Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(20): e111631, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-35916262

RESUMEN

The orientation of cell polarity depends on the position of the centrosome, the main microtubule-organizing center (MTOC). Microtubules (MTs) transmit pushing forces to the MTOC as they grow against the cell periphery. How the actin network regulates these forces remains unclear. Here, in a cell-free assay, we used purified proteins to reconstitute the interaction of a microtubule aster with actin networks of various architectures in cell-sized microwells. In the absence of actin filaments, MTOC positioning was highly sensitive to variations in microtubule length. The presence of a bulk actin network limited microtubule displacement, and MTOCs were held in place. In contrast, the assembly of a branched actin network along the well edges centered the MTOCs by maintaining an isotropic balance of pushing forces. An anisotropic peripheral actin network caused the MTOC to decenter by focusing the pushing forces. Overall, our results show that actin networks can limit the sensitivity of MTOC positioning to microtubule length and enforce robust MTOC centering or decentering depending on the isotropy of its architecture.


Asunto(s)
Actinas , Centrosoma , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Centrosoma/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo
2.
J Biol Chem ; 300(3): 105669, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272221

RESUMEN

The mitotic spindle contains many bundles of microtubules (MTs) including midzones and kinetochore fibers, but little is known about how bundled structures are formed. Here, we show that the chromosomal passenger complex (CPC) purified from Escherichia coli undergoes liquid-liquid demixing in vitro. An emergent property of the resultant condensates is to generate parallel MT bundles when incubated with free tubulin and GTP in vitro. We demonstrate that MT bundles emerge from CPC droplets with protruding minus ends that then grow into long and tapered MT structures. During this growth, we found that the CPC in these condensates apparently reorganize to coat and bundle the resulting MT structures. CPC mutants attenuated for liquid-liquid demixing or MT binding prevented the generation of parallel MT bundles in vitro and reduced the number of MTs present at spindle midzones in HeLa cells. Our data demonstrate that an in vitro biochemical activity to produce MT bundles emerges after the concentration of the CPC and provides models for how cells generate parallel-bundled MT structures that are important for the assembly of the mitotic spindle. Moreover, these data suggest that cells contain MT-organizing centers that generate MT bundles that emerge with the opposite polarity from centrosomes.


Asunto(s)
Cromosomas , Microtúbulos , Huso Acromático , Humanos , Células HeLa , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis , Huso Acromático/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Animales , Xenopus laevis
3.
Development ; 149(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35980365

RESUMEN

In embryos of most animal species, the zygotic centrosome is assembled by the centriole derived from the sperm cell and pericentriolar proteins present in the oocyte. This zygotic centrosome acts as a microtubule organizing center (MTOC) to assemble the sperm aster and mitotic spindle. As MTOC formation has been studied mainly in adult cells, very little is known about the formation of the zygotic MTOC. Here, we show that zebrafish (Danio rerio) embryos lacking either maternal or paternal Cfap53, a centriolar satellite protein, arrest during the first cell cycle. Although Cfap53 is dispensable for sperm aster function, it aids proper formation of the mitotic spindle. During cell division, Cfap53 colocalizes with γ-tubulin and with other centrosomal and centriolar satellite proteins at the MTOC. Furthermore, we find that γ-tubulin localization at the MTOC is impaired in the absence of Cfap53. Based on these results, we propose a model in which Cfap53 deposited in the oocyte and the sperm participates in the organization of the zygotic MTOC to allow mitotic spindle formation.


Asunto(s)
Centriolos , Centro Organizador de los Microtúbulos , Animales , Centriolos/metabolismo , Centrosoma/metabolismo , Masculino , Centro Organizador de los Microtúbulos/metabolismo , Semen/metabolismo , Tubulina (Proteína)/metabolismo , Pez Cebra/metabolismo
4.
Cell Tissue Res ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152365

RESUMEN

We have analyzed the organization of the microtubule system in photoreceptor cells and pigment cells within the adult Drosophila compound eye. Immunofluorescence localization of tubulin and of Short stop, a spectraplakin that has been reported to be involved in the anchorage of microtubule minus ends at the membrane, suggests the presence of non-centrosomal microtubule-organizing centers at the distal tip of the visual cells. Ultrastructural analyses confirm that microtubules emanate from membrane-associated plaques at the site of contact with cone cells and that all microtubules are aligned in distal-proximal direction within the photoreceptor cells. Determination of microtubule polarities demonstrated that about 95% of the microtubules in photoreceptor cells are oriented with their plus end in the direction of the synapse. Pigment cells in the eye contain only microtubules aligned in distal-proximal direction, with their plus end pointing towards the retinal floor. There, two populations of microtubules can be distinguished, single microtubules and bundled microtubules, the latter associated with actin filaments. Whereas microtubules in both photoreceptor cells and pigment cells are acetylated and mono/bi-glutamylated on α-tubulin, bundled microtubules in pigment cells are apparently also mono/bi-glutamylated on ß-tubulin, providing the possibility of binding different microtubule-associated proteins.

5.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39337528

RESUMEN

mTOR plays a crucial role in cell growth by controlling ribosome biogenesis, metabolism, autophagy, mRNA translation, and cytoskeleton organization. It is a serine/threonine kinase that is part of two distinct extensively described protein complexes, mTORC1 and mTORC2. We have identified a rapamycin-resistant mTOR complex, called mTORC3, which is different from the canonical mTORC1 and mTORC2 complexes in that it does not contain the Raptor, Rictor, or mLST8 mTORC1/2 components. mTORC3 phosphorylates mTORC1 and mTORC2 targets and contains the ETS transcription factor ETV7, which binds to mTOR and is essential for mTORC3 assembly in the cytoplasm. Tumor cells that assemble mTORC3 have a proliferative advantage and become resistant to rapamycin, indicating that inhibiting mTORC3 may have a therapeutic impact on cancer. Here, we investigate which domains or amino acid residues of ETV7 and mTOR are involved in their mutual binding. We found that the mTOR FRB and LBE sequences in the kinase domain interact with the pointed (PNT) and ETS domains of ETV7, respectively. We also found that forced expression of the mTOR FRB domain in the mTORC3-expressing, rapamycin-resistant cell line Karpas-299 out-competes mTOR for ETV7 binding and renders these cells rapamycin-sensitive in vivo. Our data provide useful information for the development of molecules that prevent the assembly of mTORC3, which may have therapeutic value in the treatment of mTORC3-positive cancer.


Asunto(s)
Unión Proteica , Proteínas Proto-Oncogénicas c-ets , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Línea Celular Tumoral , Sirolimus/farmacología , Animales , Dominios Proteicos , Fosforilación , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células HEK293
6.
Plant Cell Physiol ; 64(9): 1106-1117, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37421143

RESUMEN

Plant cells lack centrosomes and instead utilize acentrosomal microtubule organizing centers (MTOCs) to rapidly increase the number of microtubules at the onset of spindle assembly. Although several proteins required for MTOC formation have been identified, how the MTOC is positioned at the right place is not known. Here, we show that the inner nuclear membrane protein SUN2 is required for MTOC association with the nuclear envelope (NE) during mitotic prophase in the moss Physcomitrium patens. In actively dividing protonemal cells, microtubules accumulate around the NE during prophase. In particular, regional MTOC is formed at the apical surface of the nucleus. However, microtubule accumulation around the NE was impaired and apical MTOCs were mislocalized in sun2 knockout cells. Upon NE breakdown, the mitotic spindle was assembled with mislocalized MTOCs. However, completion of chromosome alignment in the spindle was delayed; in severe cases, the chromosome was transiently detached from the spindle body. SUN2 tended to localize to the apical surface of the nucleus during prophase in a microtubule-dependent manner. Based on these results, we propose that SUN2 facilitates the attachment of microtubules to chromosomes during spindle assembly by localizing microtubules to the NE. MTOC mispositioning was also observed during the first division of the gametophore tissue. Thus, this study suggests that microtubule-nucleus linking, a well-known function of SUN in animals and yeast, is conserved in plants.


Asunto(s)
Bryopsida , Membrana Nuclear , Animales , Membrana Nuclear/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Cromosomas , Bryopsida/genética
7.
EMBO Rep ; 22(4): e51400, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33655692

RESUMEN

In mouse oocytes, acentriolar MTOCs functionally replace centrosomes and act as microtubule nucleation sites. Microtubules nucleated from MTOCs initially assemble into an unorganized ball-like structure, which then transforms into a bipolar spindle carrying MTOCs at its poles, a process called spindle bipolarization. In mouse oocytes, spindle bipolarization is promoted by kinetochores but the mechanism by which kinetochore-microtubule attachments contribute to spindle bipolarity remains unclear. This study demonstrates that the stability of kinetochore-microtubule attachment is essential for confining MTOC positions at the spindle poles and for limiting spindle elongation. MTOC sorting is gradual and continues even in the metaphase spindle. When stable kinetochore-microtubule attachments are disrupted, the spindle is unable to restrict MTOCs at its poles and fails to terminate its elongation. Stable kinetochore fibers are directly connected to MTOCs and to the spindle poles. These findings suggest a role for stable kinetochore-microtubule attachments in fine-tuning acentrosomal spindle bipolarity.


Asunto(s)
Cinetocoros , Huso Acromático , Animales , Ratones , Centro Organizador de los Microtúbulos , Microtúbulos , Oocitos
8.
Proc Natl Acad Sci U S A ; 117(32): 19254-19265, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719146

RESUMEN

The appropriate arrangement of myonuclei within skeletal muscle myofibers is of critical importance for normal muscle function, and improper myonuclear localization has been linked to a variety of skeletal muscle diseases, such as centronuclear myopathy and muscular dystrophies. However, the molecules that govern myonuclear positioning remain elusive. Here, we report that skeletal muscle-specific CIP (sk-CIP) is a regulator of nuclear positioning. Genetic deletion of sk-CIP in mice results in misalignment of myonuclei along the myofibers and at specialized structures such as neuromuscular junctions (NMJs) and myotendinous junctions (MTJs) in vivo, impairing myonuclear positioning after muscle regeneration, leading to severe muscle dystrophy in mdx mice, a mouse model of Duchenne muscular dystrophy. sk-CIP is localized to the centrosome in myoblasts and relocates to the outer nuclear envelope in myotubes upon differentiation. Mechanistically, we found that sk-CIP interacts with the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex and the centriole Microtubule Organizing Center (MTOC) proteins to coordinately modulate myonuclear positioning and alignment. These findings indicate that sk-CIP may function as a muscle-specific anchoring protein to regulate nuclear position in multinucleated muscle cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Miopatías Estructurales Congénitas/fisiopatología , Proteínas Nucleares/metabolismo , Animales , Proteínas Portadoras/genética , Núcleo Celular/genética , Proteínas Co-Represoras , Humanos , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/fisiopatología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Proteínas Nucleares/genética , Especificidad de Órganos
9.
Dev Biol ; 476: 117-127, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33798537

RESUMEN

Drosophila oskar (osk) mRNA has both coding and noncoding functions, with the latter required for progression through oogenesis. Noncoding activity is mediated by the osk 3' UTR. Three types of cis elements act most directly and are clustered within the final ~120 nucleotides of the 3' UTR: multiple binding sites for the Bru1 protein, a short highly conserved region, and A-rich sequences abutting the poly(A) tail. Here we extend the characterization of these elements and their functions, providing new insights into osk noncoding RNA function and the makeup of the cis elements. We show that all three elements are required for correct positioning of the microtubule organizing center (MTOC), a defect not previously reported for any osk mutant. Normally, the MTOC is located at the posterior of the oocyte during previtellogenic stages of oogenesis, and this distribution underlies the strong posterior enrichment of many mRNAs transported into the oocyte from the nurse cells. When osk noncoding function was disrupted the MTOC was dispersed in the oocyte and osk mRNA failed to be enriched at the posterior, although transport to the oocyte was not affected. A previous study did not detect loss of posterior enrichment for certain osk mutants lacking noncoding activity (Kanke et al., 2015). This discrepancy may be due to use of imaging aimed at monitoring transport to the oocyte rather than posterior enrichment. Involvement in MTOC positioning suggests that the osk noncoding function may act in conjunction with genes whose loss has similar effects, and that osk function may extend to other processes requiring those genes. Further characterization of the cis elements required for osk noncoding function included completion of saturation mutagenesis of the most highly conserved region, providing critical information for evaluating the possible contribution of candidate binding factors. The 3'-most cis element is a cluster of A-rich sequences, the ARS. The close juxtaposition and structural similarity of the ARS and poly(A) tail raised the possibility that they comprise an extended A-rich element required for osk noncoding function. We found that absence of the poly(A) tail did not mimic the effects of mutation of the ARS, causing neither arrest of oogenesis nor mispositioning of osk mRNA in previtellogenic stage oocytes. Thus, the ARS and the poly(A) tail are not interchangeable for osk noncoding RNA function, suggesting that the role of the ARS is not in recruitment of Poly(A) binding protein (PABP), the protein that binds the poly(A) tail. Furthermore, although PABP has been implicated in transport of osk mRNA from the nurse cells to the oocyte, mutation of the ARS in combination with loss of the poly(A) tail did not disrupt transport of osk mRNA into the oocyte. We conclude that PABP acts indirectly in osk mRNA transport, or is associated with osk mRNA independent of an A-rich binding site. Although the poly(A) tail was not required for osk mRNA transport into the oocyte, its absence was associated with a novel osk mRNA localization defect later in oogenesis, potentially revealing a previously unrecognized step in the localization process.


Asunto(s)
Regiones no Traducidas 3'/genética , Proteínas de Drosophila/genética , Centro Organizador de los Microtúbulos/metabolismo , Animales , Sitios de Unión/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Oocitos/metabolismo , Oogénesis , Poli A/genética , Poli A/metabolismo , Empalme del ARN/genética , Empalme del ARN/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Cell Mol Neurobiol ; 42(1): 155-171, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34106361

RESUMEN

Autophagosome maturation comprises fusion with lysosomes and acidification. It is a critical step in the degradation of cytosolic protein aggregates that characterize many neurodegenerative diseases. In order to better understand this process, we studied intracellular trafficking of autophagosomes and aggregates of α-synuclein, which characterize Parkinson's disease and other synucleinopathies. The autophagosomal marker LC3 and the aggregation prone A53T mutant of α-synuclein were tagged by fluorescent proteins and expressed in HEK293T cells and primary astrocytes. The subcellular distribution and movement of these vesicle populations were analyzed by (time-lapse) microscopy. Fusion with lysosomes was assayed using the lysosomal marker LAMP1; vesicles with neutral and acidic luminal pH were discriminated using the RFP-GFP "tandem-fluorescence" tag. With respect to vesicle pH, we observed that neutral autophagosomes, marked by LC3 or synuclein, were located more frequently in the cell center, and acidic autophagosomes were observed more frequently in the cell periphery. Acidic autophagosomes were transported towards the cell periphery more often, indicating that acidification occurs in the cell center before transport to the periphery. With respect to autolysosomal fusion, we found that lysosomes preferentially moved towards the cell center, whereas autolysosomes moved towards the cell periphery, suggesting a cycle where lysosomes are generated in the periphery and fuse to autophagosomes in the cell center. Unexpectedly, many acidic autophagosomes were negative for LAMP1, indicating that acidification does not require fusion to lysosomes. Moreover, we found both neutral and acidic vesicles positive for LAMP1, consistent with delayed acidification of the autolysosome lumen. Individual steps of aggregate clearance thus occur in dedicated cellular regions. During aggregate clearance, autophagosomes and autolysosomes form in the center and are transported towards the periphery during maturation. In this process, luminal pH could regulate the direction of vesicle transport. (1) Transport and location of autophagosomes depend on luminal pH: Acidic autophagosomes are preferentially transported to the cell periphery, causing more acidic autophagosomes in the cell periphery and more neutral autophagosomes at the microtubule organizing center (MTOC). (2) Autolysosomes are transported to the cell periphery and lysosomes to the MTOC, suggesting spatial segregation of lysosome reformation and autolysosome fusion. (3) Synuclein aggregates are preferentially located at the MTOC and synuclein-containing vesicles in the cell periphery, consistent with transport of aggregates to the MTOC for autophagy.


Asunto(s)
Autofagosomas , Enfermedades Neurodegenerativas , Autofagia/fisiología , Células HEK293 , Humanos , Lisosomas/metabolismo , Enfermedades Neurodegenerativas/metabolismo
11.
J Cell Sci ; 132(24)2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31740532

RESUMEN

Centrosomes are important microtubule-organizing centers (MTOCs) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) are found in many cell types. Their composition and structure are only poorly understood. Here, we analyzed nuclear MTOCs (spindle-pole bodies, SPBs) and septal MTOCs in Aspergillus nidulans They both contain γ-tubulin along with members of the family of γ-tubulin complex proteins (GCPs). Our data suggest that SPBs consist of γ-tubulin small complexes (γ-TuSCs) at the outer plaque, and larger γ-tubulin ring complexes (γ-TuRC) at the inner plaque. We show that the MztA protein, an ortholog of the human MOZART protein (also known as MZT1), interacted with the inner plaque receptor PcpA (the homolog of fission yeast Pcp1) at SPBs, while no interaction nor colocalization was detected between MztA and the outer plaque receptor ApsB (fission yeast Mto1). Septal MTOCs consist of γ-TuRCs including MztA but are anchored through AspB and Spa18 (fission yeast Mto2). MztA is not essential for viability, although abnormal spindles were observed frequently in cells lacking MztA. Quantitative PALM imaging revealed unexpected dynamics of the protein composition of SPBs, with changing numbers of γ-tubulin complexes over time during interphase and constant numbers during mitosis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Aspergillus nidulans/metabolismo , Cuerpos Polares del Huso/metabolismo , Tubulina (Proteína)/metabolismo , Aspergillus nidulans/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Inmunoprecipitación , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Unión Proteica , Schizosaccharomyces/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
12.
Histochem Cell Biol ; 156(3): 273-281, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34110464

RESUMEN

Studies in differentiating skeletal muscle cells in vitro have revealed that the microtubule-organizing center shifts from the centrosome to the perinuclear sites. As the Golgi apparatus surrounds the nucleus in a myotube, it is unclear whether microtubules are nucleated at the nuclear envelope or at the surrounding Golgi apparatus. In this study, we investigated the positional relationship between the microtubule nucleating sites and the Golgi apparatus in C2C12 myotubes and in primary cultured mouse skeletal myotubes. We focused on gaps in the perinuclear Golgi apparatus where the nuclear envelope was not covered with the Golgi apparatus. In microtubule regrowth assay, microtubule regrowth after cold-nocodazole depolymerization of preexisting microtubules was not found at the gap of the perinuclear Golgi apparatus. Most of the microtubule regrowth was detected at the CDK5RAP2 (CDK5 regulatory subunit-associated protein 2)-rich spots on the perinuclear Golgi apparatus. Disruption of the perinuclear Golgi apparatus with brefeldin A treatment eliminated the perinuclear microtubule regrowth. The Golgi apparatus of undifferentiated myoblasts and those at the cytoplasm of myotubes were also the microtubule nucleating sites. From these observations, we concluded that most of the perinuclear microtubule nucleation occurs on the Golgi apparatus surrounding the nucleus.


Asunto(s)
Aparato de Golgi/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , Animales , Diferenciación Celular , Línea Celular , Núcleo Celular/metabolismo , Ratones , Músculo Esquelético/citología
13.
J Biol Chem ; 294(49): 18742-18755, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31666336

RESUMEN

The centrosome is a cytoplasmic nonenveloped organelle functioning as one of the microtubule-organizing centers and composing a centriole center surrounded by pericentriolar material (PCM) granules. PCM consists of many centrosomal proteins, including PCM1 and centrosomal protein 131 (CEP131), and helps maintain centrosome stability. Zika virus (ZIKV) is a flavivirus of the family Flaviviridae whose RNA and viral particles are replicated in the cytoplasm. However, how ZIKV interacts with host cell components during its productive infection stage is incompletely understood. Here, using several primate cell lines, we report that ZIKV infection disrupts and disperses the PCM granules. We demonstrate that PCM1- and CEP131-containing granules are dispersed in ZIKV-infected cells, whereas the centrioles remain intact. We found that ZIKV does not significantly alter cellular skeletal proteins, and, hence, these proteins may not be involved in the interaction between ZIKV and centrosomal proteins. Moreover, ZIKV infection decreased PCM1 and CEP131 protein, but not mRNA, levels. We further found that the protease inhibitor MG132 prevents the decrease in PCM1 and CEP131 levels and centriolar satellite dispersion. Therefore, we hypothesized that ZIKV infection induces proteasomal PCM1 and CEP131 degradation and thereby disrupts the PCM granules. Supporting this hypothesis, we show that ZIKV infection increases levels of mind bomb 1 (MIB1), previously demonstrated to be an E3 ubiquitin ligase for PCM1 and CEP131 and that ZIKV fails to degrade or disperse PCM in MIB1-ko cells. Our results imply that ZIKV infection activates MIB1-mediated ubiquitination that degrades PCM1 and CEP131, leading to PCM granule dispersion.


Asunto(s)
Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Infección por el Virus Zika/metabolismo , Animales , Autoantígenos/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células HEK293 , Humanos , Immunoblotting , Ubiquitina-Proteína Ligasas/genética , Células Vero , Virus Zika , Infección por el Virus Zika/genética
14.
J Cell Sci ; 131(20)2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30254025

RESUMEN

The specific organization of the neuronal microtubule cytoskeleton in axons and dendrites is an evolutionarily conserved determinant of neuronal polarity that allows for selective cargo sorting. However, how dendritic microtubules are organized and whether local differences influence cargo transport remains largely unknown. Here, we use live-cell imaging to systematically probe the microtubule organization in Caenorhabditiselegans neurons, and demonstrate the contribution of distinct mechanisms in the organization of dendritic microtubules. We found that most non-ciliated neurons depend on unc-116 (kinesin-1), unc-33 (CRMP) and unc-44 (ankyrin) for correct microtubule organization and polarized cargo transport, as previously reported. Ciliated neurons and the URX neuron, however, use an additional pathway to nucleate microtubules at the tip of the dendrite, from the base of the cilium in ciliated neurons. Since inhibition of distal microtubule nucleation affects distal dendritic transport, we propose a model in which the presence of a microtubule-organizing center at the dendrite tip ensures correct dendritic cargo transport.


Asunto(s)
Caenorhabditis elegans/metabolismo , Dendritas/metabolismo , Microtúbulos/metabolismo , Transporte de Proteínas/fisiología , Animales , Células Cultivadas
15.
J Cell Sci ; 131(13)2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29792311

RESUMEN

Prostate tumors make metabolic adaptations to ensure adequate energy and amplify cell cycle regulators, such as centrosomes, to sustain their proliferative capacity. It is not known whether cancer-associated fibroblasts (CAFs) undergo metabolic re-programming. We postulated that CAFs augment lipid storage and amplify centrosomal or non-centrosomal microtubule-organizing centers (MTOCs) through a pigment epithelium-derived factor (PEDF)-dependent lipid-MTOC signaling axis. Primary human normal prostate fibroblasts (NFs) and CAFs were evaluated for lipid content, triacylglycerol-regulating proteins, MTOC number and distribution. CAFs were found to store more neutral lipids than NFs. Adipose triglyceride lipase (ATGL) and PEDF were strongly expressed in NFs, whereas CAFs had minimal to undetectable levels of PEDF or ATGL protein. At baseline, CAFs demonstrated MTOC amplification when compared to 1-2 perinuclear MTOCs consistently observed in NFs. Treatment with PEDF or blockade of lipogenesis suppressed lipid content and MTOC number. In summary, our data support that CAFs have acquired a tumor-like phenotype by re-programming lipid metabolism and amplifying MTOCs. Normalization of MTOCs by restoring PEDF or by blocking lipogenesis highlights a previously unrecognized plasticity in centrosomes, which is regulated through a new lipid-MTOC axis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Proteínas del Ojo/metabolismo , Metabolismo de los Lípidos , Centro Organizador de los Microtúbulos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neoplasias de la Próstata/metabolismo , Serpinas/metabolismo , Proteínas del Ojo/genética , Fibroblastos/metabolismo , Humanos , Lipasa/genética , Lipasa/metabolismo , Lipogénesis , Masculino , Factores de Crecimiento Nervioso/genética , Próstata/metabolismo , Neoplasias de la Próstata/genética , Serpinas/genética , Triglicéridos/metabolismo
16.
Curr Genet ; 66(4): 719-727, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32266430

RESUMEN

Although cell division is usually portrayed as an equitable process by which a progenitor cell originates two identical daughter cells, there are multiple examples of asymmetric divisions that generate two cells that differ in their content, morphology and/or proliferative potential. The capacity of the cells to generate asymmetry during their division is of paramount biological relevance, playing essential roles during embryonic development, cellular regeneration and tissue morphogenesis. Problems with the proper establishment of asymmetry and polarity during cell division can give rise to cancer and neurodevelopmental disorders, as well as to also accelerate cellular aging. Interestingly, the microtubule organizing centers that orchestrate the formation of the mitotic spindle have been described among the cellular structures that can be differentially allocated during asymmetric cell divisions. This mini-review focuses on recent research from our group and others uncovering a role for the non-random distribution of the spindle-associated microtubule organizing centers in the differential distribution of aging factors during asymmetric mitoses and therefore in the maintenance of the replicative lifespan of the cells.


Asunto(s)
División Celular Asimétrica , Enfermedades Neurodegenerativas/patología , Polos del Huso/fisiología , Envejecimiento , Animales , Carcinogénesis , Centrosoma , Femenino , Humanos , Masculino , Mitosis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Huso Acromático , Células Madre/citología , Células Madre/fisiología
17.
Development ; 144(21): 4015-4025, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28947537

RESUMEN

Asymmetric nuclear positioning is observed during animal development, but its regulation and significance in cell differentiation remain poorly understood. Using zebrafish blastulae, we provide evidence that nuclear movement towards the yolk syncytial layer, which comprises extraembryonic tissue, occurs in the first cells fated to differentiate into the endoderm. Nodal signaling is essential for nuclear movement, whereas nuclear envelope proteins are involved in movement through microtubule formation. Positioning of the microtubule-organizing center, which is proposed to be crucial for nuclear movement, is regulated by Nodal signaling and nuclear envelope proteins. The non-Smad JNK signaling pathway, which is downstream of Nodal signaling, regulates nuclear movement independently of the Smad pathway, and this nuclear movement is associated with Smad signal transduction toward the nucleus. Our study provides insight into the function of nuclear movement in Smad signaling toward the nucleus, and could be applied to the control of TGFß signaling.


Asunto(s)
Tipificación del Cuerpo , Núcleo Celular/metabolismo , Endodermo/embriología , Sistema de Señalización de MAP Quinasas , Proteína Nodal/metabolismo , Proteína Smad2/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Movimiento Celular , Yema de Huevo/metabolismo , Embrión no Mamífero/metabolismo , Endodermo/citología , Endodermo/metabolismo , Células Gigantes/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(42): E8847-E8854, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973935

RESUMEN

Proper orientation of the cell division axis is critical for asymmetric cell divisions that underpin cell differentiation. In animals, centrosomes are the dominant microtubule organizing centers (MTOC) and play a pivotal role in axis determination by orienting the mitotic spindle. In land plants that lack centrosomes, a critical role of a microtubular ring structure, the preprophase band (PPB), has been observed in this process; the PPB is required for orienting (before prophase) and guiding (in telophase) the mitotic apparatus. However, plants must possess additional mechanisms to control the division axis, as certain cell types or mutants do not form PPBs. Here, using live imaging of the gametophore of the moss Physcomitrella patens, we identified acentrosomal MTOCs, which we termed "gametosomes," appearing de novo and transiently in the prophase cytoplasm independent of PPB formation. We show that gametosomes are dispensable for spindle formation but required for metaphase spindle orientation. In some cells, gametosomes appeared reminiscent of the bipolar MT "polar cap" structure that forms transiently around the prophase nucleus in angiosperms. Specific disruption of the polar caps in tobacco cells misoriented the metaphase spindles and frequently altered the final division plane, indicating that they are functionally analogous to the gametosomes. These results suggest a broad use of transient MTOC structures as the spindle orientation machinery in plants, compensating for the evolutionary loss of centrosomes, to secure the initial orientation of the spindle in a spatial window that allows subsequent fine-tuning of the division plane axis by the guidance machinery.


Asunto(s)
Bryopsida/citología , Citoplasma/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Actinas/genética , Actinas/metabolismo , División Celular Asimétrica , Citoplasma/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Células Vegetales , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Profase , Imagen de Lapso de Tiempo/métodos , Nicotiana/citología , Nicotiana/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
19.
Dev Biol ; 434(2): 278-291, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29269218

RESUMEN

During mammalian meiosis, Polo-like kinase 1 (PLK1) is essential during cell cycle progression. In oocyte maturation, PLK1 expression is well characterized but timing of posttranslational modifications regulating its activity and subcellular localization are less clear. Small ubiquitin-related modifier (SUMO) posttranslational modifier proteins have been detected in mammalian gametes but their precise function during gametogenesis is largely unknown. In the present paper we report for mouse oocytes that both PLK1 and phosphorylated PLK1 undergo SUMOylation in meiosis II (MII) oocytes using immunocytochemistry, immunoprecipitation and in vitro SUMOylation assays. At MII, PLK1 is phosphorylated at threonine-210 and serine-137. MII oocyte PLK1 and phosphorylated PLK1 undergo SUMOylation by SUMO-1, -2 and -3 as shown by individual in vitro assays. Using these assays, forms of phosphorylated PLK1 normalized to PLK1 increased significantly and correlated with SUMOylated PLK1 levels. During meiotic progression and maturation, SUMO-1-SUMOylation of PLK1 is involved in spindle formation whereas SUMO-2/3-SUMOylation may regulate PLK1 activity at kinetochore-spindle attachment sites. Microtubule integrity is required for PLK1 localization with SUMO-1 but not with SUMO-2/3. Inhibition of SUMOylation disrupts proper meiotic bipolar spindle organization and spindle-kinetochore attachment. The data show that both temporal and SUMO-specific-SUMOylation play important roles in orchestrating functional dynamics of PLK1 during mouse oocyte meiosis, including subcellular compartmentalization.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Meiosis/fisiología , Oocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína SUMO-1/metabolismo , Huso Acromático/metabolismo , Sumoilación/fisiología , Animales , Femenino , Cinetocoros/metabolismo , Ratones , Oocitos/citología , Fosforilación/fisiología , Quinasa Tipo Polo 1
20.
J Cell Biochem ; 120(9): 16025-16036, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31074104

RESUMEN

This paper aims to probe into the effect of sweroside (SOS) in osteoporosis (OP) and explains mechanisms of its molecular. Applying the ovariectomized (OVX) mouse model investigates the preventive effect of SOS against postmenopausal OP after 3 months of SOS treatment (120 mg/kg/day). Using hematoxylin and eosin (HE) staining and micro computed tomography (CT) observed the morphology of OP in each group. Immunohistochemical staining (IHC) was used to examine osteoblast markers. Experiments in vitro, bone marrow mesenchymal stem cells (BMSCs) from C57/BL6 mice were treated with SOS for 14 days. The staining of alizarin red and alkaline phosphatase activity were measured, and the presentation of osteoblast markers was detected by quantitative reverse transcription PCR. BMSCs were also treated with 1 µg/mL SOS with or without rapamycin, the expression of protein S6 (PS6), P-mTOR, runt-related transcription factor 2 (RUNX2), OSX, and osteocalcin (OCN) was detected by Western blotting. Experiments in vivo, HE results show that SOS can alleviate OP, CT results show that there are lower trabecular thickness, bone mineral density, and trabecular number in control OVX mice than those in the OVX + SOS group. IHC results showed that SOS can promote the expression of osteogenic markers and immunofluorescent results show that SOS can promote mTORC1 signal activation. Experiments in vitro revealed that SOS stimulated the activation of the mTORC1 signaling pathway and upregulated RUNX2, OSX, and OCN, rapamycin can reverse it. Our findings demonstrated that differentiated BMSCs into osteoblasts can be promoted by SOS via upregulating the expression of P-mTOR, PS6, RUNX2, OSX, and OCN. SOS effectively prevented OP by hyperactivation of the mTORC1/PS6 signaling pathway.


Asunto(s)
Glucósidos Iridoides/administración & dosificación , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células Madre Mesenquimatosas/citología , Osteoporosis Posmenopáusica/tratamiento farmacológico , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Esquema de Medicación , Femenino , Humanos , Glucósidos Iridoides/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoporosis Posmenopáusica/diagnóstico por imagen , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA