Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.522
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(13): e2317192121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38507451

RESUMEN

Photothermal heating and photocatalytic treatment are two solar-driven water processing approaches by harnessing NIR and UV-vis light, respectively, which can fully utilize solar energy if integrated. However, it remains a challenge to achieve high performance in both approaches when integrated in a material due to uncontrollable heat diffusion. Here, we report a demonstration of heat confinement on photothermal sites and fluid cooling on photocatalysis sites at the nanoscale, within a well-designed heat and fluid confinement nanofiber reactor. Photothermal and photocatalytic nanostructures were alternatively aligned in electrospun nanofibers for on-demand nanofluidic thermal management as well as easy folding into 3D structures with enhanced light utilization and mass transfer. Such a design showed simultaneously high photothermal evaporation rate (2.59 kg m-2 h-1, exceeding the limit rate) and efficient photocatalytic upcycling of microplastics pollutant into valued products. Enabled by controlled photothermal heating, the valued main product (i.e., methyl acetate) can be evaporated out with 100% selectivity by in situ separation.

2.
Stroke ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920049

RESUMEN

Asymptomatic high-grade carotid stenosis is an important therapeutic target for stroke prevention. For decades, the ACAS (Asymptomatic Carotid Atherosclerosis Study) and ACST (Asymptomatic Carotid Surgery Trial) trials provided most of the evidence supporting endarterectomy for patients with asymptomatic high-grade stenosis who were otherwise good candidates for surgery. Since then, transfemoral/transradial carotid stenting and transcarotid artery revascularization have emerged as alternatives to endarterectomy for revascularization. Advances in treatments against atherosclerosis have driven down the rates of stroke in patients managed without revascularization. SPACE-2 (Stent-Protected Angioplasty Versus Carotid Endarterectomy-2), a trial that included endarterectomy, stenting, and medical arms, failed to detect significant differences in stroke rates among treatment groups, but the study was stopped well short of its recruitment goal. CREST-2 (Carotid Revascularization and Medical Management for Asymptomatic Carotid Stenosis Trial) will be able to clarify whether revascularization by stenting or endarterectomy remains efficacious under conditions of intensive medical management. Transcarotid artery revascularization has a favorable periprocedural risk profile, but randomized trials comparing it to intensive medical management are lacking. Features like intraplaque hemorrhage on MRI and echolucency on B-mode ultrasonography can identify patients at higher risk of stroke with asymptomatic stenosis. High-grade stenosis with poor collaterals can cause hemispheric hypoperfusion, and unstable plaque can cause microemboli, both of which may be treatable risk factors for cognitive impairment. Evidence that there are patients with carotid stenosis who benefit cognitively from revascularization is presently lacking. New risk factors are emerging, like exposure to microplastics and nanoplastics. Strategies to limit exposure will be important without specific medical therapies.

3.
Curr Issues Mol Biol ; 46(5): 4186-4202, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785524

RESUMEN

As environmental plastic waste degrades, it creates an abundance of diverse microplastic particles. Consequently, microplastics contaminate drinking water and many staple food products, meaning the oral ingestion of microplastics is an important exposure route for the human population. Microplastics have long been considered inert, however their ability to promote microbial dysbiosis as well as gut inflammation and dysfunction suggests they are more noxious than first thought. More alarmingly, there is evidence for microplastics permeating from the gut throughout the body, with adverse effects on the immune and nervous systems. Coupled with the now-accepted role of the gut-brain axis in neurodegeneration, these findings support the hypothesis that this ubiquitous environmental pollutant is contributing to the rising incidence of neurodegenerative diseases, like Alzheimer's disease and Parkinson's disease. This comprehensive narrative review explores the consequences of oral microplastic exposure on the gut-brain-axis by considering current evidence for gastrointestinal uptake and disruption, immune activation, translocation throughout the body, and neurological effects. As microplastics are now a permanent feature of the global environment, understanding their effects on the gut, brain, and whole body will facilitate critical further research and inform policy changes aimed at reducing any adverse consequences.

4.
Curr Issues Mol Biol ; 46(3): 2658-2677, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38534784

RESUMEN

Microplastics and nanoplastics (MNPs) are becoming an increasingly severe global problem due to their widespread distribution and complex impact on living organisms. Apart from their environmental impact, the effects of MNPs on living organisms have also continued to attract attention. The harmful impact of MNPs has been extensively documented in marine invertebrates and larger marine vertebrates like fish. However, the research on the toxicity of these particles on mammals is still limited, and their possible effects on humans are poorly understood. Considering that MNPs are commonly found in food or food packaging, humans are primarily exposed to them through ingestion. It would be valuable to investigate the potential harmful effects of these particles on gut health. This review focuses on recent research exploring the toxicological impacts of micro- and nanoplastics on the gut, as observed in human cell lines and mammalian models. Available data from various studies indicate that the accumulation of MNPs in mammalian models and human cells may result in adverse consequences, in terms of epithelial toxicity, immune toxicity, and the disruption of the gut microbiota. The paper also discusses the current research limitations and prospects in this field, aiming to provide a scientific basis and reference for further studies on the toxic mechanisms of micro- and nanoplastics.

5.
Kidney Int ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901606

RESUMEN

Microplastics (MPs) and nanoplastics are small synthetic organic polymer particles (<5 mm and <1 µm, respectively) that originate directly from plastic compounds or result from the degradation of plastic. These particles are a global concern because they are widely distributed in water, air, food, and soil, and recent scientific evidence has linked MPs to negative biological effects. Although these particles are difficult to detect in humans, MPs have been identified in different biological fluids and tissues, such as the placenta, lung, intestines, liver, blood, urine, and kidneys. Human exposure to MPs can occur by ingestion, inhalation, or dermal contact, potentially causing metabolic alterations. Data from experimental and clinical studies have revealed that the ability of MPs to promote inflammation, oxidative stress, and organ dysfunction and negatively affect clinical outcomes is associated with their accumulation in body fluids and tissues. Although evidence of the putative action of MPs in the human kidney is still scarce, there is growing interest in studying MPs in this organ. In addition, chronic kidney disease requires investigation because this condition is potentially prone to MP accumulation. The purpose of the present article is (i) to review the general aspects of MP generation, available analytic methods for identification, and the main known biological toxic effects; and (ii) to describe and critically analyze key experimental and clinical studies that support a role of MPs in kidney disease.

6.
Funct Integr Genomics ; 24(2): 46, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429576

RESUMEN

Cyanobacteria are oxygenic photosynthetic organisms which are found across many ecosystems, including freshwater and marine habitats. They are also found on natural and artificial surfaces. In this study, we cultured and characterise a novel cyanobacterium from the surfaces of foam microplastics of tropical coastal waters. We study the chemical ecology of this cyanobacterium, Sphaerothrix gracilis gen. et sp. nov., together with its potential to form harmful cyanobacterial blooms and bioremediation applications to combat plastic pollution. The genome of S. gracilis spanned 6.7 Mbp, with identification of antibiotic resistance, nitrogen-fixation, plastic-degrading and genes involved in harmful metabolite production. The transport of potentially harmful S. gracilis in coastal environments could have severe implications on human health and food security, especially in times of a cyanobacterial bloom.


Asunto(s)
Cianobacterias , Ecosistema , Humanos , Microplásticos/metabolismo , Plásticos/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Fijación del Nitrógeno
7.
Small ; 20(10): e2305467, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875633

RESUMEN

Clean water is one of the most important resources of the planet but human-made contamination with diverse pollutants increases continuously. Microplastics (<5 mm diameter) which can have severe impacts on the environment, are present worldwide. Degradation processes lead to nanoplastics (<1 µm), which are potentially even more dangerous due to their increased bioavailability. State-of-the-art wastewater treatment plants show a deficit in effectively eliminating micro- and nanoplastics (MNP) from water, particularly in the case of nanoplastics. In this work, the magnetic removal of three different MNP types across three orders of magnitude in size (100 nm-100 µm) is investigated systematically. Superparamagnetic iron oxide nanoparticles (SPIONs) tend to attract oppositely charged MNPs and form aggregates that can be easily collected by a magnet. It shows that especially the smallest fractions (100-300 nm) can be separated in ordinary high numbers (1013  mg-1 SPION) while the highest mass is removed for MNP between 2.5 and 5 µm. The universal trend for all three types of MNP can be fitted with a derived model, which can make predictions for optimizing SPIONs for specific size ranges in the future.

8.
Biol Reprod ; 110(1): 211-218, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37724921

RESUMEN

Maternal exposure to microplastics and nanoplastics has been shown to result in fetal growth restriction in mice. In this study, we investigated the placental and fetal hemodynamic responses to plastics exposure in mice using high-frequency ultrasound. Healthy, pregnant CD-1 dams were given either 106 ng/L of 5 µm polystyrene microplastics or 106 ng/L of 50 nm polystyrene nanoplastics in drinking water throughout gestation and were compared with controls. Maternal exposure to both microplastics and nanoplastics resulted in evidence of placental dysfunction that was highly dependent on the particle size. The umbilical artery blood flow increased by 48% in the microplastic-exposed group and decreased by 25% in the nanoplastic-exposed group compared to controls (p < 0.05). The microplastic- and nanoplastic-exposed fetuses showed a significant decrease in the middle cerebral artery pulsatility index of 10% and 13%, respectively, compared to controls (p < 0.05), indicating vasodilation of the cerebral circulation, a fetal adaptation that is part of the brain sparing response to preserve oxygen delivery. Hemodynamic markers of placental dysfunction and fetal hypoxia were more pronounced in the group exposed to polystyrene nanoplastics, suggesting nanoplastic exposure during human pregnancy has the potential to disrupt fetal brain development, which in turn may cause suboptimal neurodevelopmental outcomes.


Asunto(s)
Microplásticos , Plásticos , Embarazo , Femenino , Humanos , Animales , Ratones , Poliestirenos/toxicidad , Placenta/irrigación sanguínea , Desarrollo Fetal
9.
Appl Environ Microbiol ; 90(2): e0201623, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38214515

RESUMEN

Global warming has led to a high incidence of extreme heat events, and the frequent occurrence of extreme heat events has had extensive and far-reaching impacts on wetland ecosystems. The widespread distribution of plastics in the environment, including polyethylene (PE), polylactic acid (PLA), and tire particles (TPs), has caused various environmental problems. Here, high-throughput sequencing techniques and metabolomics were used for the first time to investigate the effects of three popular microplastic types: PE, PLA, and TP, on the sediment microbiome and the metabolome at both temperatures. The microplastics were incorporated into the sediment at a concentration of 3% by weight of the dry sediment (wt/wt), to reflect environmentally relevant conditions. Sediment enzymatic activity and physicochemical properties were co-regulated by both temperatures and microplastics producing significant differences compared to controls. PE and PLA particles inhibited bacterial diversity at low temperatures and promoted bacterial diversity at high temperatures, and TP particles promoted both at both temperatures. For bacterial richness, only PLA showed inhibition at low temperature; all other treatments showed promotion. PE, PLA, and TP microplastics changed the community structure of sediment bacteria, forming two clusters at low and high temperatures. Furthermore, PE, PLA, and TP changed the sediment metabolic profiles, producing differential metabolites such as lipids and molecules, organic heterocyclic compounds, and organic acids and their derivatives, especially TP had the most significant effect. These findings contribute to a more comprehensive understanding of the potential impact of microplastic contamination.IMPORTANCEIn this study, we added 3% (wt/wt) microplastic particles, including polyethylene, polylactic acid, and tire particles, to natural sediments under simulated laboratory conditions. Subsequently, we simulated the sediment microbial and ecosystem responses under different temperature conditions by incubating them for 60 days at 15°C and 35°C, respectively. After synthesizing these results, our study strongly suggests that the presence of microplastics in sediment ecosystems and exposure under different temperature conditions may have profound effects on soil microbial communities, enzyme activities, and metabolite profiles. This is important for understanding the potential hazards of microplastic contamination on terrestrial ecosystems and for developing relevant environmental management strategies.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Plásticos , Microplásticos/química , Microplásticos/farmacología , Polietileno/análisis , Polietileno/farmacología , Ecosistema , Temperatura , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/microbiología , Poliésteres , Metaboloma , Monitoreo del Ambiente
10.
Appl Environ Microbiol ; : e0091524, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984844

RESUMEN

Humans and animals encounter a summation of exposures during their lifetime (the exposome). In recent years, the scope of the exposome has begun to include microplastics. Microplastics (MPs) have increasingly been found in locations, including in animal gastrointestinal tracts, where there could be an interaction with Salmonella enterica serovar Typhimurium, one of the commonly isolated serovars from processed chicken. However, there is limited knowledge on how gut microbiomes are affected by microplastics and if an effect would be exacerbated by the presence of a pathogen. In this study, we aimed to determine if acute exposure to microplastics in vitro altered the gut microbiome membership and activity. The microbiota response to a 24 h co-exposure to Salmonella enterica serovar Typhimurium and/or low-density polyethylene (PE) microplastics in an in vitro broiler cecal model was determined using 16S rRNA amplicon sequencing (Illumina) and untargeted metabolomics. Community sequencing results indicated that PE fiber with and without S. Typhimurium yielded a lower Firmicutes/Bacteroides ratio compared with other treatment groups, which is associated with poor gut health, and overall had greater changes to the cecal microbial community composition. However, changes in the total metabolome were primarily driven by the presence of S. Typhimurium. Additionally, the co-exposure to PE fiber and S. Typhimurium caused greater cecal microbial community and metabolome changes than either exposure alone. Our results indicate that polymer shape is an important factor in effects resulting from exposure. It also demonstrates that microplastic-pathogen interactions cause metabolic alterations to the chicken cecal microbiome in an in vitro chicken cecal mesocosm. IMPORTANCE: Researching the exposome, a summation of exposure to one's lifespan, will aid in determining the environmental factors that contribute to disease states. There is an emerging concern that microplastic-pathogen interactions in the gastrointestinal tract of broiler chickens may lead to an increase in Salmonella infection across flocks and eventually increased incidence of human salmonellosis cases. In this research article, we elucidated the effects of acute co-exposure to polyethylene microplastics and Salmonella enterica serovar Typhimurium on the ceca microbial community in vitro. Salmonella presence caused strong shifts in the cecal metabolome but not the microbiome. The inverse was true for polyethylene fiber. Polyethylene powder had almost no effect. The co-exposure had worse effects than either alone. This demonstrates that exposure effects to the gut microbial community are contaminant-specific. When combined, the interactions between exposures exacerbate changes to the gut environment, necessitating future experiments studying low-dose chronic exposure effects with in vivo model systems.

11.
Mass Spectrom Rev ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38014928

RESUMEN

Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.

12.
Glob Chang Biol ; 30(7): e17415, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39005227

RESUMEN

Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.


Asunto(s)
Microplásticos , Microbiología del Suelo , Microplásticos/análisis , Suelo/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Contaminantes del Suelo/análisis , Microbiota/efectos de los fármacos , Biomasa , Carbono/análisis , Carbono/metabolismo
13.
Chemphyschem ; 25(5): e202300854, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38193762

RESUMEN

Microplastics (MPs) have recently attracted a lot of attention worldwide due to their abundance and potentially harmful effects on the environment and on human health. One of the factors of concern is their ability to adsorb and disperse other harmful organic pollutants in the environment. To properly assess the adsorption capacity of MP for organic pollutants in different environments, it is pivotal to understand the mechanisms of their interactions in detail at the atomic level. In this work, we studied interactions between polyethylene terephthalate (PET) MP and small organic pollutants containing different functional groups within the framework of density functional theory (DFT). Our computational outcomes show that organic pollutants mainly bind to the surface of a PET model via weak non-bonding interactions, mostly hydrogen bonds. The binding strength between pollutant molecules and PET particles strongly depends on the adsorption site while we have found that the particle size is of lesser importance. Specifically, carboxylic sites are able to form strong hydrogen bonds with pollutants containing hydrogen bond donor or acceptor groups. On the other hand, it is found that in such kind of systems π-π interactions play a minor role in adsorption on PET particles.

14.
Arch Microbiol ; 206(4): 198, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558101

RESUMEN

Micro- plastics (MPs) pose significant global threats, requiring an environment-friendly mode of decomposition. Microbial-mediated biodegradation and biodeterioration of micro-plastics (MPs) have been widely known for their cost-effectiveness, and environment-friendly techniques for removing MPs. MPs resistance to various biocidal microbes has also been reported by various studies. The biocidal resistance degree of biodegradability and/or microbiological susceptibility of MPs can be determined by defacement, structural deformation, erosion, degree of plasticizer degradation, metabolization, and/or solubilization of MPs. The degradation of microplastics involves microbial organisms like bacteria, mold, yeast, algae, and associated enzymes. Analytical and microbiological techniques monitor microplastic biodegradation, but no microbial organism can eliminate microplastics. MPs can pose environmental risks to aquatic and human life. Micro-plastic biodegradation involves fragmentation, assimilation, and mineralization, influenced by abiotic and biotic factors. Environmental factors and pre-treatment agents can naturally degrade large polymers or induce bio-fragmentation, which may impact their efficiency. A clear understanding of MPs pollution and the microbial degradation process is crucial for mitigating its effects. The study aimed to identify deteriogenic microorganism species that contribute to the biodegradation of micro-plastics (MPs). This knowledge is crucial for designing novel biodeterioration and biodegradation formulations, both lab-scale and industrial, that exhibit MPs-cidal actions, potentially predicting MPs-free aquatic and atmospheric environments. The study emphasizes the urgent need for global cooperation, research advancements, and public involvement to reduce micro-plastic contamination through policy proposals and improved waste management practices.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos , Biodegradación Ambiental , Industrias , Técnicas Microbiológicas
15.
J Theor Biol ; 580: 111733, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38224853

RESUMEN

Microplastics pose a severe threat to marine ecosystems; however, relevant mathematical modeling and analysis are lacking. This paper formulates two stoichiometric producer-grazer models to investigate the interactive effects of microplastics, nutrients, and light on population dynamics under different settings. One model incorporates optimal microplastic uptake and foraging behavior based on nutrient availability for natural settings, while the other model does not include foraging in laboratory settings. We establish the well-posedness of the models and examine their long-term behaviors. Our results reveal that in natural environments, producers and grazers exhibit higher sensitivity to microplastics, and the system may demonstrate bistability or tristability. Moreover, the influences of microplastics, nutrients, and light intensity are highly intertwined. The presence of microplastics amplifies the constraints on grazer growth related to food quality and quantity imposed by extreme light intensities, while elevated phosphorus input enhances the system's resistance to intense light conditions. Furthermore, higher environmental microplastic levels do not always imply elevated microplastic body burdens in organisms, as organisms are also influenced by nutrients and light. We also find that grazers are more vulnerable to microplastics, compared to producers. If producers can utilize microplastics for growth, the system displays significantly greater resilience to microplastics.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Plásticos , Modelos Teóricos , Luz , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente
16.
Fish Shellfish Immunol ; 150: 109619, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735599

RESUMEN

Plastic waste degrades slowly in aquatic environments, transforming into microplastics (MPs) and nanoplastics (NPs), which are subsequently ingested by fish and other aquatic organisms, causing both physical blockages and chemical toxicity. The fish immune system serves as a crucial defense against viruses and pollutants present in water. It is imperative to comprehend the detrimental effects of MPs on the fish immune system and conduct further research on immunological assessments. In this paper, the immune response and immunotoxicity of MPs and its combination with environmental pollutants on fish were reviewed. MPs not only inflict physical harm on the natural defense barriers like fish gills and vital immune organs such as the liver and intestinal tract but also penetrate cells, disrupting intracellular signaling pathways, altering the levels of immune cytokines and gene expression, perturbing immune homeostasis, and ultimately compromising specific immunity. Initially, fish exposed to MPs recruit a significant number of macrophages and T cells while activating lysosomes. Over time, this exposure leads to apoptosis of immune cells, a decline in lysosomal degradation capacity, lysosomal activity, and complement levels. MPs possess a small specific surface area and can efficiently bind with heavy metals, organic pollutants, and viruses, enhancing immune responses. Hence, there is a need for comprehensive studies on the shape, size, additives released from MPs, along with their immunotoxic effects and mechanisms in conjunction with other pollutants and viruses. These studies aim to solidify existing knowledge and delineate future research directions concerning the immunotoxicity of MPs on fish, which has implications for human health.


Asunto(s)
Peces , Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Peces/inmunología , Inmunidad Innata/efectos de los fármacos
17.
Fish Shellfish Immunol ; 145: 109375, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218424

RESUMEN

As a widespread environmental pollutant, microplastics pose a great threat to the tissues and organs of aquatic animals. The carp's muscles are necessary for movement and survival. However, the mechanism of injury of polyethylene microplastics (PE-MPs) to carp muscle remains unclear. Therefore, in this study, PE-MPs with the diameter of 8 µm and the concentration of 1000 ng/L were used to feed carp for 21 days, and polyethylene microplastic treatment groups was established. The results showed that PE-MPs could cause structural abnormalities and disarrangement of muscle fibers, and aggravate oxidative stress in muscles. Exposure to PE-MPs reduced microRNA (miR-21) in muscle tissue, negatively regulated Interleukin-1 Receptor Associated Kinase 4 (IRAK4), activated Nuclear Factor Kappa-B (NF-κB) pathway, induced inflammation, and led to endoplasmic reticulum stress and apoptosis. The present study provides different targets for the prevention of muscle injury induced by polyethylene microplastics.


Asunto(s)
Carpas , MicroARNs , Contaminantes Químicos del Agua , Animales , Polietileno , Microplásticos , Plásticos , Quinasas Asociadas a Receptores de Interleucina-1 , FN-kappa B , Músculos , Apoptosis , Estrés del Retículo Endoplásmico , Inflamación , Estrés Oxidativo
18.
Nanotechnology ; 35(39)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38955173

RESUMEN

Microplastics (MPs) and nanoplastics have been an emerging global concern, with hazardous effects on plant, animal, and human health. Their small size makes it easier for them to spread to various ecosystems and enter the food chain; they are already widely found in aqueous environments and within aquatic life, and have even been found within humans. Much research has gone into understanding micro-/nanoplastic sources and environmental fate, but less work has been done to understand their degradation. Photocatalytic degradation is a promising green technique that uses visible or ultraviolet light in combination with photocatalyst to degrade plastic particles. While complete degradation, reducing plastics to small molecules, is often the goal, partial degradation is more common. We examined microscale polyethylene (PE) (125-150µm in diameter) and nanoscale polystyrene (PS) (∼300 nm in diameter) spheres both before and after degradation using multiple imaging techniques, especially electron tomography in addition to conventional electron microscopy. Electron tomography is able to image the 3D exterior and interior of the nanoplastics, enabling us to observe within aggregates and inside degraded spheres, where we found potentially open interior structures after degradation. These structures may result from differences in degradation and aggregation behavior between the different plastic types, with our work finding that PE MPs typically cracked into sharp fragments, while PS nanoplastics often fragmented into smoother, more curved shapes. These and other differences, along with interior and 3D surface images, provide new details on how the structure and aggregation of PE MPs and PS nanoplastics changes when degraded, which could influence how the resulting worn particles are collected or treated further.

19.
J Toxicol Environ Health B Crit Rev ; 27(4): 153-187, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38517360

RESUMEN

The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Contaminantes Químicos del Agua , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Transporte Biológico , Modelos Teóricos
20.
Environ Sci Technol ; 58(18): 7791-7801, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38653734

RESUMEN

Microplastics (MPs) pose potential health risks to the intestinal tract and gut microbiota, a topic that has garnered significant attention. However, the absence of quantitative assessment methods for human gut MP exposure impedes related health risk assessments. Here, we performed long-term continuous exposure experiments on mice using MPs that mimic actual human exposure characteristics. The daily excretion of fecal MPs and the concentrations of phthalates (PAEs) and their metabolites (mPAEs) in serum and urine were detected. The cumulative excretion rate of fecal MPs remains stable at about 93%. A significant linear correlation was observed between MP exposure and concentration of mPAEs in urine for both low MP (LMP; 150 µg of MPs/d) (R2 = 0.90) and high MP (HMP; 360 µg of MPs/d) groups (R2 = 0.97). Moreover, a strong correlation was found between daily PAEs exposure and total MP-associated PAEs exposure in both LMP (R2 = 0.77) and HMP (R2 = 0.88) groups. Based on these findings, we established a noninvasive model and evaluated multiple MP exposure parameters in the human gut across 6 continents, 30 countries, and 133 individuals. This study offers novel insights for the quantitative assessment of in vivo MP exposure and provides technical support for assessing the health risks of MPs.


Asunto(s)
Microplásticos , Ratones , Animales , Humanos , Heces/química , Ácidos Ftálicos/orina , Ácidos Ftálicos/metabolismo , Exposición a Riesgos Ambientales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA