·26 mmol/l; 95% CI -0·37, -0·15), but a greater increase in HDL-cholesterol (WMD 0·14 mmol/l; 95% CI 0·09, 0·19) and LDL-cholesterol (WMD 0·16 mmol/l; 95% CI 0·003, 0·33). This meta-analysis demonstrates opposite change in two important cardiovascular risk factors on LC diets--greater weight loss and increased LDL-cholesterol. Our findings suggest that the beneficial changes of LC diets must be weighed against the possible detrimental effects of increased LDL-cholesterol.


Asunto(s)
Peso Corporal , Enfermedades Cardiovasculares/prevención & control , Dieta Baja en Carbohidratos , Dieta con Restricción de Grasas , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Bases de Datos Factuales , Ingestión de Energía , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Factores de Riesgo , Triglicéridos/sangre
4.
Toxicol Rep ; 8: 846-862, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33948438

RESUMEN

Exposure to air pollution from traffic-generated sources is known to contribute to the etiology of inflammatory diseases, including cardiovascular disease (CVD) and obesity; however, the signaling pathways involved are still under investigation. Dysregulation of the renin-angiotensin system (RAS) can contribute to CVD and alter lipid storage and inflammation in adipose tissue. Our previous exposure studies revealed that traffic-generated emissions increase RAS signaling, further exacerbated by a high-fat diet. Thus, we investigated the hypothesis that exposure to engine emissions increases systemic and local adipocyte RAS signaling, promoting the expression of factors involved in CVD and obesity. Male C57BL/6 mice (6-8 wk old) were fed either a high-fat (HF, n = 16) or low-fat (LF, n = 16) diet, beginning 30d prior to exposures, and then exposed via inhalation to either filtered air (FA, controls) or a mixture of diesel engine + gasoline engine vehicle emissions (MVE: 100 µg PM/m3) via whole-body inhalation for 6 h/d, 7 d/wk, 30d. Endpoints were assessed via immunofluorescence and RT-qPCR. MVE-exposure promoted vascular adhesion factors (VCAM-1, ICAM-1) expression, monocyte/macrophage sequestration, and oxidative stress in the vasculature, associated with increased angiotensin II receptor type 1 (AT1) expression. In the kidney, MVE-exposure promoted the expression of renin, AT1, and AT2 receptors. In adipose tissue, both HF-diet and MVE-exposure mediated increased epididymal fat pad weight and adipocyte hypertrophy, associated with increased angiotensinogen and AT1 receptor expression; however, these outcomes were further exacerbated in the MVE + HF group. MVE-exposure also induced inflammation, monocyte chemoattractant protein (MCP)-1, and leptin, while reducing insulin receptor and glucose transporter, GLUT4, expression in adipose tissue. Our results indicate that MVE-exposure promotes systemic and local adipose RAS signaling, associated with increased expression of factors contributing to CVD and obesity, further exacerbated by HF diet consumption.

5.
J Nutr Sci ; 6: e51, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29152255

RESUMEN

Butyric acid has been shown to have suppressive effects on inflammation and diseases related to the intestinal tract. The aim of the present study was to investigate whether supplementation of two glycerol esters, monobutyrin (MB) and tributyrin (TB), would reach the hindgut of rats, thus having an effect on the caecal profile of SCFA, microbiota composition and some risk markers associated with chronic inflammation. For this purpose, rats were fed high-fat diets after adding MB (1 and 5 g/kg) and TB (5 g/kg) to a diet without any supplementation (high-fat control; HFC). A low-fat (LF) diet was also included. In the liver, total cholesterol concentrations, LDL-cholesterol concentrations, LDL:HDL ratio, and succinic acid concentrations were reduced in rats given the MB and TB (5 g/kg) diets, compared with the group fed the HFC diet. These effects were more pronounced in MB than TB groups as also expressed by down-regulation of the gene Cyp8b1. The composition of the caecal microbiota in rats fed MB and TB was separated from the group fed the HFC diet, and also the LF diet, as evidenced by the absence of the phylum TM7 and reduced abundance of the genera Dorea (similar to LF-fed rats) and rc4-4. Notably, the caecal abundance of Mucispirillum was markedly increased in the MB group compared with the HFC group. The results suggest that dietary supplementation of MB and TB can be used to counteract disturbances associated with a HFC diet, by altering the gut microbiota, and decreasing liver lipids and succinic acid concentrations.

6.
JACC Basic Transl Sci ; 2(5): 591-600, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30062172

RESUMEN

Deficiency of apolipoprotein E (APOE) causes familial dysbetalipoproteinemia in humans resulting in a higher risk of atherosclerotic disease. In mice, APOE deficiency results in a severe atherosclerosis phenotype, but it is unknown to what extent this is unique to mice. In this study, APOE was targeted in Yucatan minipigs. APOE-/- minipigs displayed increased plasma cholesterol and accumulation of apolipoprotein B-48-containing chylomicron remnants on low-fat diet, which was significantly accentuated upon feeding a high-fat, high-cholesterol diet. APOE-/- minipigs displayed accelerated progressive atherosclerosis but not xanthoma formation. This indicates that remnant lipoproteinemia does not induce early lesions but is atherogenic in pre-existing atherosclerosis.

7.
Heliyon ; 1(1): e00025, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27441217

RESUMEN

OBJECTIVE: Food intake is highly regulated by central homeostatic and hedonic mechanisms in response to peripheral and environmental cues. Neutral energy balance stems from proper integration of homeostatic signals with those "sensing" the rewarding properties of food. Impairments in brain insulin signaling causes dysregulation of feeding behaviors and, as a consequence, hyperphagia. Here, we sought to determine how the mammalian target of rapamycin complex 2 (mTORC2), a complex involved in insulin signaling, influences high fat feeding. METHODS: Rictor is a subunit of mTORC2, and its genetic deletion impairs mTORC2 activity. We used Cre-LoxP technology to delete Rictorin tyrosine hydroxylase (TH) expressing neurons (TH Rictor KO). We assessed food intake, body weight, body composition and DA dependent behaviors. RESULTS: TH Rictor KO mice display a high-fat diet specific hyperphagia, yet, when on low-fat diet, their food intake is indistinguishable from controls. Consistently, TH Rictor KO become obese only while consuming high-fat diet. This is paralleled by reduced brain DA content, and disruption of DA dependent behaviors including increased novelty-induced hyperactivity and exaggerated response to the psycho stimulant amphetamine (AMPH). CONCLUSIONS: Our data support a model in which mTORC2 signaling within catecholaminergic neurons constrains consumption of a high-fat diet, while disruption causes high-fat diet-specific exaggerated hyperphagia. In parallel, impaired mTORC2 signaling leads to aberrant striatal DA neurotransmission, which has been associated with obesity in human and animal models, as well as with escalating substance abuse. These data suggest that defects localized to the catecholaminergic pathways are capable of overriding homeostatic circuits, leading to obesity, metabolic impairment, and aberrant DA-dependent behaviors.

8.
Mol Metab ; 4(1): 39-50, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25685688

RESUMEN

OBJECTIVE: Excess lipid intake has been implicated in the pathophysiology of hepatosteatosis and hepatic insulin resistance. Lipids constitute approximately 50% of the cell membrane mass, define membrane properties, and create microenvironments for membrane-proteins. In this study we aimed to resolve temporal alterations in membrane metabolite and protein signatures during high-fat diet (HF)-mediated development of hepatic insulin resistance. METHODS: We induced hepatosteatosis by feeding C3HeB/FeJ male mice an HF enriched with long-chain polyunsaturated C18:2n6 fatty acids for 7, 14, or 21 days. Longitudinal changes in hepatic insulin sensitivity were assessed via the euglycemic-hyperinsulinemic clamp, in membrane lipids via t-metabolomics- and membrane proteins via quantitative proteomics-analyses, and in hepatocyte morphology via electron microscopy. Data were compared to those of age- and litter-matched controls maintained on a low-fat diet. RESULTS: Excess long-chain polyunsaturated C18:2n6 intake for 7 days did not compromise hepatic insulin sensitivity, however, induced hepatosteatosis and modified major membrane lipid constituent signatures in liver, e.g. increased total unsaturated, long-chain fatty acid-containing acyl-carnitine or membrane-associated diacylglycerol moieties and decreased total short-chain acyl-carnitines, glycerophosphocholines, lysophosphatidylcholines, or sphingolipids. Hepatic insulin sensitivity tended to decrease within 14 days HF-exposure. Overt hepatic insulin resistance developed until day 21 of HF-intervention and was accompanied by morphological mitochondrial abnormalities and indications for oxidative stress in liver. HF-feeding progressively decreased the abundance of protein-components of all mitochondrial respiratory chain complexes, inner and outer mitochondrial membrane substrate transporters independent from the hepatocellular mitochondrial volume in liver. CONCLUSIONS: We assume HF-induced modifications in membrane lipid- and protein-signatures prior to and during changes in hepatic insulin action in liver alter membrane properties - in particular those of mitochondria which are highly abundant in hepatocytes. In turn, a progressive decrease in the abundance of mitochondrial membrane proteins throughout HF-exposure likely impacts on mitochondrial energy metabolism, substrate exchange across mitochondrial membranes, contributes to oxidative stress, mitochondrial damage, and the development of insulin resistance in liver.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA