RESUMEN
In the yeast Saccharomyces cerevisiae, proteasomes are enriched in cell nuclei, in which they execute important cellular functions. Nutrient stress can change this localization, indicating that proteasomes respond to the metabolic state of the cell. However, the signals that connect these processes remain poorly understood. Carbon starvation triggers a reversible translocation of proteasomes to cytosolic condensates known as proteasome storage granules. Surprisingly, we observed strongly reduced levels of proteasome granules when cells had active cellular respiration prior to starvation. This suggests that the mitochondrial activity of cells is a determining factor in the response of proteasomes to carbon starvation. Consistent with this, upon inhibition of mitochondrial function, we observed that proteasomes relocalize to granules. These links between proteasomes and metabolism involve specific signaling pathways, as we identified a mitogen-activated protein kinase (MAPK) cascade that is critical to the formation of proteasome granules after respiratory growth but not following glycolytic growth. Furthermore, the yeast homolog of AMP kinase, Snf1, is important for proteasome granule formation induced by mitochondrial inhibitors, but it is dispensable for granule formation following carbon starvation. We propose a model in which mitochondrial activity promotes nuclear localization of the proteasome. This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Complejo de la Endopetidasa Proteasomal , Saccharomyces cerevisiae , Carbono/metabolismo , Humanos , Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Respiración , Saccharomyces cerevisiae/metabolismoRESUMEN
Guanylate-binding proteins (GBPs) are a family of interferon (IFN)-inducible GTPases and play a pivotal role in the host immune response to microbial infections. These are upregulated in immune cells after recognizing the lipopolysaccharides (LPS), the major membrane component of Gram-negative bacteria. In the present study, the expression pattern of GBP1-7 was initially mapped in phorbol 12-myristate 13-acetate-differentiated human monocytes THP-1 and mouse macrophages RAW 264.7 cell lines stimulated with LPS. A time-dependent significant expression of GBP1-7 was observed in these cells. Moreover, among the various GBPs, GBP1 has emerged as a central player in regulating innate immunity and inflammation. Therefore, to study the specific role of GBP1 in LPS-induced inflammation, knockdown of the Gbp1 gene was carried out in both cells using small interfering RNA interference. Altered levels of different cytokines (interleukin [IL]-4, IL-10, IL-12ß, IFN-γ, tumor necrosis factor-α), inducible nitric oxide synthase, histocompatibility 2, class II antigen A, protein kinase R, and chemokines (chemokine (C-X-C motif) ligand 9 [CXCL9], CXCL10, and CXCL11) in GBP1 knockdown cells were reported compared to control cells. Interestingly, the extracellular-signal-regulated kinase 1/2 mitogen-activated protein (MAP) kinases and signal transducer and activator of transcription 1 (STAT1) transcription factor levels were considerably induced in knockdown cells compared to the control cells. However, no change in the level of phosphorylated nuclear factor-kB, c-Jun, and p38 transcription factors was observed in GBP1 knockdown cells compared to the control cells. This study concludes that GBP1 may alter the expression of cytokines, chemokines, and effector molecules mediated by MAP kinases and STAT1 transcription factors.
Asunto(s)
Quimiocinas , Citocinas , Proteínas de Unión al GTP , Lipopolisacáridos , Macrófagos , Factor de Transcripción STAT1 , Animales , Humanos , Ratones , Quimiocinas/metabolismo , Citocinas/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células RAW 264.7 , ARN Interferente Pequeño/genética , Transducción de Señal , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Células THP-1RESUMEN
OBJECTIVE: To gain insights into how proteases signal to connective tissues cells in the periodontium. BACKGROUND: The connective tissue degradation observed in periodontitis is largely due to matrix metalloproteinase (MMP) release by gingival fibroblasts. Granzyme B (GzmB) is a serine protease whose role in periodontitis is undefined. METHODS: Human gingival crevicular fluid (GCF) samples were obtained from sites with periodontal disease and healthy control sites. GzmB was quantified in the GCF ([GzmB]GCF ) by ELISA. Gingival fibroblasts (GF) were cultured in the presence or absence of recombinant GzmB. Culture supernatants were analyzed by ELISA to quantify GzmB-induced release of interstitial collagenase (MMP-1). In some experiments, cells were pre-treated with the inhibitor PD98059 to block MEK/ERK signaling. The protease-activated receptor-1 (PAR-1) was blocked with ATAP-2 neutralizing antibody prior to GzmB stimulation. Systemic MMP-1 levels were measured in plasma from wild-type (WT) and granzyme-B-knockout (GzmB-/- ) mice. RESULTS: The [GzmB]GCF in human samples was ~4-5 fold higher at sites of periodontal disease (gingivitis/periodontitis) compared to healthy control sites, suggesting an association between GzmB and localized matrix degradation. GzmB induced a ~4-5-fold increase in MMP-1 secretion by cultured fibroblasts. GzmB induced phosphorylation of Erk1/2, which was abrogated by PD98059. GzmB-induced upregulation of MMP-1 secretion was also reduced by PD98059. Blockade of PAR-1 function by ATAP-2 abrogated the increase in MMP-1 secretion by GF. Circulating MMP-1 was similar in WT and GzmB-/- mice, suggesting that GzmB's effects on MMP-1 release are not reflected systemically. CONCLUSION: These data point to a novel GzmB-driven signaling pathway in fibroblasts in which MMP-1 secretion is upregulated in a PAR1- and Erk1/2-dependent manner.
Asunto(s)
Metaloproteinasa 1 de la Matriz , Periodontitis , Humanos , Animales , Ratones , Metaloproteinasa 1 de la Matriz/metabolismo , Granzimas , Receptor PAR-1 , Metaloproteinasa 8 de la Matriz/análisis , Líquido del Surco Gingival/química , Inflamación , Fibroblastos/metabolismo , Metaloproteinasa 13 de la Matriz/análisis , Metaloproteinasa 3 de la MatrizRESUMEN
The RAF/MEK/ERK1/2 signaling cascade has been implicated in pathological cardiac hypertrophy downstream of some Gq-coupled receptors. The RAF family of kinases consists of three isoforms (ARAF, BRAF, and CRAF) and until recently most studies on this signaling pathway in the heart have focused on RAF1 (CRAF). In a recent issue of Clinical Science, Alharbi et al. utilized an inducible cardiac myocyte targeted knockout mouse model to define the role of BRAF in pathological versus physiological hypertrophy using angiotensin II and phenylephrine (PE) infusion, respectively. They reported that loss of BRAF attenuated both pathological cardiac hypertrophy and interstitial fibrosis. BRAF knockout decreased cardiac function with PE in male mice and enhanced both interstitial and perivascular cardiac fibrosis but had no effect on hypertrophy. In contrast, loss of BRAF attenuated physiological hypertrophy in female mice but had no effect on fibrosis or contractility. These observations extend those previously made by this group assessing the consequences of expressing an inducible activating mutant of BRAF in the heart and the benefit of enhancing RAF/MEK/ERK1/2 signaling by exploiting the 'RAF paradox'. Additional studies are needed to better define the role of BRAF under conditions reflective of chronic stress on the heart due to the biomechanical stimulation exerted by hypertension. In addition, the role of BRAF and its activation in overt heart failure remains to be established. Nevertheless, the new findings highlight the potential importance of additional signaling events, perhaps related to RAF1 or ERK1/2 activation, in shaping BRAF signaling in a sex- and context-dependent manner.
Asunto(s)
Cardiomegalia , Proteínas Proto-Oncogénicas B-raf , Masculino , Ratones , Femenino , Animales , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Cardiomegalia/patología , Sistema de Señalización de MAP Quinasas , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos , Fibrosis , Miocitos Cardíacos/metabolismoRESUMEN
Ribosomes that synthesize proteins are among the most central and evolutionarily conserved organelles. Given the key role of proteins in cellular functions, prokaryotic and eukaryotic pathogens have evolved potent toxins to inhibit ribosomal functions and weaken their host. Many of these ribotoxin-producing pathogens are associated with food. For example, food can be contaminated with bacterial pathogens that produce the ribotoxin Shiga toxin, but also with the fungal ribotoxin deoxynivalenol. Shiga toxin cleaves ribosomal RNA, while deoxynivalenol binds to and inhibits the peptidyl transferase center. Despite their distinct modes of action, both groups of ribotoxins hinder protein translation, but also trigger other comparable toxic effects, which depend or not on the activation of the ribotoxic stress response. Ribotoxic stress response-dependent effects include inflammation and apoptosis, whereas ribotoxic stress response-independent effects include endoplasmic reticulum stress, oxidative stress, and autophagy. For other effects, such as cell cycle arrest and cytoskeleton modulation, the involvement of the ribotoxic stress response is still controversial. Ribotoxins affect one organelle yet induce multiple toxic effects with multiple consequences for the cell. The ribosome can therefore be considered as the cellular "Achilles heel" targeted by food borne ribotoxins. Considering the high toxicity of ribotoxins, they pose a substantial health risk, as humans are highly susceptible to widespread exposure to these toxins through contaminated food sources.
RESUMEN
OBJECTIVE: The objective of the study was to determine the anti-osteoclastogenic potential of ginsenoside Rb3 for the treatment of periodontitis. METHODS: The anti-osteoclastogenic effect was determined using RANKL-induced RAW264.7 cells and murine bone marrow-derived macrophages followed by TRAP and phalloidin staining. Expression of osteoclastogenesis-related genes and proteins were examined by qPCR and WB. Activation of signaling pathways was detected by WB and IHC techniques. Experimental periodontitis rat model was built up by gingival injections of P. gingivalis LPS. After 21 days of Rb3 treatment, rats were sacrificed for micro-CT, IHC, H&E, and TRAP staining analyses. RESULTS: Rb3 dramatically inhibits RANKL-induced osteoclastogenesis. Nfatc1, Mmp9, Ctsk, Acp5 mRNA, and MMP9, CTSK proteins were dose-dependently downregulated by Rb3 pretreatment. WB results revealed that Rb3 suppressed activations of p38 MAPK, ERK, and p65 NF-κB, and the inhibition of ERK was most pronounced. Consistently, IHC analysis revealed that p-ERK was highly expressed in alveolar bone surface, blood vessels, odontoblasts, and gingival epithelia, which were notably suppressed by Rb3 treatment. H&E staining and micro-CT analyses showed that Rb3 significantly attenuated gingivitis and alveolar bone resorption in rats. CONCLUSION: Rb3 inhibits RANKL-induced osteoclastogenesis and attenuates P. gingivalis LPS-induced gingivitis and alveolar bone resorption in rats via ERK/NF-κB signaling pathway.
Asunto(s)
Resorción Ósea , Gingivitis , Periodontitis , Ratas , Ratones , Animales , FN-kappa B/metabolismo , Osteogénesis , Metaloproteinasa 9 de la Matriz/metabolismo , Osteoclastos/metabolismo , Lipopolisacáridos/farmacología , Transducción de Señal , Gingivitis/metabolismo , Periodontitis/metabolismo , Ligando RANK/metabolismo , Diferenciación CelularRESUMEN
Hypertrophic scars and keloids are two different manifestations of excessive dermal fibrosis and are caused by an alteration in the normal wound-healing process. Treatment with radiofrequency (RF)-based therapies has proven to be useful in reducing hypertrophic scars. In this study, the effect of one of these radiofrequency therapies, Capacitive Resistive Electrical Transfer Therapy (CRET) on biomarkers of skin fibrosis was investigated. For this, in cultures of human myofibroblasts treated with CRET therapy or sham-treated, proliferation (XTT Assay), apoptosis (TUNEL Assay), and cell migration (Wound Closure Assay) were analyzed. Furthermore, in these cultures the expression and/or localization of extracellular matrix proteins such as α-SMA, Col I, Col III (immunofluorescence), metalloproteinases MMP1 and MMP9, MAP kinase ERK1/2, and the transcription factor NFκB were also investigated (immunoblot). The results have revealed that CRET decreases the expression of extracellular matrix proteins, modifies the expression of the metalloproteinase MMP9, and reduces the activation of NFκB with respect to controls, suggesting that this therapy could be useful for the treatment of fibrotic pathologies.
Asunto(s)
Cicatriz Hipertrófica , Queloide , Humanos , Cicatriz Hipertrófica/metabolismo , Piel/metabolismo , Metaloproteinasa 9 de la Matriz , Queloide/patología , Proteínas de la Matriz Extracelular , Fibroblastos/metabolismoRESUMEN
Diverse extracellular and intracellular cues activate mammalian mitogen-activated protein kinases (MAPKs). Canonically, the activation starts at cell surface receptors and continues via intracellular MAPK components, acting in the host cell nucleus as activators of transcriptional programs to regulate various cellular activities, including proinflammatory responses against bacterial pathogens. For instance, binding host pattern recognition receptors (PRRs) on the surface of intestinal epithelial cells to bacterial pathogen external components trigger the MAPK/NF-κB signaling cascade, eliciting cytokine production. This results in an innate immune response that can eliminate the bacterial pathogen. However, enteric bacterial pathogens evolved sophisticated mechanisms that interfere with such a response by delivering virulent proteins, termed effectors, and toxins into the host cells. These proteins act in numerous ways to inactivate or activate critical components of the MAPK signaling cascades and innate immunity. The consequence of such activities could lead to successful bacterial colonization, dissemination, and pathogenicity. This article will review enteric bacterial pathogens' strategies to modulate MAPKs and host responses. It will also discuss findings attempting to develop anti-microbial treatments by targeting MAPKs.
Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Transducción de Señal , Animales , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Inmunidad Innata , FN-kappa B/metabolismo , Bacterias/metabolismo , Enterobacteriaceae , Mamíferos/metabolismoRESUMEN
Wound healing is a complex process to restore skin. Plant-derived bioactive compounds might be a source of substances for the treatment of wounds stalled in a non-resolving stage of wound healing. Oleanolic acid (OA), a pentacyclic triterpene, has shown favorable wound healing properties both in vitro and in vivo. Unfortunately, OA cannot be solubilized in aqueous media, and it needs to be helped by the use of dimethyl sulfoxide (DMSO). In this paper, we have shown that cyclodextrins (CDs) are a good alternative to DMSO as agents to deliver OA to cells, providing better features than DMSO. Cyclodextrins are natural macromolecules that show a unique tridimensional structure that can encapsulate a wide variety of hydrophobic compounds. We have studied the cyclodextrin-encapsulated form of OA with OA/DMSO, comparing their stability, biological properties for cell migration, and cell viability. In addition, detailed parameters related to cell migration and cytoskeletal reorganization have been measured and compared. Our results show that OA-encapsulateds compound exhibit several advantages when compared to non-encapsulated OA in terms of chemical stability, migration enhancement, and preservation of cell viability.
Asunto(s)
Ciclodextrinas , Ácido Oleanólico , Ciclodextrinas/farmacología , Ciclodextrinas/química , Ácido Oleanólico/farmacología , Ácido Oleanólico/química , Dimetilsulfóxido , Piel , Movimiento Celular , 2-Hidroxipropil-beta-CiclodextrinaRESUMEN
Extracellular signal-regulated kinase 3 (ERK3) is a poorly characterized member of the mitogen-activated protein (MAP) kinase family. Functional analysis of the ERK3 signaling pathway has been hampered by a lack of knowledge about the substrates and downstream effectors of the kinase. Here, we used large-scale quantitative phosphoproteomics and targeted gene silencing to identify direct ERK3 substrates and gain insight into its cellular functions. Detailed validation of one candidate substrate identified the gelsolin/villin family member supervillin (SVIL) as a bona fide ERK3 substrate. We show that ERK3 phosphorylates SVIL on Ser245 to regulate myosin II activation and cytokinesis completion in dividing cells. Depletion of SVIL or ERK3 leads to increased cytokinesis failure and multinucleation, a phenotype rescued by wild type SVIL but not by the non-phosphorylatable S245A mutant. Our results unveil a new function of the atypical MAP kinase ERK3 in cell division and the regulation of cell ploidy.
RESUMEN
The physiological functions and downstream effectors of the atypical mitogen-activated protein kinase extracellular signal-regulated kinase 3 (ERK3) remain to be characterized. We recently reported that mice expressing catalytically-inactive ERK3 (Mapk6KD/KD ) exhibit a reduced postnatal growth rate as compared to control mice. Here, we show that genetic inactivation of ERK3 impairs postnatal skeletal muscle growth and adult muscle regeneration after injury. Loss of MAPK-activated protein kinase 5 (MK5) phenocopies the muscle phenotypes of Mapk6KD/KD mice. At the cellular level, genetic or pharmacological inactivation of ERK3 or MK5 induces precocious differentiation of C2C12 or primary myoblasts, concomitant with MyoD activation. Reciprocally, ectopic expression of activated MK5 inhibits myogenic differentiation. Mechanistically, we show that MK5 directly phosphorylates FoxO3, promoting its degradation and reducing its association with MyoD. Depletion of FoxO3 rescues in part the premature differentiation of C2C12 myoblasts observed upon inactivation of ERK3 or MK5. Our findings reveal that ERK3 and its substrate MK5 act in a linear signaling pathway to control postnatal myogenic differentiation.
Asunto(s)
Proteína Forkhead Box O3/metabolismo , Transducción de Señal , Animales , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Músculos , Proteínas Serina-Treonina Quinasas/metabolismoRESUMEN
Vitamins B1 (thiamine) and B6 (pyridox (al/ine/amine)) are crucial for central nervous system (CNS) function and neurogenesis due to the coenzyme action of their phosphorylated derivatives in the brain metabolism of glucose and neurotransmitters. Here, the non-coenzyme action of thiamine on the major mammalian producers of pyridoxal-5'-phosphate (PLP), such as pyridoxal kinase (PdxK) and pyridoxine 5'-phosphate oxidase (PNPO), is characterized. Among the natural thiamine compounds, thiamine triphosphate (ThTP) is the best effector of recombinant human PdxK (hPdxK) in vitro, inhibiting hPdxK in the presence of Mg2+ but activating the Zn2+ -dependent reaction. Inhibition of hPdxK by thiamine antagonists decreases from amprolium to pyrithiamine to oxythiamine, highlighting possible dysregulation of both the B1 - and B6 -dependent metabolism in the chemical models of thiamine deficiency. Compared with the canonical hPdxK, the D87H and V128I variants show a twofold increase in Kapp of thiamine inhibition, and the V128I and H246Q variants show a fourfold and a twofold decreased Kapp of thiamine diphosphate (ThDP), respectively. Thiamine administration changes diurnal regulation of PdxK activity and phosphorylation at Ser213 and Ser285, expression of the PdxK-related circadian kinases/phosphatases in the rat brain, and electrocardiography (ECG). In contrast to PdxK, PNPO is not affected by thiamine or its derivatives, either in vitro or in vivo. Dephosphorylation of the PdxK Ser285, potentially affecting mobility of the ATP-binding loop, inversely correlates with the enzyme activity. Dephosphorylation of the PdxK Ser213, which is far away from the active site, does not correlate with the activity. The correlations analysis suggests the PdxK Ser213 to be a target of kinase MAP2K1 and phosphatase Ppp1ca. Diurnal effects of thiamine administration on the metabolically linked ThDP- and PLP-dependent enzymes may support the brain homeostatic mechanisms and physiological fitness.
Asunto(s)
Piridoxal Quinasa , Tiamina , Animales , Encéfalo/metabolismo , Mamíferos/metabolismo , Fosfatos , Piridoxal Quinasa/química , Piridoxal Quinasa/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/farmacología , Ratas , Tiamina/farmacologíaRESUMEN
Candida auris is an emerging multidrug-resistant human fungal pathogen often refractory to treatment by all classes of antifungal drugs. Amphotericin B (AmB) is a fungicidal drug that, despite its toxic side effects, remains a drug of choice for the treatment of drug-resistant fungal infections, including those caused by C. auris. However, the molecular mechanisms underlying AmB resistance are poorly understood. In this study, we present data that suggests membrane lipid alterations and chromatin modifications are critical processes that may contribute to or cause adaptive AmB resistance in clinical C. auris isolates. To determine the plausible cause of increased AmB resistance, we performed RNA-seq of AmB-resistant and sensitive C. auris isolates. Remarkably, AmB-resistant strains show a pronounced enrichment of genes involved in lipid and ergosterol biosynthesis, adhesion, drug transport as well as chromatin remodeling. The transcriptomics data confirm increased adhesion and reduced lipid membrane permeability of AmB-resistant strains compared to the sensitive isolates. The AmB-resistant strains also display hyper-resistance to cell wall perturbing agents, including Congo red, calcofluor white and caffeine. Additionally, we noticed an increased phosphorylation of Mkc1 cell integrity MAP kinase upon AmB treatment. Collectively, these data identify differences in the transcriptional landscapes of AmB-resistant versus AmB-sensitive isolates and provide a framework for the mechanistic understanding of AmB resistance in C. auris.
Asunto(s)
Anfotericina B , Candidiasis , Anfotericina B/farmacología , Anfotericina B/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida , Candida auris , Candidiasis/tratamiento farmacológico , Farmacorresistencia Fúngica/genética , Humanos , Lípidos , Pruebas de Sensibilidad Microbiana , Transcriptoma/genéticaRESUMEN
Nicotinamide riboside kinase-2 (NRK-2) has recently emerged as a critical regulator of cardiac remodeling however, underlying molecular mechanisms is largely unknown. To explore the same, NRK2 knockout (KO) and littermate control mice were subjected to trans-aortic constriction (TAC) or sham surgeries and cardiac function was assessed by serial M-mode echocardiography. A mild cardiac contractile dysfunction was observed in the KOs at the early adaptive phase of remodeling followed by a significant deterioration during the maladaptive cardiac remodeling phase. Consistently, NRK2 KO hearts displayed increased cardiac hypertrophy and heart failure (HF) reflected by morphometric parameters as well as increased fetal genes, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) expressions. Histological assessment revealed an extensive left ventricular (LV) chamber dilatation accompanied by elevated cardiomyopathy (CM) and fibrosis in the KO hearts post-TAC. In a gain-of-function model, NRK-2 overexpressing in AC16 cardiomyocytes displayed significantly attenuated fetal genes ANP and BNP expression. Consistently, NRK-2 overexpression attenuated angiotensin II (Ang II)-induced cardiomyocyte death. Mechanistically, we identified NRK-2 as a regulator of c-jun N-terminal kinase (JNK) MAP kinase and mitochondrial function where NRK-2 overexpression in human cardiomyocytes markedly suppressed the Ang II-induced JNK activation and mitochondrial depolarization. Thus, our results demonstrate that NRK-2 plays protective roles in pressure overload (PO)-induced dilatative cardiac remodeling and, genetic ablation exacerbates dilated cardiomyopathy (DCM), interstitial collagen deposition, and cardiac dysfunction post-TAC due, in part, to increased JNK activation and mitochondrial dysfunction.
Asunto(s)
Cardiomiopatía Dilatada/fisiopatología , Sistema de Señalización de MAP Quinasas/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Aorta , Cardiomegalia/fisiopatología , Línea Celular , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones , Ratones Noqueados , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genéticaRESUMEN
Signalling pathways such as ERK1/2, p38 or PI3K are activated in tumour cells by extracellular acidosis, which is a common phenomenon in human tumours. These signalling pathways can modulate the mitochondrial function and activity. The aim of the study was to evaluate the impact of extracellular acidosis on the mitochondrial O2 consumption and, in consequence, the potential role of ERK1/2, p38 and PI3K cascades on modulating the respiratory function. The O2 consumption rate (OCR) was measured at pH 7.4 and extracellular acidosis (pH 6.6) in combination with inhibition of the respective signalling pathway. The activity of the pathways was determined by phosphorylation-specific western blot using the cytosolic and mitochondrial fraction of cell lysates. The experiments were performed on a rat tumour cell line (subline AT1 of the rat R-3327 prostate carcinoma) and normal cells (NRK-49F fibroblasts). Acidosis increased the OCR of AT1 cells, especially the basal OCR and the O2 consumption, which is related to ATP production. In normal NRKF cells OCR was unaffected by low pH. Inhibition of ERK1/2 and PI3K, but not p38, reduced the acidosis-induced increase of the OCR significantly in AT1 tumour cells. In this cell line acidosis also led to an ERK1/2 and PI3K activation, predominantly in the mitochondrial fraction. These results indicate that extracellular acidosis activates cellular respiration in tumour cells, presumably by activating the ERK1/2 and/or the PI3K signalling cascade. This activation of ERK1/2 and PI3K is located primarily in the mitochondrial compartment of the cells.
Asunto(s)
Acidosis , Transducción de Señal , Masculino , Animales , Ratas , Humanos , Acidosis/metabolismo , Línea Celular Tumoral , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
N-methylpretrichodermamide B (NB) is a biologically active epidithiodiketopiperazine isolated from several strains of the algae-derived fungus Penicillium sp. Recently, we reported the first data on its activity in human cancer cells lines in vitro. Here, we investigated the activity, selectivity, and mechanism of action of NB in human prostate cancer cell lines, including drug-resistant subtypes. NB did not reveal cross-resistance to docetaxel in the PC3-DR cell line model and was highly active in hormone-independent 22Rv1 cells. NB-induced cell death was stipulated by externalization of phosphatidylserine and activation of caspase-3. Moreover, inhibition of caspase activity by z-VAD(OMe)-fmk did not affect NB cytotoxicity, suggesting a caspase-independent cell death induced by NB. The compound has a moderate p-glycoprotein (p-gp) substrate-like affinity and can simultaneously inhibit p-gp at nanomolar concentrations. Therefore, NB resensitized p-gp-overexpressing PC3-DR cells to docetaxel. A kinome profiling of the NB-treated cells revealed, among other things, an induction of mitogen-activated protein kinases JNK1/2 and p38. Further functional analysis confirmed an activation of both kinases and indicated a prosurvival role of this biological event in the cellular response to the treatment. Overall, NB holds promising anticancer potential and further structure-activity relationship studies and structural optimization are needed in order to improve its biological properties.
Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Humanos , Masculino , Antineoplásicos/farmacología , Apoptosis , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/farmacología , Caspasa 3/metabolismo , Línea Celular Tumoral , Docetaxel/farmacología , Resistencia a Antineoplásicos , Hormonas/farmacología , Fosfatidilserinas/farmacología , Neoplasias de la Próstata/tratamiento farmacológicoRESUMEN
The cytotoxicity-bioassay-guided fractionation of the ethanol extract from the marine sponge Guitarra abbotti, whose 1-O-alkyl-sn-glycerol ethers (AGEs) have not been investigated so far, led to the isolation of a complex lipid fraction containing, along with previously known compounds, six new lipids of the AGE type. The composition of the AGE fraction as well as the structures of 6 new and 22 previously known compounds were established using 1H and 13C NMR, GC/MS, and chemical conversion methods. The new AGEs were identified as: 1-O-(Z-docos-15-enyl)-sn-glycerol (1), 1-O-(Z-docos-17-enyl)-sn-glycerol (2), 1-O-(Z-tricos-15-enyl)-sn-glycerol (3), 1-O-(Z-tricos-16-enyl)-sn-glycerol (4), 1-O-(Z-tricos-17-enyl)-sn-glycerol (5), and 1-O-(Z-tetracos-15-enyl)-sn-glycerol (6). The isolated AGEs show weak cytotoxic activity in THP-1, HL-60, HeLa, DLD-1, SNU C4, SK-MEL-28, and MDA-MB-231 human cancer cells. A further cytotoxicity analysis in JB6 P+ Cl41 cells bearing mutated MAP kinase genes revealed that ERK2 and JNK1 play a cytoprotective role in the cellular response to the AGE-induced cytotoxic effects.
Asunto(s)
Éteres , Poríferos , Animales , Éteres/farmacología , Cromatografía de Gases y Espectrometría de Masas , Glicerol/farmacología , Éteres de Glicerilo/farmacología , HumanosRESUMEN
Short linear peptide motifs that are intracellular ligands of folded proteins are a modular, incompletely understood molecular interaction language in signaling systems. Such motifs, which frequently occur in intrinsically disordered protein regions, often bind partner proteins with modest affinity and are difficult to study with conventional structural biology methods. We developed LiF-MS (ligand-footprinting mass spectrometry), a method to map peptide binding sites on folded protein domains that allows consideration of their dynamic disorder, and used it to analyze a set of D-motif peptide-mitogen-activated protein kinase (MAPK) associations to validate the approach and define unknown binding structures. LiF-MS peptide ligands carry a short-lived, indiscriminately reactive cleavable crosslinker that marks contacts close to ligand binding sites with high specificity. Each marked amino acid provides an independent constraint for a set of directed peptide-protein docking simulations, which are analyzed by agglomerative hierarchical clustering. We found that LiF-MS provides accurate ab initio identification of ligand binding surfaces and a view of potential binding ensembles of a set of D-motif peptide-MAPK associations. Our analysis provides an MKK4-JNK1 structural model, which has thus far been crystallographically unattainable, a potential alternate binding mode for part of the NFAT4-JNK interaction, and evidence of bidirectional association of MKK4 peptide with ERK2. Overall, we find that LiF-MS is an effective noncrystallographic way to understand how short linear motifs associate with specific sites on folded protein domains at the level of individual amino acids.
Asunto(s)
Espectrometría de Masas/métodos , Proteínas Quinasas Activadas por Mitógenos/química , Péptidos/química , Mapeo de Interacción de Proteínas/métodos , Secuencias de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Péptidos/metabolismo , Unión Proteica , Pliegue de ProteínaRESUMEN
This study was focused on investigating the antiproliferative effects of chalcone hybrids in melanoma cancer cells. Among seven chalcone hybrids, the chalcone-acridine hybrid 1C was the most potent and was selected for further antiproliferative mechanism studies. This in vitro study revealed the potent antiproliferative effect of 1C via cell cycle arrest and apoptosis induction. Cell cycle arrest at the G2/M phase was associated with modulation of expression or phosphorylation of specific cell cycle-associated proteins (cyclin B1, p21, and ChK1), tubulins, as well as with the activation of the DNA damage response pathway. Chalcone 1C also induced apoptosis accompanied by mitochondrial dysfunction evidenced by a decrease in mitochondrial membrane potential, increase in Bax/Bcl-xL ratio and cytochrome c release followed by caspase 3/7 activation. In addition, increased phosphorylation of MAP kinases (Erk1/2, p38 and JNK) was observed in chalcone 1C-treated melanoma cells. The strong antiproliferative activities of this chalcone-acridine hybrid suggest that it may be useful as an antimelanoma agent in humans.
Asunto(s)
Chalcona , Chalconas , Melanoma , Humanos , Chalcona/farmacología , Ciclina B1/metabolismo , Chalconas/farmacología , Fosforilación , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Acridinas/farmacología , Citocromos c/metabolismo , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Apoptosis , Daño del ADN , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Melanoma/tratamiento farmacológicoRESUMEN
Understanding which intracellular signaling pathways are activated by manganese stress is crucial to decipher how metal overload compromise cellular integrity. Here, we unveil a role for oxidative and cell wall stress signaling in the response to manganese stress in yeast. We find that the oxidative stress transcription factor Yap1 protects cells against manganese toxicity. Conversely, extracellular manganese addition causes a rapid decay in Yap1 protein levels. In addition, manganese stress activates the MAPKs Hog1 and Slt2 (Mpk1) and leads to an up-regulation of the Slt2 downstream transcription factor target Rlm1. Importantly, Yap1 and Slt2 are both required to protect cells from oxidative stress in mutants impaired in manganese detoxification. Under such circumstances, Slt2 activation is enhanced upon Yap1 depletion suggesting an interplay between different stress signaling nodes to optimize cellular stress responses and manganese tolerance.