Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 137, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553666

RESUMEN

BACKGROUND: Metagenomic sequencing technologies offered unprecedented opportunities and also challenges to microbiology and microbial ecology particularly. The technology has revolutionized the studies of microbes and enabled the high-profile human microbiome and earth microbiome projects. The terminology-change from microbes to microbiomes signals that our capability to count and classify microbes (microbiomes) has achieved the same or similar level as we can for the biomes (macrobiomes) of plants and animals (macrobes). While the traditional investigations of macrobiomes have usually been conducted through naturalists' (Linnaeus & Darwin) naked eyes, and aerial and satellite images (remote-sensing), the large-scale investigations of microbiomes have been made possible by DNA-sequencing-based metagenomic technologies. Two major types of metagenomic sequencing technologies-amplicon sequencing and whole-genome (shotgun sequencing)-respectively generate two contrastingly different categories of metagenomic reads (data)-OTU (operational taxonomic unit) tables representing microorganisms and OMU (operational metagenomic unit), a new term coined in this article to represent various cluster units of metagenomic genes. RESULTS: The ecological science of microbiomes based on the OTU representing microbes has been unified with the classic ecology of macrobes (macrobiomes), but the unification based on OMU representing metagenomes has been rather limited. In a previous series of studies, we have demonstrated the applications of several classic ecological theories (diversity, composition, heterogeneity, and biogeography) to the studies of metagenomes. Here I push the envelope for the unification of OTU and OMU again by demonstrating the applications of metacommunity assembly and ecological networks to the metagenomes of human gut microbiomes. Specifically, the neutral theory of biodiversity (Sloan's near neutral model), Ning et al.stochasticity framework, core-periphery network, high-salience skeleton network, special trio-motif, and positive-to-negative ratio are applied to analyze the OMU tables from whole-genome sequencing technologies, and demonstrated with seven human gut metagenome datasets from the human microbiome project. CONCLUSIONS: All of the ecological theories demonstrated previously and in this article, including diversity, composition, heterogeneity, stochasticity, and complex network analyses, are equally applicable to OMU metagenomic analyses, just as to OTU analyses. Consequently, I strongly advocate the unification of OTU/OMU (microbiomes) with classic ecology of plants and animals (macrobiomes) in the context of medical ecology.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Humanos , Metagenoma , Microbiota/genética , Biodiversidad , Análisis de Secuencia de ADN , Metagenómica/métodos
2.
Appl Environ Microbiol ; 90(2): e0173923, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38240563

RESUMEN

Social bees are frequently exposed to pesticides when foraging on nectar and pollen. Recent research has shown that pesticide exposure not only impacts social bee host health but can also alter the community structure of social bee gut microbiotas. However, most research on pesticide-bee gut microbiota interactions has been conducted in honey bees; bumble bees, native North American pollinators, have received less attention and, due to differences in their ecology, may be exposed to certain pesticides for shorter durations than honey bees. Here, we examine how exposure to the fungicide chlorothalonil for a short, field-realistic duration alters bumble bee fecal microbiotas (used as a proxy for gut microbiotas) and host performance. We expose small groups of Bombus impatiens workers (microcolonies) to field-realistic chlorothalonil concentrations for 5 days, track changes in fecal microbiotas during the exposure period and a recovery period, and compare microcolony offspring production between treatments at the end of the experiment. We also assess the use of fecal microbiotas as a gut microbiota proxy by comparing community structures of fecal and gut microbiotas. We find that chlorothalonil exposure for a short duration does not alter bumble bee fecal microbiota structure or affect microcolony production at any concentration but that fecal and gut microbiotas differ significantly in community structure. Our results show that, at least when exposure durations are brief and unaccompanied by other stressors, bumble bee microbiotas are resilient to fungicide exposure. Additionally, our work highlights the importance of sampling gut microbiotas directly, when possible.IMPORTANCEWith global pesticide use expected to increase in the coming decades, studies on how pesticides affect the health and performance of animals, including and perhaps especially pollinators, will be crucial to minimize negative environmental impacts of pesticides in agriculture. Here, we find no effect of exposure to chlorothalonil for a short, field-realistic period on bumble bee fecal microbiota community structure or microcolony production regardless of pesticide concentration. Our results can help inform pesticide use practices to minimize negative environmental impacts on the health and fitness of bumble bees, which are key native, commercial pollinators in North America. We also find that concurrently sampled bumble bee fecal and gut microbiotas contain similar microbes but differ from one another in community structure and consequently suggest that using fecal microbiotas as a proxy for gut microbiotas be done cautiously; this result contributes to our understanding of proxy use in gut microbiota research.


Asunto(s)
Fungicidas Industriales , Microbiota , Plaguicidas , Abejas , Animales , Fungicidas Industriales/toxicidad , Plaguicidas/toxicidad , Nitrilos
3.
Appl Environ Microbiol ; 90(3): e0099023, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38315021

RESUMEN

Many female squids and cuttlefishes have a symbiotic reproductive organ called the accessory nidamental gland (ANG) that hosts a bacterial consortium involved with egg defense against pathogens and fouling organisms. While the ANG is found in multiple cephalopod families, little is known about the global microbial diversity of these ANG bacterial symbionts. We used 16S rRNA gene community analysis to characterize the ANG microbiome from different cephalopod species and assess the relationship between host and symbiont phylogenies. The ANG microbiome of 11 species of cephalopods from four families (superorder: Decapodiformes) that span seven geographic locations was characterized. Bacteria of class Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were found in all species, yet analysis of amplicon sequence variants by multiple distance metrics revealed a significant difference between ANG microbiomes of cephalopod families (weighted/unweighted UniFrac, Bray-Curtis, P = 0.001). Despite being collected from widely disparate geographic locations, members of the family Sepiolidae (bobtail squid) shared many bacterial taxa including (~50%) Opitutae (Verrucomicrobia) and Ruegeria (Alphaproteobacteria) species. Furthermore, we tested for phylosymbiosis and found a positive correlation between host phylogenetic distance and bacterial community dissimilarity (Mantel test r = 0.7). These data suggest that closely related sepiolids select for distinct symbionts from similar bacterial taxa. Overall, the ANGs of different cephalopod species harbor distinct microbiomes and thus offer a diverse symbiont community to explore antimicrobial activity and other functional roles in host fitness.IMPORTANCEMany aquatic organisms recruit microbial symbionts from the environment that provide a variety of functions, including defense from pathogens. Some female cephalopods (squids, bobtail squids, and cuttlefish) have a reproductive organ called the accessory nidamental gland (ANG) that contains a bacterial consortium that protects eggs from pathogens. Despite the wide distribution of these cephalopods, whether they share similar microbiomes is unknown. Here, we studied the microbial diversity of the ANG in 11 species of cephalopods distributed over a broad geographic range and representing 15-120 million years of host divergence. The ANG microbiomes shared some bacterial taxa, but each cephalopod species had unique symbiotic members. Additionally, analysis of host-symbiont phylogenies suggests that the evolutionary histories of the partners have been important in shaping the ANG microbiome. This study advances our knowledge of cephalopod-bacteria relationships and provides a foundation to explore defensive symbionts in other systems.


Asunto(s)
Cefalópodos , Microbiota , Humanos , Animales , Femenino , Cefalópodos/genética , Filogenia , ARN Ribosómico 16S/genética , Decapodiformes/microbiología , Genitales/microbiología , Bacterias/genética , Simbiosis
4.
BMC Microbiol ; 24(1): 92, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500045

RESUMEN

BACKGROUND: The soil biota consists of a complex assembly of microbial communities and other organisms that vary significantly across farming systems, impacting soil health and plant productivity. Despite its importance, there has been limited exploration of how different cropping systems influence soil and plant root microbiomes. In this study, we investigated soil physicochemical properties, along with soil and maize-root microbiomes, in an agroecological cereal-legume companion cropping system known as push-pull technology (PPT). This system has been used in agriculture for over two decades for insect-pest management, soil health improvement, and weed control in sub-Saharan Africa. We compared the results with those obtained from maize-monoculture (Mono) cropping system. RESULTS: The PPT cropping system changed the composition and diversity of soil and maize-root microbial communities, and led to notable improvements in soil physicochemical characteristics compared to that of the Mono cropping system. Distinct bacterial and fungal genera played a crucial role in influencing the variation in microbial diversity within these cropping systems. The relative abundance of fungal genera Trichoderma, Mortierella, and Bionectria and bacterial genera Streptomyces, RB41, and Nitrospira were more enriched in PPT. These microbial communities are associated with essential ecosystem services such as plant protection, decomposition, carbon utilization, bioinsecticides production, nitrogen fixation, nematode suppression, phytohormone production, and bioremediation. Conversely, pathogenic associated bacterial genus including Bryobacter were more enriched in Mono-root. Additionally, the Mono system exhibited a high relative abundance of fungal genera such as Gibberella, Neocosmospora, and Aspergillus, which are linked to plant diseases and food contamination. Significant differences were observed in the relative abundance of the inferred metabiome functional protein pathways including syringate degradation, L-methionine biosynthesis I, and inosine 5'-phosphate degradation. CONCLUSION: Push-pull cropping system positively influences soil and maize-root microbiomes and enhances soil physicochemical properties. This highlights its potential for agricultural and environmental sustainability. These findings contribute to our understanding of the diverse ecosystem services offered by this cropping system where it is practiced regarding the system's resilience and functional redundancy. Future research should focus on whether PPT affects the soil and maize-root microbial communities through the release of plant metabolites from the intercrop root exudates or through the alteration of the soil's nutritional status, which affects microbial enzymatic activities.


Asunto(s)
Microbiota , Resiliencia Psicológica , Suelo/química , Zea mays , Hongos/genética , Agricultura/métodos , Bacterias/genética , Microbiología del Suelo
5.
Mol Ecol ; 33(7): e17306, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38414303

RESUMEN

Variation in how individuals interact with food resources can directly impact, and be affected by, their microbial interactions due to the potential for transmission. The degree to which this transmission occurs, however, may depend on the structure of forager networks, which determine the community-scale transmission opportunities. In particular, how the community-scale opportunity for transfer balances individual-scale barriers to transmission is unclear. Examining the bee-flower and bee-microbial interactions of over 1000 individual bees, we tested (1) the degree to which individual floral visits predicted microbiome composition and (2) whether plant-bee networks with increased opportunity for microbial transmission homogenized the microbiomes of bees within that network. The pollen community composition carried by bees was associated with microbiome composition at some sites, suggesting that microbial transmission at flowers occurred. Contrary to our predictions, however, microbiome variability did not differ based on transfer opportunity: bee microbiomes in asymmetric networks with high opportunity for microbial transfer were similarly variable compared to microbiomes in networks with more evenly distributed links. These findings suggest that microbial transmission at flowers is frequent enough to be observed at the community level, but that community network structure did not substantially change the dynamics of this transmission, perhaps due to filtering processes in host guts.


Asunto(s)
Microbioma Gastrointestinal , Plantas , Humanos , Abejas/genética , Animales , Polen/genética , Flores , Polinización
6.
Pharmacol Res ; 204: 107197, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692467

RESUMEN

The existing body of research underscores the critical impact of intratumoral microbiomes on the progression of pancreatic ductal adenocarcinoma (PDAC), particularly in reshaping the tumor microenvironment and influencing gemcitabine resistance. However, peritumoral tissues' microbiome, distinct from PDAC tumors, remain understudied, and Western-centric analyses overlooking potential variations in dietary-influenced microbiomes. Our study addresses this gap by 16 S rRNA sequencing of PDAC tumors and matched peritumoral tissues from Chinese Mainland patients. Our research has uncovered that the microbiome composition within tumors and paired peritumoral tissues exhibits a high degree of similarity, albeit with certain discrepancies. Notably, Exiguobacterium is found to be more abundant within the tumor tissues. Further investigations have revealed that a lower Exiguobacterium/Bacillus ratio in both the tumor and peritumoral tissues of PDAC patients is indicative of a more favorable prognosis. Further exploration utilizing an orthotopic tumor model demonstrates that the probiotic Bacillus Coagulans impedes PDAC progression, accompanied by an increased infiltration of inflammatory neutrophils in tumors. Additionally, in the subgroup with a low Exiguobacterium/Bacillus ratio, whole-exome sequencing reveals elevated missense mutations in ABL2 and MSH2. The elevated expression of ABL2 and MSH2 has been correlated with poorer prognostic outcomes in PDAC patients. Together, these insights shed light on risk factors influencing PDAC progression and unveil potential therapeutic targets, alongside probiotic intervention strategies.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/microbiología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , China/epidemiología , Masculino , Femenino , Animales , Pronóstico , Carcinoma Ductal Pancreático/microbiología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Bacillus/genética , Bacillus/aislamiento & purificación , Persona de Mediana Edad , Anciano , Microambiente Tumoral , Probióticos/uso terapéutico , Ratones , Microbiota , Línea Celular Tumoral , Microbioma Gastrointestinal
7.
Artículo en Inglés | MEDLINE | ID: mdl-39173905

RESUMEN

The Anthropocene is a proposed geological epoch reflecting large-scale impact of human activity on the Earth's natural systems. This era is also characterized other significant threats to ecological wellbeing that are less evident in the sedimentary records. Extensive environmental changes with industrialization and urbanization have also contributed to declining biodiversity and microbial dysbiosis in essential ecosystems-the original and foundational lifeforms that continue to sustain virtually all ecosystems today, including our own. These changes, along with numerous other social and ecological disruptions at all scales are implicated in the rising rates of physical and mental ill-health, particularly the immune dysregulation and noncommunicable diseases that characterize the Anthropocene. This narrative review considers how urgent structural changes in how we live are essential for the future of human health and flourishing of all of life on Earth. It explores planetary health as a solutions-oriented, transdisciplinary field and social movement aimed at addressing these interconnected these global challenges through integrated ecological approaches. Planetary health considers not only the vital biophysical "planetary boundaries" required to support human flourishing, but also the upstream social, political, and economic ecosystems that support (or undermine) wellbeing at all scales. The value systems and the worldviews that have contributed to our global challenges are a central consideration in the planetary health agenda- emphasizing the imperative to address structural inequalities, injustices, and the social, emotional, and spiritual dimensions of unrealized human potential. Promoting these inner assets is essential for human flourishing and for fostering the cultural capacities necessary to ensure sustainable planetary health.

8.
Environ Res ; 245: 117932, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104913

RESUMEN

The ecological risks of biochar-derived dissolved organic matter (DOM) to soil invertebrates at different organismal levels remains limited. This study comprehensively explored the ecological risks of biochar-derived DOM on earthworm gut through assessments of enzyme activity response, histopathology, gut microbiomes, and metabolomics. Results demonstrated that DOM disturbed the digestive enzymes in earthworm, especially for 10% DOM300 groups. The integrated biomarker response v2 (IBRv2) indicated that the perturbation of earthworm digestive enzymes induced by DOM was both time-dependent and dose-dependent. Pathological observations revealed that 10% DOM300 damaged intestinal epithelium and digestive lumen of earthworms. The significant damage and injury to earthworms caused by DOM300 due to its higher concentrations of heavy metal ions and organic substrates (e.g., toluene, hexane, butanamide, and hexanamide) compared to DOM500 and DOM700. Analysis of 16S rRNA from the gut microbiota showed a significant decrease in genera (Verminephrobacter, Bacillus, and Microbacteriaceae) associated with inflammation, disease, and detoxification processes. Furthermore, 10% DOM300 caused the abnormality of metabolites, such as glutamate, fumaric acid, pyruvate, and citric acid, which were involved in energy metabolism, These findings contributed to improve our understanding of the toxic mechanism of biochar DOM from multiple perspectives.


Asunto(s)
Carbón Orgánico , Microbioma Gastrointestinal , Oligoquetos , Contaminantes del Suelo , Animales , Materia Orgánica Disuelta , ARN Ribosómico 16S/genética , Contaminantes del Suelo/análisis , Suelo
9.
Mycorrhiza ; 34(3): 191-201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38758247

RESUMEN

Arbuscular mycorrhizal fungi (AMF) colonize biochar in soils, yet the processes governing their colonization and growth in biochar are not well characterized. Biochar amendment improves soil health by increasing soil carbon, decreasing bulk density, and improving soil water retention, all of which can increase yield and alleviate environmental stress on crops. Biochar is often applied with nutrient addition, impacting mycorrhizal communities. To understand how mycorrhizas explore soils containing biochar, we buried packets of non-activated biochar in root exclusion mesh bags in contrasting agricultural soils. In this greenhouse experiment, with quinoa (Chenopodium quinoa) as the host plant, we tested impacts of mineral nutrient (as manure and fertilizer) and biochar addition on mycorrhizal colonization of biochar. Paraglomus appeared to dominate the biochar packets, and the community of AMF found in the biochar was a subset (12 of 18) of the virtual taxa detected in soil communities. We saw differences in AMF community composition between soils with different edaphic properties, and while nutrient addition shifted those communities, the shifts were inconsistent between soil types and did not significantly influence the observation that Paraglomus appeared to selectively colonize biochar. This observation may reflect differences in AMF traits, with Paraglomus previously identified only in soils (not in roots) pointing to predominately soil exploratory traits. Conversely, the absence of some AMF from the biochar implies either a reduced tendency to explore soils or an ability to avoid recalcitrant nutrient sources. Our results point to a selective colonization of biochar in agricultural soils.


Asunto(s)
Carbón Orgánico , Micorrizas , Microbiología del Suelo , Suelo , Micorrizas/fisiología , Suelo/química , Agricultura/métodos , Chenopodium quinoa , Raíces de Plantas/microbiología , Estiércol/microbiología , Estiércol/análisis
10.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674145

RESUMEN

Beneficial properties of lactic acid bacteria have been known long ago, but particular interest in probiotics has arisen in the last two decades due to the understanding of the important role of intestinal microflora in human life. Thus, the ability of probiotics to support healthy homeostasis of gut microbiomes has received particular attention. Here, we evaluated the effect of a probiotic consisting of Bifidobacterium longum and Lacticaseibacillus paracasei on the gut microbiome of male rats, assessed their persistence in the fecal biota, and compared probiotic-mediated changes in vitro and in vivo. As expected, microbiomes of two enterotypes were identified in the feces of 21 animals, and it turned out that even a single dose of the probiotic altered the microbial composition. Upon repeated administration, the E1 biota temporarily acquired properties of the E2 type. Being highly sensitive to the intervention of probiotic bacteria at the phylum and genus levels, the fecal microbiomes retained the identity of their enterotypes when transferred to a medium optimized for gut bacteria. For the E2 biota, even similarities between probiotic-mediated reactions in vitro and in vivo were detected. Therefore, fecal-derived microbial communities are proposed as model consortia to optimize the response of resident bacteria to various agents.


Asunto(s)
Heces , Microbioma Gastrointestinal , Probióticos , Animales , Masculino , Ratas , Heces/microbiología , Bifidobacterium longum , ARN Ribosómico 16S/genética
11.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256164

RESUMEN

Lignocellulose biomasses (LCB), including spent mushroom substrate (SMS), pose environmental challenges if not properly managed. At the same time, these renewable resources hold immense potential for biofuel and chemicals production. With the mushroom market growth expected to amplify SMS quantities, repurposing or disposal strategies are critical. This study explores the use of SMS for cultivating microbial communities to produce carbohydrate-active enzymes (CAZymes). Addressing a research gap in using anaerobic digesters for enriching microbiomes feeding on SMS, this study investigates microbial diversity and secreted CAZymes under varied temperatures (37 °C, 50 °C, and 70 °C) and substrates (SMS as well as pure carboxymethylcellulose, and xylan). Enriched microbiomes demonstrated temperature-dependent preferences for cellulose, hemicellulose, and lignin degradation, supported by thermal and elemental analyses. Enzyme assays confirmed lignocellulolytic enzyme secretion correlating with substrate degradation trends. Notably, thermogravimetric analysis (TGA), coupled with differential scanning calorimetry (TGA-DSC), emerged as a rapid approach for saccharification potential determination of LCB. Microbiomes isolated at mesophilic temperature secreted thermophilic hemicellulases exhibiting robust stability and superior enzymatic activity compared to commercial enzymes, aligning with biorefinery conditions. PCR-DGGE and metagenomic analyses showcased dynamic shifts in microbiome composition and functional potential based on environmental conditions, impacting CAZyme abundance and diversity. The meta-functional analysis emphasised the role of CAZymes in biomass transformation, indicating microbial strategies for lignocellulose degradation. Temperature and substrate specificity influenced the degradative potential, highlighting the complexity of environmental-microbial interactions. This study demonstrates a temperature-driven microbial selection for lignocellulose degradation, unveiling thermophilic xylanases with industrial promise. Insights gained contribute to optimizing enzyme production and formulating efficient biomass conversion strategies. Understanding microbial consortia responses to temperature and substrate variations elucidates bioconversion dynamics, emphasizing tailored strategies for harnessing their biotechnological potential.


Asunto(s)
Agaricales , Microbiota , Consorcios Microbianos , Biocombustibles , Especificidad por Sustrato , Bacterias/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-38175312

RESUMEN

Saliva components combine with oral cavity microorganisms, blood cells, and airway secretions after entering the oral cavity via salivary ducts; these factors provide relevant information about persons' health state, quality of life, and lifestyle, in addition to their age and gender due to which salivary microbiome has emerged as a subject of significant interest in the forensic domain. This study aims to provide an extensive review of the possible applications of the salivary microbiome in characterizing the habit-specific microbiomes. Thirty-three relevant articles were selected for inclusion in this study. The study highlighted the influence of habits on the salivary microbiome suggesting smokers have distinct bacteria like Synergistetes, Streptococcus, Prevotella, and Veillonella in relation to age; people of higher age have more Prevotella; further, dental plaque can be corelated with Streptococci and Actinomycetes. Likewise, dietary habits, alcoholism, and consumption of coffee also affect bacteria types in oral cavities. The study underscores the added benefits of salivary microbiome profiling in forensics, as it is evident that microbial DNA profiling holds substantial promise for enhancing forensic investigations; it enables the characterization of an individual's habits, such as smoking, alcohol consumption, and dietary preferences; bacteria specific to these habits can be identified, thereby helping to narrow down the pool of potential suspects. In conclusion, the salivary microbiome presents a valuable avenue for forensic science, offering a novel approach which not only enhances the prospects of solving complex cases but also underscores the rich potential of microbiome analysis in the realm of forensic investigation.

13.
J Environ Sci (China) ; 146: 283-297, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969457

RESUMEN

The Arctic, an essential ecosystem on Earth, is subject to pronounced anthropogenic pressures, most notable being the climate change and risks of crude oil pollution. As crucial elements of Arctic environments, benthic microbiomes are involved in climate-relevant biogeochemical cycles and hold the potential to remediate upcoming contamination. Yet, the Arctic benthic microbiomes are among the least explored biomes on the planet. Here we combined geochemical analyses, incubation experiments, and microbial community profiling to detail the biogeography and biodegradation potential of Arctic sedimentary microbiomes in the northern Barents Sea. The results revealed a predominance of bacterial and archaea phyla typically found in the deep marine biosphere, such as Chloroflexi, Atribacteria, and Bathyarcheaota. The topmost benthic communities were spatially structured by sedimentary organic carbon, lacking a clear distinction among geographic regions. With increasing sediment depth, the community structure exhibited stratigraphic variability that could be correlated to redox geochemistry of sediments. The benthic microbiomes harbored multiple taxa capable of oxidizing hydrocarbons using aerobic and anaerobic pathways. Incubation of surface sediments with crude oil led to proliferation of several genera from the so-called rare biosphere. These include Alkalimarinus and Halioglobus, previously unrecognized as hydrocarbon-degrading genera, both harboring the full genetic potential for aerobic alkane oxidation. These findings increase our understanding of the taxonomic inventory and functional potential of unstudied benthic microbiomes in the Arctic.


Asunto(s)
Biodegradación Ambiental , Sedimentos Geológicos , Microbiota , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Regiones Árticas , Petróleo/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Archaea/metabolismo , Archaea/clasificación , Archaea/genética , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Biodiversidad
14.
BMC Plant Biol ; 23(1): 655, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38110871

RESUMEN

BACKGROUND: Although it is well recognized that core root microorganisms contribute to plant health and productivity, little is known about their role to the accumulation of secondary metabolites. The roots of Anisodus tanguticus, a traditional herbal medication utilized by Tibetan medicine, are rich in tropane alkaloids. We collected wild A. tanguticus populations throughout a 1500 km transect on the Qinghai-Tibetan Plateau. RESULTS: Our results showed that despite sampling at a distance of 1500 km, the root of A. tanguticus selectively recruits core root bacteria. We obtained 102 root bacterial core OTUs, and although their number only accounted for 2.99% of the total, their relative abundance accounted for 73% of the total. Spearman correlation and random forest analyses revealed that the composition of core root microbiomes was related to anisodine contents, aboveground biomass and nitrogen contents of Anisodus tanguticus. Among them, the main role is played by Rhizobacter, Variovorax, Polaromonas, and Mycobacterium genus that are significantly enriched in roots. Functional prediction by FAPROTAX showed that nitrogen-cycling microorganisms and pathogenic bacteria are strongly associated with anisodine contents, aboveground biomass and nitrogen contents of Anisodus tanguticus. CONCLUSIONS: Our findings show that the root selectively recruits core root bacteria and revealed that the core microbiomes and microbial functions potentially contributed to the anisodine contents, aboveground biomass and nitrogen contents of the plant. This work may increase our understanding of the interactions between microorganisms and plants and improve our ability to manage root microbiota to promote sustainable production of herbal medicines.


Asunto(s)
Derivados de Escopolamina , Tropanos , Derivados de Escopolamina/metabolismo , Tropanos/metabolismo , Bacterias , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo
15.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38203702

RESUMEN

Natural compounds continue to serve as the most fruitful source of new antimicrobials. Analysis of bacterial genomes have revealed that the biosynthetic potential of antibiotic producers by far exceeds the number of already discovered structures. However, due to the repeated discovery of known substances, it has become necessary to change both approaches to the search for antibiotics and the sources of producer strains. The pressure of natural selection and the diversity of interactions in symbiotic communities make animal microbiomes promising sources of novel substances. Here, microorganisms associated with various animals were examined in terms of their antimicrobial agents. The application of alternative cultivation techniques, ultrahigh-throughput screening, and genomic analysis facilitated the investigation of compounds produced by unique representatives of the animal microbiota. We believe that new strategies of antipathogen defense will be discovered by precisely studying cell-cell and host-microbe interactions in microbiomes in the wild.


Asunto(s)
Antibacterianos , Microbiota , Animales , Antibacterianos/farmacología , Frutas , Genoma Bacteriano , Genómica
16.
Microorganisms ; 12(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39065120

RESUMEN

Many studies have attempted to explore the changes in the structure and function of symbiotic microbiomes, as well as the underlying genetic mechanism during crop domestication. However, most of these studies have focused on crop root microbiomes, while those on leaf and fruit are rare. In this study, we generated a comprehensive dataset including the metagenomic (leaf) and metatranscriptomic (fruit pericarp in the orange stage) data of hundreds of germplasms from three tomato clades: Solanum pimpinellifolium (PIM), cherry tomato (S. lycopersicum var. cerasiforme) (CER), and S. lycopersicum group (BIG). We investigated the effect of domestication and improvement processes on the structure of the symbiotic microbiome of tomato leaf and fruit pericarp, as well as its genetic basis. We were able to obtain the composition of the symbiotic microbiome of tomato leaf and fruit pericarp, based on which the tomato clade (PIM, CER, or BIG) was predicted with high accuracy through machine learning methods. In the processes of tomato domestication and improvement, changes were observed in the relative abundance of specific bacterial taxa, Bacillus for example, in the tomato leaf and fruit pericarp symbiotic microbiomes, as well as in the function of these symbiotic microbiomes. In addition, SNP loci that were significantly associated with microbial species that are characteristic of tomato leaf were identified. Our results show that domestication and genetic improvement processes alter the symbiotic microbiome structure and function of tomato leaf and fruit pericarp. We propose that leaf and fruit microbiomes are more suitable for revealing changes in symbiotic microbiomes during the domestication process and the underlying genetic basis for these changes due to the exclusion of the influence of environmental factors such as soil types on the microbiome structure.

17.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230069, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38497264

RESUMEN

Climate change is causing extreme heating events and intensifying infectious disease outbreaks. Animals harbour microbial communities, which are vital for their survival and fitness under stressful conditions. Understanding how microbiome structures change in response to infection and warming may be important for forecasting host performance under global change. Here, we evaluated alterations in the microbiomes of several wild Caenorhabditis elegans isolates spanning a range of latitudes, upon warming temperatures and infection by the parasite Leucobacter musarum. Using 16S rRNA sequencing, we found that microbiome diversity decreased, and dispersion increased over time, with the former being more prominent in uninfected adults and the latter aggravated by infection. Infection reduced dominance of specific microbial taxa, and increased microbiome dispersion, indicating destabilizing effects on host microbial communities. Exposing infected hosts to warming did not have an additive destabilizing effect on their microbiomes. Moreover, warming during pre-adult development alleviated the destabilizing effects of infection on host microbiomes. These results revealed an opposing interaction between biotic and abiotic factors on microbiome structure. Lastly, we showed that increased microbiome dispersion might be associated with decreased variability in microbial species interaction strength. Overall, these findings improve our understanding of animal microbiome dynamics amidst concurrent climate change and epidemics. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Asunto(s)
Microbiota , Parásitos , Animales , ARN Ribosómico 16S/genética , Cambio Climático , Temperatura
18.
Life (Basel) ; 14(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38398787

RESUMEN

As belonging to one of the most isolated continents on our planet, the microbial composition of different environments in Antarctica could hold a plethora of undiscovered species with the potential for biotechnological applications. This manuscript delineates our discoveries after an expedition to the Bulgarian Antarctic Base "St. Kliment Ohridski" situated on Livingston Island, Antarctica. Amplicon-based metagenomics targeting the 16S rRNA genes and ITS2 region were employed to assess the metagenomes of the bacterial, fungal, and archaeal communities across diverse sites within and proximal to the research station. The predominant bacterial assemblages identified included Oxyphotobacteria, Bacteroidia, Gammaprotobacteria, and Alphaprotobacteria. A substantial proportion of cyanobacteria reads were attributed to a singular uncultured taxon within the family Leptolyngbyaceae. The bacterial profile of a lagoon near the base exhibited indications of penguin activity, characterized by a higher abundance of Clostridia, similar to lithotelm samples from Hannah Pt. Although most fungal reads in the samples could not be identified at the species level, noteworthy genera, namely Betamyces and Tetracladium, were identified. Archaeal abundance was negligible, with prevalent groups including Woesearchaeales, Nitrosarchaeum, Candidatus Nitrosopumilus, and Marine Group II.

19.
G3 (Bethesda) ; 14(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38113533

RESUMEN

Root-associated microbiomes in the rhizosphere (rhizobiomes) are increasingly known to play an important role in nutrient acquisition, stress tolerance, and disease resistance of plants. However, it remains largely unclear to what extent these rhizobiomes contribute to trait variation for different genotypes and if their inclusion in the genomic selection protocol can enhance prediction accuracy. To address these questions, we developed a microbiome-enabled genomic selection method that incorporated host SNPs and amplicon sequence variants from plant rhizobiomes in a maize diversity panel under high and low nitrogen (N) field conditions. Our cross-validation results showed that the microbiome-enabled genomic selection model significantly outperformed the conventional genomic selection model for nearly all time-series traits related to plant growth and N responses, with an average relative improvement of 3.7%. The improvement was more pronounced under low N conditions (8.4-40.2% of relative improvement), consistent with the view that some beneficial microbes can enhance N nutrient uptake, particularly in low N fields. However, our study could not definitively rule out the possibility that the observed improvement is partially due to the amplicon sequence variants being influenced by microenvironments. Using a high-dimensional mediation analysis method, our study has also identified microbial mediators that establish a link between plant genotype and phenotype. Some of the detected mediator microbes were previously reported to promote plant growth. The enhanced prediction accuracy of the microbiome-enabled genomic selection models, demonstrated in a single environment, serves as a proof-of-concept for the potential application of microbiome-enabled plant breeding for sustainable agriculture.


Asunto(s)
Microbiota , Zea mays , Zea mays/genética , Modelos Genéticos , Fitomejoramiento , Fenotipo , Genómica/métodos
20.
Pest Manag Sci ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984867

RESUMEN

The construction of a plant rhizosphere system enriched with beneficial microbes (BMs) can efficiently help plants defend against phytophagous insects. However, our comprehensive understanding of this approach is still incomplete. In this review, we methodically analyzed the progress made over the last decade, identifying both challenges and opportunities. The main methods for developing a BMs-enriched rhizosphere system include inoculating exogenous BMs into plants, amending the existing soil microbiomes with amendments, and utilizing plants to shape the soil microbiomes. BMs can assist plants in suppressing phytophagous insects across many orders, including 13 Lepidoptera, seven Homoptera, five Hemiptera, five Coleoptera, four Diptera, and one Thysanoptera species by inducing plant systemic resistance, enhancing plant tolerance, augmenting plant secondary metabolite production, and directly suppressing herbivores. Context-dependent factors such as abiotic and biotic conditions, as well as the response of insect herbivores, can affect the outcomes of BM-assisted plant defense. Several challenges and opportunities have emerged, including the development of synthetic microbial communities for herbivore control, the integration of biosensors for effectiveness assessment, the confirmation of BM targets for phytophagous insect defense, and the regulation of outcomes via smart farming with artificial intelligence. This study offers valuable insights for developing a BM-enriched rhizosphere system within an integrated pest management approach. © 2024 Society of Chemical Industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA