RESUMEN
Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.
Asunto(s)
Genoma de Protozoos , Estadios del Ciclo de Vida/genética , Hígado/metabolismo , Hígado/parasitología , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/genética , Alelos , Amino Azúcares/biosíntesis , Animales , Culicidae/parasitología , Eritrocitos/parasitología , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Genotipo , Modelos Biológicos , Mutación/genética , Parásitos/genética , Parásitos/crecimiento & desarrollo , Fenotipo , Plasmodium berghei/metabolismo , Ploidias , ReproducciónRESUMEN
Genome-scale metabolic models (GEMs) are powerful tools for predicting cellular metabolic and physiological states. However, there are still missing reactions in GEMs due to incomplete knowledge. Recent gaps filling methods suggest directly predicting missing responses without relying on phenotypic data. However, they do not differentiate between substrates and products when constructing the prediction models, which affects the predictive performance of the models. In this paper, we propose a hyperedge prediction model that distinguishes substrates and products based on dual-scale fused hypergraph convolution, DSHCNet, for inferring the missing reactions to effectively fill gaps in the GEM. First, we model each hyperedge as a heterogeneous complete graph and then decompose it into three subgraphs at both homogeneous and heterogeneous scales. Then we design two graph convolution-based models to, respectively, extract features of the vertices in two scales, which are then fused via the attention mechanism. Finally, the features of all vertices are further pooled to generate the representative feature of the hyperedge. The strategy of graph decomposition in DSHCNet enables the vertices to engage in message passing independently at both scales, thereby enhancing the capability of information propagation and making the obtained product and substrate features more distinguishable. The experimental results show that the average recovery rate of missing reactions obtained by DSHCNet is at least 11.7% higher than that of the state-of-the-art methods, and that the gap-filled GEMs based on our DSHCNet model achieve the best prediction performance, demonstrating the superiority of our method.
Asunto(s)
Redes y Vías Metabólicas , Algoritmos , Modelos Biológicos , Genoma , Biología Computacional/métodosRESUMEN
The evolution of the mitochondria was a significant event that gave rise to the eukaryotic lineage and most large complex life. Central to the origins of the mitochondria was an endosymbiosis between prokaryotes. Yet, despite the potential benefits that can stem from a prokaryotic endosymbiosis, their modern occurrence is exceptionally rare. While many factors may contribute to their rarity, we lack methods for estimating the extent to which they constrain the appearance of a prokaryotic endosymbiosis. Here, we address this knowledge gap by examining the role of metabolic compatibility between a prokaryotic host and endosymbiont. We use genome-scale metabolic flux models from three different collections (AGORA, KBase, and CarveMe) to assess the viability, fitness, and evolvability of potential prokaryotic endosymbioses. We find that while more than half of host-endosymbiont pairings are metabolically viable, the resulting endosymbioses have reduced growth rates compared to their ancestral metabolisms and are unlikely to gain mutations to overcome these fitness differences. In spite of these challenges, we do find that they may be more robust in the face of environmental perturbations at least in comparison with the ancestral host metabolism lineages. Our results provide a critical set of null models and expectations for understanding the forces that shape the structure of prokaryotic life.
Asunto(s)
Células Procariotas , Simbiosis , Filogenia , Simbiosis/genética , Células Procariotas/metabolismo , Eucariontes/genética , Células Eucariotas/metabolismo , Evolución BiológicaRESUMEN
Advances in medicine and biotechnology rely on a deep understanding of biological processes. Despite the increasingly available types and amounts of omics data, significant knowledge gaps remain, with current approaches to identify and curate missing annotations being limited to a set of already known reactions. Here, we introduce Network Integrated Computational Explorer for Gap Annotation of Metabolism (NICEgame), a workflow to identify and curate nonannotated metabolic functions in genomes using the ATLAS of Biochemistry and genome-scale metabolic models (GEMs). To resolve gaps in GEMs, NICEgame provides alternative sets of known and hypothetical reactions, assesses their thermodynamic feasibility, and suggests candidate genes to catalyze these reactions. We identified metabolic gaps and applied NICEgame in the latest GEM of Escherichia coli, iML1515, and enhanced the E. coli genome annotation by resolving 47% of these gaps. NICEgame, applicable to any GEM and functioning from open-source software, should thus enhance all GEM-based predictions and subsequent biotechnological and biomedical applications.
Asunto(s)
Escherichia coli , Redes y Vías Metabólicas , Escherichia coli/genética , Escherichia coli/metabolismo , Flujo de Trabajo , Programas Informáticos , Genoma , Modelos BiológicosRESUMEN
BACKGROUND: Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data. RESULTS: We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups. CONCLUSIONS: Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.
Asunto(s)
Medicina , Metabolómica , Humanos , Simulación por Computador , Análisis de Datos , Estado de SaludRESUMEN
Geobacillus thermoglucosidasius NCIMB 11955 possesses advantages, such as high-temperature tolerance, rapid growth rate, and low contamination risk. Additionally, it features efficient gene editing tools, making it one of the most promising next-generation cell factories. However, as a non-model microorganism, a lack of metabolic information significantly hampers the construction of high-precision metabolic flux models. Here, we propose a BioIntelliModel (BIM) strategy based on artificial intelligence technology for the automated construction of enzyme-constrained models. 1). BIM utilises the Contrastive Learning Enabled Enzyme Annotation (CLEAN) prediction tool to analyse the entire genome sequence of G. thermoglucosidasius NCIMB 11955, uncovering potential functional proteins in non-model strains. 2). The MetaPatchM module of BIM automates the repair of the metabolic network model. 3). The Tianjin University of Science and Technology-kcat (TUST-kcat) module predicts the kcat values of enzymes within the model. 4). The Enzyme-insert procedure constructs an enzyme-constrained model and performs a global scan to address overconstraint issues. Enzymatic data were automatically integrated into the metabolic flux model, creating an enzyme-constrained model, ec_G-ther11955. To validate model accuracy, we used both the p-thermo and ec_G-ther11955 models to predict riboflavin production strategies. The ec_G-ther11955 model demonstrated significantly higher accuracy. To further verify its efficacy, we employed ec_G-ther11955 to guide the rational design of L-valine-producing strains. Using the Optimisation Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions (OptForce), Predictive Knockout Targeting (PKT), and Flux Scanning based on Enforced Objective Flux (FSEOF) algorithms, we identified 24 knockout and overexpression targets, achieving an accuracy rate of 87.5%. Ultimately, this led to an increase of 664.04% in L-valine titre. This study provides a novel strategy for rapidly constructing non-model strain models and demonstrates the tremendous potential of artificial intelligence in metabolic engineering.
RESUMEN
Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the "IPP-bypass" pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.
Asunto(s)
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Carbono/metabolismo , Ingeniería MetabólicaRESUMEN
The Escherichia coli genome-scale metabolic model (GEM) is an exemplar systems biology model for the simulation of cellular metabolism. Experimental validation of model predictions is essential to pinpoint uncertainty and ensure continued development of accurate models. Here, we quantified the accuracy of four subsequent E. coli GEMs using published mutant fitness data across thousands of genes and 25 different carbon sources. This evaluation demonstrated the utility of the area under a precision-recall curve relative to alternative accuracy metrics. An analysis of errors in the latest (iML1515) model identified several vitamins/cofactors that are likely available to mutants despite being absent from the experimental growth medium and highlighted isoenzyme gene-protein-reaction mapping as a key source of inaccurate predictions. A machine learning approach further identified metabolic fluxes through hydrogen ion exchange and specific central metabolism branch points as important determinants of model accuracy. This work outlines improved practices for the assessment of GEM accuracy with high-throughput mutant fitness data and highlights promising areas for future model refinement in E. coli and beyond.
Asunto(s)
Escherichia coli , Genoma , Escherichia coli/genética , Escherichia coli/metabolismo , Mapeo Cromosómico , Carbono/metabolismo , Modelos BiológicosRESUMEN
Microbes have been extensively utilized for their sustainable and scalable properties in synthesizing desired bio-products. However, insufficient knowledge about intracellular metabolism has impeded further microbial applications. The genome-scale metabolic models (GEMs) play a pivotal role in facilitating a global understanding of cellular metabolic mechanisms. These models enable rational modification by exploring metabolic pathways and predicting potential targets in microorganisms, enabling precise cell regulation without experimental costs. Nonetheless, simplified GEM only considers genome information and network stoichiometry while neglecting other important bio-information, such as enzyme functions, thermodynamic properties, and kinetic parameters. Consequently, uncertainties persist particularly when predicting microbial behaviors in complex and fluctuant systems. The advent of the omics era with its massive quantification of genes, proteins, and metabolites under various conditions has led to the flourishing of multi-constrained models and updated algorithms with improved predicting power and broadened dimension. Meanwhile, machine learning (ML) has demonstrated exceptional analytical and predictive capacities when applied to training sets of biological big data. Incorporating the discriminant strength of ML with GEM facilitates mechanistic modeling efficiency and improves predictive accuracy. This paper provides an overview of research innovations in the GEM, including multi-constrained modeling, analytical approaches, and the latest applications of ML, which may contribute comprehensive knowledge toward genetic refinement, strain development, and yield enhancement for a broad range of biomolecules.
RESUMEN
Oleaginous yeasts are promising platforms for microbial lipids production as a renewable and sustainable alternative to vegetable oils in biodiesel production. In this paper, a thorough in silico assessment of lipid production in batch cultivation by Rhodosporidium toruloides was developed. By means of dynamic flux balance analysis, the traditional two-stage bioprocess (TSB) performed by the native strain was contrasted with one-stage bioprocess (OSB) using four designed strains obtained by gene knockout strategies. Lipid titer, yield, content, and productivity were analyzed at different initial C/N ratios as relevant performance indicators used in bioprocesses. By weighting these indicators, a global lipid efficiency metric (GLEM) was defined to consider different scenarios. Under simulated conditions, designed strains for lipid overproduction in OSB outperformed the TSB in terms of lipid title (up to threefold), lipid yield (up to 2.4-fold), lipid content (up to 2.8-fold, with a maximum of 76%), and productivity (up to 1.3-fold), depending on C/N ratios. Using these efficiency parameters and the proposed GLEM, the process of selecting the most suitable candidates for lipid production could be carried out before experimental assays. This methodology holds the potential to be extended to other oleaginous microorganisms and diverse strain design techniques.
Asunto(s)
Basidiomycota , Rhodotorula , Basidiomycota/genética , Rhodotorula/genética , Biocombustibles , LípidosRESUMEN
Mammalian cells are commonly used as hosts in cell culture for biologics production in the pharmaceutical industry. Structured mechanistic models of metabolism have been used to capture complex cellular mechanisms that contribute to varying metabolic shifts in different cell lines. However, little research has focused on the impact of temporal changes in enzyme abundance and activity on the modeling of cell metabolism. In this work, we present a framework for constructing mechanistic models of metabolism that integrate growth-signaling control of enzyme activity and transcript dynamics. The proposed approach is applied to build models for three Chinese hamster ovary (CHO) cell lines using fed-batch culture data and time-series transcript profiles. Leveraging information from the transcriptome data, we develop a parameter estimation approach based on multi-cell-line (MCL) learning, which combines data sets from different cell lines and trains the individual cell-line models jointly to improve model accuracy. The computational results demonstrate the important role of growth signaling and transcript variability in metabolic models as well as the virtue of the MCL approach for constructing cell-line models with a limited amount of data. The resulting models exhibit a high level of accuracy in predicting distinct metabolic behaviors in the different cell lines; these models can potentially be used to accelerate the process and cell-line development for the biomanufacturing of new protein therapeutics.
Asunto(s)
Cricetulus , Modelos Biológicos , Células CHO , Animales , Aprendizaje Automático , Transcriptoma/genéticaRESUMEN
Marine thraustochytrids produce metabolically important lipids such as the long-chain omega-3 polyunsaturated fatty acids, carotenoids, and sterols. The growth and lipid production in thraustochytrids depends on the composition of the culture medium that often contains yeast extract as a source of amino acids. This work discusses the effects of individual amino acids provided in the culture medium as the only source of nitrogen, on the production of biomass and lipids by the thraustochytrid Thraustochytrium sp. RT2316-16. A reconstructed metabolic network based on the annotated genome of RT2316-16 in combination with flux balance analysis was used to explain the observed growth and consumption of the nutrients. The culture kinetic parameters estimated from the experimental data were used to constrain the flux via the nutrient consumption rates and the specific growth rate of the triacylglycerol-free biomass in the genome-scale metabolic model (GEM) to predict the specific rate of ATP production for cell maintenance. A relationship was identified between the specific rate of ATP production for maintenance and the specific rate of glucose consumption. The GEM and the derived relationship for the production of ATP for maintenance were used in linear optimization problems, to successfully predict the specific growth rate of RT2316-16 in different experimental conditions.
Asunto(s)
Modelos Biológicos , Estramenopilos , Estramenopilos/metabolismo , Estramenopilos/genética , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Redes y Vías Metabólicas/genética , Aminoácidos/metabolismo , Biomasa , Metabolismo de los Lípidos , Nutrientes/metabolismo , Adenosina Trifosfato/metabolismoRESUMEN
Overproduction of desired native or nonnative biochemical(s) in (micro)organisms can be achieved through metabolic engineering. Appropriate rewiring of cell metabolism is performed by making rational changes such as insertion, up-/down-regulation and knockout of genes and consequently metabolic reactions. Finding appropriate targets (including proper sets of reactions to be knocked out) for metabolic engineering to design optimal production strains has been the goal of a number of computational algorithms. We developed FastKnock, an efficient next-generation algorithm for identifying all possible knockout strategies (with a predefined maximum number of reaction deletions) for the growth-coupled overproduction of biochemical(s) of interest. We achieve this by developing a special depth-first traversal algorithm that allows us to prune the search space significantly. This leads to a drastic reduction in execution time. We evaluate the performance of the FastKnock algorithm using various Escherichia coli genome-scale metabolic models in different conditions (minimal and rich mediums) for the overproduction of a number of desired metabolites. FastKnock efficiently prunes the search space to less than 0.2% for quadruple- and 0.02% for quintuple-reaction knockouts. Compared to the classic approaches such as OptKnock and the state-of-the-art techniques such as MCSEnumerator methods, FastKnock found many more beneficial and important practical solutions. The availability of all the solutions provides the opportunity to further characterize, rank and select the most appropriate intervention strategy based on any desired evaluation index. Our implementation of the FastKnock method in Python is publicly available at https://github.com/leilahsn/FastKnock .
Asunto(s)
Ingeniería Metabólica , Modelos Biológicos , Algoritmos , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma , Redes y Vías MetabólicasRESUMEN
BACKGROUND: Helicobacter pylori is considered a true human pathogen for which rising drug resistance constitutes a drastic concern globally. The present study aimed to reconstruct a genome-scale metabolic model (GSMM) to decipher the metabolic capability of H. pylori strains in response to clarithromycin and rifampicin along with identification of novel drug targets. MATERIALS AND METHODS: The iIT341 model of H. pylori was updated based on genome annotation data, and biochemical knowledge from literature and databases. Context-specific models were generated by integrating the transcriptomic data of clarithromycin and rifampicin resistance into the model. Flux balance analysis was employed for identifying essential genes in each strain, which were further prioritized upon being nonhomologs to humans, virulence factor analysis, druggability, and broad-spectrum analysis. Additionally, metabolic differences between sensitive and resistant strains were also investigated based on flux variability analysis and pathway enrichment analysis of transcriptomic data. RESULTS: The reconstructed GSMM was named as HpM485 model. Pathway enrichment and flux variability analyses demonstrated reduced activity in the ribosomal pathway in both clarithromycin- and rifampicin-resistant strains. Also, a significant decrease was detected in the activity of metabolic pathways of clarithromycin-resistant strain. Moreover, 23 and 16 essential genes were exclusively detected in clarithromycin- and rifampicin-resistant strains, respectively. Based on prioritization analysis, cyclopropane fatty acid synthase and phosphoenolpyruvate synthase were identified as putative drug targets in clarithromycin- and rifampicin-resistant strains, respectively. CONCLUSIONS: We present a robust and reliable metabolic model of H. pylori. This model can predict novel drug targets to combat drug resistance and explore the metabolic capability of H. pylori in various conditions.
Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Claritromicina/farmacología , Rifampin/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Bases de Datos FactualesRESUMEN
Poly-hydroxybutyrate (PHB) is an environmentally friendly alternative for conventional fossil fuel-based plastics that is produced by various microorganisms. Large-scale PHB production is challenging due to the comparatively higher biomanufacturing costs. A PHB overproducer is the haloalkaliphilic bacterium Halomonas campaniensis, which has low nutritional requirements and can grow in cultures with high salt concentrations, rendering it resistant to contamination. Despite its virtues, the metabolic capabilities of H. campaniensis as well as the limitations hindering higher PHB production remain poorly studied. To address this limitation, we present HaloGEM, the first high-quality genome-scale metabolic network reconstruction, which encompasses 888 genes, 1528 reactions (1257 gene-associated), and 1274 metabolites. HaloGEM not only displays excellent agreement with previous growth data and experiments from this study, but it also revealed nitrogen as a limiting nutrient when growing aerobically under high salt concentrations using glucose as carbon source. Among different nitrogen source mixtures for optimal growth, HaloGEM predicted glutamate and arginine as a promising mixture producing increases of 54.2% and 153.4% in the biomass yield and PHB titer, respectively. Furthermore, the model was used to predict genetic interventions for increasing PHB yield, which were consistent with the rationale of previously reported strategies. Overall, the presented reconstruction advances our understanding of the metabolic capabilities of H. campaniensis for rationally engineering this next-generation industrial biotechnology platform. KEY POINTS: A comprehensive genome-scale metabolic reconstruction of H. campaniensis was developed. Experiments and simulations predict N limitation in minimal media under aerobiosis. In silico media design increased experimental biomass yield and PHB titer.
Asunto(s)
Halomonas , Hidroxibutiratos , Nitrógeno , Poliésteres , Polihidroxibutiratos , Halomonas/metabolismo , Halomonas/genética , Halomonas/crecimiento & desarrollo , Nitrógeno/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Redes y Vías Metabólicas/genética , Biomasa , Glucosa/metabolismoRESUMEN
Fungi are diverse organisms with various characteristics and functions. Some play a role in recycling essential elements, such as nitrogen and carbon, while others are utilized in the food and drink production industry. Some others are known to cause diseases in various organisms, including humans. Fungal pathogens cause superficial, subcutaneous, and systemic infections. Consequently, many scientists have focused on studying the factors contributing to the development of human diseases. Therefore, multiple approaches have been assessed to examine the biology of these intriguing organisms. The genome-scale metabolic models (GEMs) have demonstrated many advantages to microbial metabolism studies and the ability to propose novel therapeutic alternatives. Despite significant advancements, much remains to be elucidated regarding the use of this tool for investigating fungal metabolism. This review aims to compile the data provided by the published GEMs of human fungal pathogens. It gives specific examples of the most significant contributions made by these models, examines the advantages and difficulties associated with using such models, and explores the novel approaches suggested to enhance and refine their development.
Asunto(s)
Hongos , Genoma Fúngico , Hongos/metabolismo , Hongos/genética , Humanos , Modelos Biológicos , Redes y Vías Metabólicas , Micosis/microbiología , Micosis/metabolismoRESUMEN
Acinetobacter lwoffii is widely considered to be a harmful bacterium that is resistant to medicines and disinfectants. A. lwoffii NL1 degrades phenols efficiently and shows promise as an aromatic compound degrader in antibiotic-contaminated environments. To gain a comprehensive understanding of A. lwoffii, the first genome-scale metabolic model of A. lwoffii was constructed using semi-automated and manual methods. The iNX811 model, which includes 811 genes, 1071 metabolites, and 1155 reactions, was validated using 39 unique carbon and nitrogen sources. Genes and metabolites critical for cell growth were analyzed, and 12 essential metabolites (mainly in the biosynthesis and metabolism of glycan, lysine, and cofactors) were identified as antibacterial drug targets. Moreover, to explore the metabolic response to phenols, metabolic flux was simulated by integrating transcriptomics, and the significantly changed metabolism mainly included central carbon metabolism, along with some transport reactions. In addition, the addition of substances that effectively improved phenol degradation was predicted and validated using the model. Overall, the reconstruction and analysis of model iNX811 helped to study the antimicrobial systems and biodegradation behavior of A. lwoffii.
Asunto(s)
Acinetobacter , Genoma Bacteriano , Acinetobacter/metabolismo , Acinetobacter/genética , Modelos Biológicos , Carbono/metabolismo , Redes y Vías Metabólicas , Nitrógeno/metabolismo , Fenoles/metabolismo , Biodegradación Ambiental , Antibacterianos/farmacologíaRESUMEN
Hepatocellular carcinoma (HCC) results in the abnormal regulation of cellular metabolic pathways. Constraint-based modeling approaches can be utilized to dissect metabolic reprogramming, enabling the identification of biomarkers and anticancer targets for diagnosis and treatment. In this study, two genome-scale metabolic models (GSMMs) were reconstructed by employing RNA sequencing expression patterns of hepatocellular carcinoma (HCC) and their healthy counterparts. An anticancer target discovery (ACTD) framework was integrated with the two models to identify HCC targets for anticancer treatment. The ACTD framework encompassed four fuzzy objectives to assess both the suppression of cancer cell growth and the minimization of side effects during treatment. The composition of a nutrient may significantly affect target identification. Within the ACTD framework, ten distinct nutrient media were utilized to assess nutrient uptake for identifying potential anticancer enzymes. The findings revealed the successful identification of target enzymes within the cholesterol biosynthetic pathway using a cholesterol-free cell culture medium. Conversely, target enzymes in the cholesterol biosynthetic pathway were not identified when the nutrient uptake included a cholesterol component. Moreover, the enzymes PGS1 and CRL1 were detected in all ten nutrient media. Additionally, the ACTD framework comprises dual-group representations of target combinations, pairing a single-target enzyme with an additional nutrient uptake reaction. Additionally, the enzymes PGS1 and CRL1 were identified across the ten-nutrient media. Furthermore, the ACTD framework encompasses two-group representations of target combinations involving the pairing of a single-target enzyme with an additional nutrient uptake reaction. Computational analysis unveiled that cell viability for all dual-target combinations exceeded that of their respective single-target enzymes. Consequently, integrating a target enzyme while adjusting an additional exchange reaction could efficiently mitigate cell proliferation rates and ATP production in the treated cancer cells. Nevertheless, most dual-target combinations led to lower side effects in contrast to their single-target counterparts. Additionally, differential expression of metabolites between cancer cells and their healthy counterparts were assessed via parsimonious flux variability analysis employing the GSMMs to pinpoint potential biomarkers. The variabilities of the fluxes and metabolite flow rates in cancer and healthy cells were classified into seven categories. Accordingly, two secretions and thirteen uptakes (including eight essential amino acids and two conditionally essential amino acids) were identified as potential biomarkers. The findings of this study indicated that cancer cells exhibit a higher uptake of amino acids compared with their healthy counterparts.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Humanos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Modelos Biológicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Redes y Vías Metabólicas , Proliferación Celular/efectos de los fármacosRESUMEN
In this paper, a fuzzy hierarchical optimization framework is proposed for identifying potential antiviral targets for treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the heart. The proposed framework comprises four objectives for evaluating the elimination of viral biomass growth and the minimization of side effects during treatment. In the application of the framework, Dulbecco's modified eagle medium (DMEM) and Ham's medium were used as uptake nutrients on an antiviral target discovery platform. The prediction results from the framework reveal that most of the antiviral enzymes in the aforementioned media are involved in fatty acid metabolism and amino acid metabolism. However, six enzymes involved in cholesterol biosynthesis in Ham's medium and three enzymes involved in glycolysis in DMEM are unable to eliminate the growth of the SARS-CoV-2 biomass. Three enzymes involved in glycolysis, namely BPGM, GAPDH, and ENO1, in DMEM combine with the supplemental uptake of L-cysteine to increase the cell viability grade and metabolic deviation grade. Moreover, six enzymes involved in cholesterol biosynthesis reduce and fail to reduce viral biomass growth in a culture medium if a cholesterol uptake reaction does not occur and occurs in this medium, respectively.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , ColesterolRESUMEN
BACKGROUND: Flux Balance Analysis (FBA) is a key metabolic modeling method used to simulate cellular metabolism under steady-state conditions. Its simplicity and versatility have led to various strategies incorporating transcriptomic and proteomic data into FBA, successfully predicting flux distribution and phenotypic results. However, despite these advances, the untapped potential lies in leveraging gene-related connections like co-expression patterns for valuable insights. RESULTS: To fill this gap, we introduce ICON-GEMs, an innovative constraint-based model to incorporate gene co-expression network into the FBA model, facilitating more precise determination of flux distributions and functional pathways. In this study, transcriptomic data from both Escherichia coli and Saccharomyces cerevisiae were integrated into their respective genome-scale metabolic models. A comprehensive gene co-expression network was constructed as a global view of metabolic mechanism of the cell. By leveraging quadratic programming, we maximized the alignment between pairs of reaction fluxes and the correlation of their corresponding genes in the co-expression network. The outcomes notably demonstrated that ICON-GEMs outperformed existing methodologies in predictive accuracy. Flux variabilities over subsystems and functional modules also demonstrate promising results. Furthermore, a comparison involving different types of biological networks, including protein-protein interactions and random networks, reveals insights into the utilization of the co-expression network in genome-scale metabolic engineering. CONCLUSION: ICON-GEMs introduce an innovative constrained model capable of simultaneous integration of gene co-expression networks, ready for board application across diverse transcriptomic data sets and multiple organisms. It is freely available as open-source at https://github.com/ThummaratPaklao/ICOM-GEMs.git .