RESUMEN
Physical forces play crucial roles in coordinating collective migration of epithelial cells, but details of such force-related phenomena remain unclear partly due to the lack of robust methodologies to probe the underlying force fields. Here we develop a method for fabricating silicone substrates that detect cellular traction forces with a high sensitivity. Specifically, a silicone elastomer is exposed to oxygen plasma under heating. Removal of the heat shrinks the substrate so as to reduce its critical buckling strain in a spatially uniform manner. Thus, even small cellular traction forces can be visualized as micro-wrinkles that are reversibly emerged on the substrate in a direction orthogonal to the applied forces. Using this technique, we show that so-called leader cells in MDCK-II cell clusters exert significant magnitudes of traction forces distinct from those of follower cells. We reveal that the direction of traction forces is highly correlated with the long axis of the local, individual cells within clusters. These results suggest that the force fields in collective migration of MDCK-II cells are predominantly determined locally at individual cell scale rather than globally at the whole cell cluster scale.
Asunto(s)
Movimiento Celular , Células Epiteliales/citología , Animales , Apoptosis , Materiales Biocompatibles/química , Adhesión Celular , Perros , Células de Riñón Canino Madin Darby , Silicio/químicaRESUMEN
The attachment of organelles to the cytoskeleton and directed organelle transport is essential for cellular morphology and function. In contrast to other cell organelles like the endoplasmic reticulum or the Golgi apparatus, peroxisomes are evenly distributed in the cytoplasm, which is achieved by binding of peroxisomes to microtubules and their bidirectional transport by the microtubule motor proteins kinesin-1 (Kif5) and cytoplasmic dynein. KifC3, belonging to the group of C-terminal kinesins, has been identified to interact with the human peroxin PEX1 in a yeast two-hybrid screen. We investigated the potential involvement of KifC3 in peroxisomal transport. Interaction of KifC3 and the AAA-protein (ATPase associated with various cellular activities) PEX1 was confirmed by in vivo colocalization and by coimmunoprecipitation from cell lysates. Furthermore, knockdown of KifC3 using RNAi resulted in an increase of cells with perinuclear-clustered peroxisomes, indicating enhanced minus-end directed motility of peroxisomes. The occurrence of this peroxisomal phenotype was cell cycle phase independent, while microtubules were essential for phenotype formation. We conclude that KifC3 may play a regulatory role in minus-end directed peroxisomal transport for example by blocking the motor function of dynein at peroxisomes. Knockdown of KifC3 would then lead to increased minus-end directed peroxisomal transport and cause the observed peroxisomal clustering at the microtubule-organizing center.
Asunto(s)
Cinesinas/metabolismo , Mamíferos/metabolismo , Orgánulos/metabolismo , Peroxisomas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Ciclo Celular , Línea Celular , Análisis por Conglomerados , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Fenotipo , Unión ProteicaRESUMEN
The Rab family small GTPases are key regulators of intracellular membrane traffic that are conserved in all eukaryotic cells. Rabs are thought to regulate various steps of membrane traffic, including the budding, transport, tethering, docking, and fusion of vesicles or organelles. Approximately 60 different Rabs have been identified in mammals, and each Rab is thought to localize to a specific membrane compartment and regulate its trafficking in a timely manner. Although a few mammalian Rabs have been thoroughly studied, the precise function of the majority of them remains poorly understood. In a recent study, we established a comprehensive collection of Rab-knockout (KO) renal epithelial cells (i.e., Madin-Darby canine kidney [MDCK] II cells) by using Cas9-mediated genome editing technology to analyze the function of each Rab or closely related Rabs in cell viability (or growth), organelle morphology, and epithelial morphogenesis. In this chapter, we describe the procedures for generating Rab-KO MDCK II cells in detail.
Asunto(s)
Proteínas de Unión al GTP rab/metabolismo , Animales , Perros , Membranas Intracelulares/metabolismo , Células de Riñón Canino Madin Darby , Orgánulos/metabolismo , Transporte de Proteínas , Proteínas de Unión al GTP rab/genéticaRESUMEN
Human bestrophin-1 (hBest1) is a transmembrane Ca2+- dependent anion channel, associated with the transport of Cl-, HCO3- ions, γ-aminobutiric acid (GABA), glutamate (Glu), and regulation of retinal homeostasis. Its mutant forms cause retinal degenerative diseases, defined as Bestrophinopathies. Using both physicochemical - surface pressure/mean molecular area (π/A) isotherms, hysteresis, compressibility moduli of hBest1/sphingomyelin (SM) monolayers, Brewster angle microscopy (BAM) studies, and biological approaches - detergent membrane fractionation, Laurdan (6-dodecanoyl-N,N-dimethyl-2-naphthylamine) and immunofluorescence staining of stably transfected MDCK-hBest1 and MDCK II cells, we report: 1) Ca2+, Glu and GABA interact with binary hBest1/SM monolayers at 35 °C, resulting in changes in hBest1 surface conformation, structure, self-organization and surface dynamics. The process of mixing in hBest1/SM monolayers is spontaneous and the effect of protein on binary films was defined as "fluidizing", hindering the phase-transition of monolayer from liquid-expanded to intermediate (LE-M) state; 2) in stably transfected MDCK-hBest1 cells, bestrophin-1 was distributed between detergent resistant (DRM) and detergent-soluble membranes (DSM) - up to 30 % and 70 %, respectively; in alive cells, hBest1 was visualized in both liquid-ordered (Lo) and liquid-disordered (Ld) fractions, quantifying protein association up to 35 % and 65 % with Lo and Ld. Our results indicate that the spontaneous miscibility of hBest1 and SM is a prerequisite to diverse protein interactions with membrane domains, different structural conformations and biological functions.
Asunto(s)
Bestrofinas/química , Membrana Celular/química , Esfingomielinas/química , Humanos , Conformación Molecular , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
The impact of substrate topography on the morphological and mechanical properties of confluent MDCK-II cells cultured on porous substrates was scrutinized by means of various imaging techniques as well as atomic force microscopy comprising force volume and microrheology measurements. Regardless of the pore size, ranging from 450 to 5500 nm in diameter, cells were able to span the pores. They did not crawl into the holes or grow around the pores. Generally, we found that cells cultured on non-porous surfaces are stiffer, i.e. cortical tension rises from 0.1 to 0.3 mN m(-1), and less fluid than cells grown over pores. The mechanical data are corroborated by electron microscopy imaging showing more cytoskeletal filaments on flat samples in comparison to porous ones. By contrast, cellular compliance increases with pore size and cells display a more fluid-like behaviour on larger pores. Interestingly, cells on pores larger than 3500 nm produce thick actin bundles that bridge the pores and thereby strengthen the contact zone of the cells.
Asunto(s)
Citoesqueleto de Actina/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Animales , Perros , Células de Riñón Canino Madin Darby , PorosidadRESUMEN
BACKGROUND: The impact of gold nanoparticles on cell viability has been extensively studied in the past. Size, shape and surface functionalization including opsonization of gold particles ranging from a few nanometers to hundreds of nanometers are among the most crucial parameters that have been focussed on. Cytoxicity of nanomaterial has been assessed by common cytotoxicity assays targeting enzymatic activity such as LDH, MTT and ECIS. So far, however, less attention has been paid to the mechanical parameters of cells exposed to gold particles, which is an important reporter on the cellular response to external stimuli. RESULTS: Mechanical properties of confluent MDCK II cells exposed to gold nanorods as a function of surface functionalization and concentration have been explored by atomic force microscopy and quartz crystal microbalance measurements in combination with fluorescence and dark-field microscopy. CONCLUSION: We found that cells exposed to CTAB coated gold nanorods display a concentration-dependent stiffening that cannot be explained by the presence of CTAB alone. The stiffening results presumably from endocytosis of particles removing excess membrane area from the cell's surface. Another aspect could be the collapse of the plasma membrane on the actin cortex. Particles coated with PEG do not show a significant change in elastic properties. This observation is consistent with QCM measurements that show a considerable drop in frequency upon administration of CTAB coated rods suggesting an increase in acoustic load corresponding to a larger stiffness (storage modulus).